RECEIVED OREGON OPERATIONS OFFICE

SEP 06 2016

EPA-REGION 10

Swan Island Lagoon Portland, Oregon

Prepared by:

engineers | scientists | innovators

621 SW Morrison Street, Suite 600 Portland, OR 97205 Telephone: (503) 222-9518 Fax (971) 271-5884 www.geosyntec.com

Project Number: HPH100E

August 12, 2016

Geosyntec Consultants

TABLE OF CONTENTS

	$\underline{\mathbf{Pa}}$	<u>ge</u>
1.0	EXECUTIVE SUMMARY	. 1
2.0	SEDIMENT SAMPLING DATA REPORT ORGANIZATION	. 1
3.0	PROJECT OBJECTIVES	. 1
4.0	INTRODUCTION	. 2
	4.1 Swan Island Lagoon Background	. 3
	4.2 Previous Sediment Characterization Studies	. 3
	4.2.1 LWG RI/FS Study	. 3
	4.2.2 2014 Sediment Sampling at Portland Harbor	. 3
	4.2.3 2016 EPA FS and Proposed Plan	. 4
	4.2.4 Hydrodynamic Studies	
5.0	SAMPLE COLLECTION AND HANDLING PROCEDURES	. 7
6.0	SAMPLING ANALYSIS	. 7
	6.1 Total PCB Calculations	. 8
	6.2 Grain Size Calculations	
7.0	SAMPLING RESULTS	. 8
	7.1 Total PCB Concentrations	. 9
	7.2 Grain Size, TOCs, and Percent Solids	10
8.0	CONCLUSIONS	11
9.0	REFERENCES	11

TABLE OF CONTENTS (Continued)

FIGURES

Figure 1: Surface (0-30 cm) Sediment Sampling Results

Figure 2: Comparison of LWG RI/FS Surface Sediment PCB Data to 2014/2016

Surface Sediment PCB Data

Figure 3: Surface (0-30 cm) Sediment Sampling Grain Size Distribution

TABLES

Table 1: Target and Actual Surface Sediment Sample Locations and Depths

Table 2: Aroclor Concentrations and Calculation of Total PCB Concentrations in

Surface Sediment Samples

Table 3: Total Organic Carbon, Percent Solids, and Grain Size in Surface

Sediment Samples

Table 4: Comparison of LWG RI/FS Surface Sediment Samples to 2014/2016

Surface Sediment Samples

APPENDICES

Appendix A: Sampling and Analysis Plan for Sediment Sampling

Appendix B: Technical Memorandum, Dye Tracer Model Simulations

Appendix C: Surface Sediment Sample Datasheets

Appendix D: Laboratory Analytical Report

Appendix E: Data Validation Report

1.0 EXECUTIVE SUMMARY

Geosyntec Consultants (Geosyntec) collected twenty surface sediment samples at Swan Island Lagoon in March 2016 to assess whether surface sediment concentrations of polychlorinated biphenyls (PCBs) had decreased through the natural recovery process in the Portland Harbor Superfund Site. Seventy-five percent of these samples show reduced PCB concentrations, with an average of 61% reduction, when compared with samples collected over a decade earlier by the Lower Willamette Group (LWG). These results also confirm trends seen with PCB concentrations found in surface sediment samples collected by Kleinfelder in 2014. Together, the Geosyntec and Kleinfelder sampling indicates that newly deposited sediments are covering and/or mixing with the older surface sediments both river-wide and in Swan Island Lagoon. As this recent data has not been incorporated in the EPA's Final Remedial Investigation (RI) (February 6, 2016), Feasibility Study (FS) (June 2016), or Proposed Plan (June 2016), the repeated characterization of Swan Island Lagoon by the EPA as an area where natural recovery is prohibitively slow-acting is not correct. These recent data show that the viability of monitored natural recovery within Swan Island Lagoon needs to be reassessed prior to the issuance of the Record of Decision (ROD), as the Proposed Plan specifically and incorrectly prohibits the selection of monitored natural recovery within the Swan Island Lagoon sediment decision unit. More holistically, these data demonstrate that natural processes occurring within the Willamette River are effectively and expeditiously reducing the risk posed to humans and the environment by PCBs in the Portland Harbor Superfund Site.

2.0 SEDIMENT SAMPLING DATA REPORT ORGANIZATION

This report presents the project objectives in Section 3, a brief history of Swan Island Lagoon and previous sediment investigations in Section 4, the sample collection and handling procedures in Section 5, the sampling analyses in Section 6, and the sampling results and analysis in Section 7. Conclusions are provided in Section 8. Supporting data and information are provided in tables and figures. The project-specific Sampling and Analysis Plan (SAP), Swan Island Lagoon Dye Tracer Model Simulations Technical Memorandum, surface sediment sample datasheets, laboratory analytical report, and data validation report are attached as appendices.

3.0 PROJECT OBJECTIVES

The objectives of the sediment sampling project are summarized below:

 Collocate surface sediment samples with previous studies to determine whether natural recovery of PCBs (i.e., PCB concentrations are decreasing) is occurring more rapidly in Swan Island Lagoon than previously projected by the EPA; and

 Determine whether or not upland source controls are sufficient within Swan Island Lagoon by assessing changes in surface sediment PCB concentrations.

As described in the 2016 Geosyntec SAP for Sediment Sampling (Appendix A), analytical and preparation methods were performed in accordance with:

- EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Third Edition, Update V (EPA 2014);
- Standard Methods for the Examination of Water and Wastewater, 22nd Edition (APHA, AWWA, and Water Environment Federation 2012); and
- ASTM International.

4.0 INTRODUCTION

Geosyntec conducted surface sediment sampling and chemical testing for PCB concentrations within Swan Island Lagoon to support the evaluation of natural recovery in the Portland Harbor Superfund Site by collocating sediment samples at locations previously sampled by the LWG for the Portland Harbor RI/FS and by Kleinfelder for the river-wide surface sediment evaluation program of natural recovery. The 2016 data is being used to supplement and update previous datasets that are between two years (Kleinfelder – 2014) and up to 18 years old (LWG – 1998-2007).

In this study, twenty surface sediment samples were collected in Swan Island Lagoon, analyzed for PCBs and compared to historical total PCB results from the collocated sample locations. Lower-than-previous PCB concentrations indicates that natural recovery processes (such as deposition of new sediment or the dispersion of contaminants) are actively occurring in Swan Island Lagoon combined with well-controlled upland contaminant sources connected to the Willamette River through private or City of Portland storm sewers. Our results, described in more detail below, found that 75% of samples had reduced PCB concentrations and demonstrate that natural recovery coupled with source control is actively occurring in Swan Island Lagoon.

4.1 Swan Island Lagoon Background

Swan Island Lagoon is an engineered lagoon located within the Portland Harbor Superfund Site which has been the location of industrial activities for nearly three-quarters of a century. Based on the EPA's 2016 FS and Proposed Plan, the key remedial risk driver in Swan Island Lagoon are PCBs, which are the only focused contaminant of concern (COC) identified by the EPA within the Swan Island sediment decision unit (EPA 2016a).

4.2 Previous Sediment Characterization Studies

Previous investigations conducted within the Portland Harbor Superfund Site and Swan Island Lagoon to assess sediment impacts from PCBs are summarized in the Kleinfelder Sediment SAP (Kleinfelder 2014a). Brief descriptions of these studies are provided below.

4.2.1 LWG RI/FS Study

Surface and subsurface sediment samples were collected by the LWG between 2002 and 2007 in the Lower Willamette River. In addition to this data, the RI/FS also utilized sediment samples which were collected and analyzed by parties other than the LWG dating back to 1998. The LWG reported elevated PCB concentrations on a harbor-wide basis in nearshore areas outside the Federal Navigational Channel and proximal to local known or suspected upland sources.

4.2.2 2014 Sediment Sampling at Portland Harbor

To address current PCB concentrations in surface sediments from the Portland Harbor study area and the upriver reach, Kleinfelder's study collected over 125 surface sediment samples between November 17 and December 3, 2014 (Kleinfelder 2015). Kleinfelder was commissioned by a group of parties to perform the sediment study. The results of the testing program were submitted to the EPA August 7, 2015. As described in the 2014 SAP, sediment sample locations were selected on a randomized grid to account for the range of PCB concentrations reported in previous studies including data used in the LWG RI/FS (Kleinfelder 2014a).

Of the 125 samples, only six locations were located within Swan Island Lagoon. Three of these samples showed a decrease in PCB concentrations compared to the RI/FS dataset, while three samples showed an increase in PCB concentrations compared to the RI/FS dataset. Two of the three samples with reduced PCB concentrations were located near repair and lay berths where Northwest Marine Ironworks operations are known to

Geosyntec consultants

have occurred. The three Swan Island Lagoon samples with increased PCB concentrations were located near two City of Portland stormwater outfalls at the head of Swan Island Lagoon and near the Portland Shipyard dry docks and ballast water treatment plant, suggesting a potential lack of ongoing source control associated with current dry dock use.

Overall, results from the Kleinfelder study indicated that the concentrations of PCBs throughout the Portland Harbor Superfund Site in surface sediments are attenuating more rapidly than the EPA has estimated in the FS. More specifically, the Kleinfelder report concluded the following:

- A statistically significant decline in median total PCB concentrations in surface sediments of the Portland Harbor Superfund Site has occurred over the last 10 years;
- The decline in PCB concentrations has been relatively consistent over each river mile in the Portland Harbor Superfund Site and that natural recovery is occurring to a significant extent; and
- Substantial improvement in sediment quality has occurred and Portland Harbor is less contaminated than it was when samples were taken by the LWG during the RI/FS.

4.2.3 2016 EPA FS and Proposed Plan

EPA has incorrectly interpreted the natural recovery occurring at the Superfund Site which directly impacts the remedial design rules. In June 2016, the EPA released its FS and Proposed Plan for the Portland Harbor Superfund Site. The Proposed Plan presents the EPA's preferred cleanup alternative, Alternative I. Specifically, in regards to Swan Island Lagoon, the FS states that:

"analysis of data collected during RI and information presented in the Draft FS (Anchor QEA 2012) indicate that monitored natural recovery (MNR) is not occurring in Swan Island Lagoon at a rate sufficient to reduce risks within an acceptable time frame. There is limited water circulation within Swan Island Lagoon, further limiting the rate of sediment deposition and clean upriver sediment from entering this area of the Site. Since MNR is not considered a viable

Geosyntec consultants

technology in this area, capping, dredging, and enhanced natural recovery (ENR)¹ are considered for meeting the preliminary remediation goals (PRGs) in an acceptable time frame [...] Therefore, ENR is being considered for the area in Swan Island Lagoon that is outside the sediment management areas (SMAs) to reduce risks. Where principal threat waste (PTW) is identified, treatment technologies will be also be assigned" (EPA 2016b).

The Proposed Plan states that "a sufficient amount of capping/dredging in areas with higher contaminant concentrations is needed in Swan Island Lagoon" (EPA 2016c). As described above and based on the Proposed Plan, it is estimated that approximately 30% of site-wide dredging, 5% of site-wide capping, and 100% of site-wide ENR are projected to be necessary within the Swan Island Lagoon sediment decision unit. Notably absent is MNR, which is permitted in all areas of the Portland Harbor Superfund Site except Swan Island Lagoon.

The EPA uses six lines of evidence to evaluate the effectiveness of natural recovery in the FS and Proposed Plan: 1) change in elevation between the 2003 and 2009 bathymetric pairs; 2) consistency between multiple bathymetric pairs; 3) sediment grain size (percent fines); 4) anthropogenic factors (propwash areas); 5) surface to subsurface concentration ratio; and 6) wind and wake wave areas (EPA 2016a).

The selected remedial alternative for Swan Island Lagoon provided in the Proposed Plan is based upon the RI/FS data collected between 2002 and 2007 and does not take into account the subsequent sediment sampling data collected by Kleinfelder in 2014 and by Geosyntec in 2016 as described below. These data directly relate to the EPA lines of evidence numbers 3 (sediment grain size) and 5 (surface to subsurface concentration ratios), and as discussed in this report, suggest strongly that natural recovery is currently occurring in Swan Island Lagoon without the need for the placement of an enhancement layer cap. The EPA has repeatedly declined to include these more recent sediment data collected in 2014 and 2016 in its Proposed Plan, instead stating that these sediment data will be considered after completion of the ROD.

4.2.4 Hydrodynamic Studies

To better understand the transport potential of suspended particles in Swan Island Lagoon, a dye tracer modeling study (using Anchor QEA's EFDC model; LWG 2012)

¹ ENR (also known as EMNR when combined with monitoring) is defined to be the placement of 12 inches of sand mixed with 5% activated carbon by volume, followed by periodic placement of replacement materials and sediment concentration monitoring.

Geosyntec consultants

was performed by Geosyntec in 2014 (Appendix B). Results from this analysis supports the conclusion that Swan Island Lagoon is a net depositional environment and indicate that MNR continues to occur in the Swan Island Lagoon. The main objective of the study was to better understand the transport potential of suspended particles (and potentially associated COCs) under various flow conditions. The dye tracer simulations were conducted during the low, medium, and high flow regimes and at dye release locations within Swan Island Lagoon and the opposite side of Swan Island along the Willamette River.

The results of the dye tracer studies indicate that dye concentrations and transport were most influenced by the type of flow regime at the time of release and the location of the dye release. Within the lagoon, the medium flow regime consistently simulated average concentrations which were 100 - 150 units higher than the low or high flow regimes. Overall, the temporal patterns for dye concentrations within Swan Island Lagoon were more similar between the low and high flow regimes, whereas those within the main stem of the Willamette River were more similar between the low and medium flow regimes. The similarities were due to the tidal cycle and magnitude of the Willamette River's flow, respectively. The flow within the main stem during the high flow regime was great enough to limit almost all transverse mixing, rapidly transporting dye particles along the northeast bank of the river instead.

Under all flow regimes and injection locations, the dye was transported downstream along the northeast bank of the Willamette River. The flow of the river limited the degree of local transverse mixing and dye was rarely transported beyond mid-channel. The largest differences between injection locations were whether the location was within the main stem of the river or Swan Island Lagoon itself. If the dye was injected into the main stem, it quickly transported downstream and out of the study area. However, if the dye was injected into Swan Island Lagoon, it exhibited a tendency to persist in small concentrations relative to the amount injected. The Model only simulated neutrally buoyant dye particles with no settling velocities. Therefore, the slow water velocities found within Swan Island Lagoon can temporarily or, in the case of particles with settling velocities, permanently trap introduced suspended particles.

Overall, the dye tracer model simulation further confirmed that Swan Island Lagoon is a depositional environment and more specifically:

Dye releases into the lagoon tend to stay in the lagoon, with some mass lost to
the Willamette River but a lingering plume in the lagoon. These results indicate
the velocities are very low and tend to keep discharges of even light particles

around. If the dye (sediment) particles were heavier, they would sink faster and remain in the lagoon.

 Dye releases in the main stem of the Willamette River tend to follow the east bank of the River closely and in some locations circulate around to spread into the lagoon. This further reinforces the concept that the lagoon receives sediments and water quality constituents from the main stem of the river, depending on where the discharges occur.

The results from this 2016 sediment study clearly show that PCB concentrations are decreasing throughout the lagoon suggesting that natural recovery processes are occurring. When compared to the dye tracer study, these results further invalidate the EPA's decision in the Proposed Plan to prohibit MNR as a viable remedial technology in Swan Island Lagoon.

5.0 SAMPLE COLLECTION AND HANDLING PROCEDURES

Surface sediment sampling was performed on March 4, 2016. A total of 20 surface (0 to 30 cm) sediment samples were collected within Swan Island Lagoon (Figure 1). This surface depth is consistent with the LWG and Kleinfelder's sample depths in Swan Island Lagoon. Fourteen of the 20 samples were collocated with LWG samples (Table 1). The additional six samples not collocated with LWG samples are located near the mouth of Swan Island Lagoon and were added to assess deposition in Swan Island Lagoon based on our review of Anchor QEA's EFDC model. Further details on sample collection and handling procedures are provided in the 2016 Geosyntec SAP (Appendix A).

Field sample logs and forms were completed and include descriptions of the sediment texture and color; sample penetration depth and quantity recovered; water depth, sediment surface disturbance, and presence of debris (Appendix C).

6.0 SAMPLING ANALYSIS

Surface sediment samples were analyzed for PCBs/Aroclors (EPA Method 8082A), Total Organic Carbon (TOC) (SM 5310B-modified), and grain size (ASTM D422-modified). The duplicated samples (SIL-20 and SIL-21) were analyzed for PCBs/Aroclors only. The laboratory analytical reports and chain of custody documents are provided in Appendix D.

A Stage 2A data validation review of laboratory analytical data was completed on April 8, 2016 (Appendix E). The data validation review confirmed the data are usable for meeting project objectives.

6.1 Total PCB Calculations

The Aroclor concentrations in each sample were summed to generate a measure of total PCB concentration at each sampling location (Table 2). The method for summing individual Aroclor concentrations within a given sample was consistent with the method used in previous investigations of sediment PCB concentrations in Swan Island Lagoon as follows:

- For each sample, concentrations reported for each Aroclor that were greater than the reporting limit were summed without adjustment;
- For each sample, concentrations reported for each Aroclor that were greater than the method detection limit (MDL) but less than the reporting limit (RL) were considered to be estimated concentrations, were qualified with a "J" flag, and were included in the total PCB sum for that sample without adjustment;
- For each sample, Aroclors that were reported as not detected (concentrations less than the MDL) in a given sample were not included in the calculation of total PCB if other Aroclors were reported at concentrations greater than the MDL in that sample; and
- For samples in which no Aroclors were present at a concentration greater than the MDL, the MDL in that sample was used as an estimate of the total PCB.

6.2 Grain Size Calculations

The percent of total sand and gravel was summed for each sample to generate the percent of total sand/gravel (0.063 mm to >2.00 mm). The percent of total silt and clay was summed for each sample to generate the percent of total silt/clay (<0.005 mm to 0.063 mm) (Table 3).

7.0 SAMPLING RESULTS

By collocating recent samples with the LWG RI/FS samples collected between 1998 and 2007, it is possible to assess the extent and magnitude of natural recovery processes within Swan Island Lagoon over the past decade, both in terms of PCB concentration and the sediment grain size, an indication of active sediment deposition. Of the 20 sample locations proposed in Swan Island Lagoon, 14 of these locations were

collocated with LWG sample locations. Six of the 20 sample locations were new sample locations in Swan Island Lagoon (i.e., not sampled during previous investigations). These six sample locations were collected at the head of Swan Island Lagoon near the boundaries of the PTW PCB delineation² identified in previous draft FS maps. In addition to the 20 samples collected in 2016, Geosyntec also evaluated the six Swan Island Lagoon sample results from the 2014 Kleinfelder study which were also collocated with LWG RI/FS sample locations (Table 4).

7.1 Total PCB Concentrations

The total PCB concentration in the 20 sediment samples ranged from 34 μ g/kg to 996 μ g/kg with an average total PCB concentration of 209 μ g/kg (Table 2). Of the 14 samples collected with LWG sample locations, 12 showed a decrease in total PCBs compared to the previous data and are generally located in the central and back portions of Swan Island Lagoon (Figure 2). The two collocated samples which showed increasing concentrations, SIL-00 and SIL-02, are both located at the mouth of Swan Island Lagoon in the dry dock basin and offshore of Coast Guard property, respectively.

Based on the LWG data, the 2016 EPA RI concluded that:

"in Swan Island Lagoon, mean surface and subsurface total PCBs concentrations are approximately the same. The lack of a vertical gradient may reflect a combination of time-varying inputs, low net sedimentation rates, and localized high surface sediment mixing rates that result in variable spatial trends in sediment quality with depth" (EPA 2016a).

However, the data collected by Geosyntec demonstrate that mean surface concentrations have dropped substantially over the past decade of natural recovery, contradicting the EPA's characterization of Swan Island Lagoon as a location with similar surface and subsurface PCB concentrations. The highest percent increase was located at SIL-00 (2,142%), while the lowest percent decrease in total PCBs was located at SIL-16 (-92%).

The average total PCB concentration in Swan Island Lagoon surface sediments from the LWG RI/FS was 393 $\mu g/kg$ and the average overall total PCB concentration in Swan

 $^{^2}$ The PTW threshold for PCBs is based on the one-in-a-thousand cancer risk concentration of PCBs, and was determined by EPA to be 200 μ g/kg. Note that this threshold is independent of the remedial alternative selected.

Island Lagoon surface sediments in 2014-2016 was 206 μ g/kg. The average decrease in total PCB concentrations over time was 61%.

As described earlier in Section 4.2.2, three Swan Island Lagoon surface sediment samples from the Kleinfelder study showed decreases in total PCBs. These three samples were collected at the mouth of Swan Island Lagoon (Kleinfelder sample number 60), in the middle of the lagoon (Kleinfelder sample number 62), and at the head of the lagoon (Kleinfelder sample number 65) (Figure 1). There is good correspondence between the locations of samples with increased and decreased PCB concentrations between the Kleinfelder and Geosyntec studies, with most areas of Swan Island Lagoon showing decreased PCB concentrations except near the Portland Shipyard dry docks and City of Portland outfalls at the head of Swan Island Lagoon.

7.2 Grain Size, TOCs, and Percent Solids

Grain size was analyzed to evaluate trends in sediment surface processes related to transportation and disposition, with finer-grained sediment indicative of the deposition of new sediment. Grain size results are presented in Table 3. Percent silt/clays were typically higher near the mouth and head of the lagoon where City of Portland outfalls are located, suggesting deposition in these areas (Figure 3). These results suggest that sediment deposition is occurring in much of Swan Island Lagoon and that sediment conditions are favorable for natural recovery. These results confirm trends seen with the hydrodynamic dye tracer study conclusions. As previously discussed, the model found that the velocities are very low within the lagoon which promotes sediment deposition.

The average percent total silt/clay was 77.4%. The majority of samples were >80% silt/clay. Only three locations (SIL-03, SIL-04, and SIL-15) were predominately sand/gravel. SIL-03 was 52.2% sand/gravel and is located along the shoreline near the Coast Guard property. The total PCB concentration at SIL-03 was 129.0 μ g/kg. SIL-04 was 90% sand/gravel and is located nearshore at the mouth of Swan Island Lagoon. The total PCB concentration at SIL-04 was 33.6 μ g/kg (which was the lowest total PCB concentration measured during the 2016 Geosyntec study). SIL-15 was 97% sand/gravel and is located in the middle of Swan Island Lagoon near Portland Shipyard, Berth 304. The total PCB concentration at SIL-15 was 66.4 μ g/kg.

TOC was reported in units of mg/kg wet weight and ranged from 7,500 mg/kg to 22,000 mg/kg with an average of 17,785 mg/kg (Table 3). Percent solids was reported in percent by weight and ranged from 30.4% by weight to 78.8% by weight with an average of 40.4% by weight (Table 3). Higher levels of total silt/clay were correlated with higher levels of TOC.

8.0 CONCLUSIONS

The 2016 sediment sampling results demonstrate that natural recovery is occurring within Swan Island Lagoon and that two of the key lines of evidence used by the EPA to prohibit the selection of MNR in the Swan Island Lagoon sediment decision unit are not supported by recent data. The PCB results for samples collected from Swan Island Lagoon demonstrate that surface sediment concentrations, and thus surface-to-depth PCB concentration ratios, have declined in Swan Island Lagoon compared to the dataset used by the EPA in its 2016 FS and Proposed Plan. Furthermore, grain size analysis of the sediment samples collected from Swan Island Lagoon demonstrate that fine-grained silts and clays are actively depositing within Swan Island Lagoon, which is a key indication of natural recovery.

The EPA's Proposed Plan currently has a rigid set of rules defining the remedy selection which specifically bar MNR as a remedial option in Swan Island Lagoon. The result of this inflexibility in the remedial selection means that if the new data collected by Geosyntec and Kleinfelder are not considered by the EPA prior to the issuance of the ROD, MNR will be preemptively and inappropriately prevented from being applied in the Swan Island Lagoon area despite current evidence to the contrary. If MNR is not permitted to be considered in the portions of Swan Island Lagoon where such a remedial approach is appropriate, the result would be a higher and ultimately unnecessary remedial cost increase singularly associated with remediation in Swan Island Lagoon.

9.0 REFERENCES

- American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation 2012. Standard Methods for the Examination of Water and Wastewater, 22nd Edition. January 5, 2012.
- Environmental Protection Agency (EPA) 2001. EPA Methods for Collection, Storage, and Manipulation of Sediment for Chemical and Toxicological Analyses: Technical Manual. Office of Water. EPA 823-B-01-002.
- Environmental Protection Agency (EPA) 2014. Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods. U.S. EPA SW-846, Third Edition. Update V. July 2014.
- Environmental Protection Agency (EPA) 2016a. Portland Harbor RI/FS Remedial Investigation Report Final. February 8, 2016.

- Environmental Protection Agency (EPA) 2016b. Portland Harbor RI/FS Feasibility Study. June 2016.
- Environmental Protection Agency (EPA) 2016c. Portland Harbor Superfund Site, Superfund Proposed Plan. June 2016.
- Kleinfelder 2014a. Sediment Sampling and Analysis Plan, Portland Harbor Superfund Site, Portland, Oregon. November 7, 2014.
- Kleinfelder 2014b. Quality Assurance Project Plan, Portland Harbor Superfund Site, Portland, Oregon. November 7, 2014.
- Kleinfelder 2015. Sediment Sampling Data Report, Portland Harbor Superfund Site, Portland, Oregon. June 1, 2015.
- Lower Willamette Group (LWG) 2012. Portland Harbor RI/FS Draft Feasibility Study. March 30, 2012.

Geosyntec Consultants

FIGURES

Legend

- Colocated Sample Location with LWG RI/FS
- 2014 Kleinfelder Sample
- ▲ 2016 Geosyntec Sample

Estimated EPA Remedial Alternative I Area

Outfalls

- Private
- City of Portland
- Port of Portland
- US Coast Guard

lotes:

- Aerial imagery was taken in the summer of 2014 and downloaded from the City of Portland ArcGIS MapServer.
- In the table, colored text denotes total PCB concentrations (ug/kg):
 Geosyntec Sample

Geosyntec Sample Kleinfelder Sample LWG RI/FS Sample

Surface (0-30 cm) Sediment Sampling Results Portland, OR	•	Geosyntec consultants		
500 250 0 500 Feet	Portland, OR	August 2016	1 1	
	NV	VMAR152460		

Sand/Gravel Silt/Clay

- 2016 Geosyntec Sample
- 2014 Kleinfelder Sample

Outfalls

- Private
- City of Portland Stormwater
- Port of Portland
- US Coast Guard

- Aerial imagery was taken in the summer of 2014 and downloaded from the City of Portland ArcGIS MapServer.
 Grain size percentages may not add up to 100.0% due to rounding.

Surface (0-30 cm) Sedime Grain Size Distribu Portland, OR		Geosyntec consultants		Figure
500 250 0	500 Feet	Portland, OR	August 2016	3
		, N	VMAR152462	

Geosyntec Consultants

TABLES

Table 1 Target and Actual Sediment Sample Locations and Depths

			Target Sam	ple Location	Accepted 9	Sample Location	T			
Sample Name	Collocated LWG RI Sample ID ^a	Date	Latitude	Longitude	Latitude	Longitude	Water Depth (ft)	Water Depth (ft-CRD)	Distance from Target (ft)	Comments
SIL-00	PSY23	3/4/2016	45.56843	-122.72417	45.56857	-122.72395	55.7	51.7	112.6	Offset due to boom. Second attempt.
SIL-01	N/A	3/4/2016	45.56887	-122.72284	45.56887	-122.72283	40.3	36.1	N/A	N/A
SIL-02	N/A	3/4/2016	45.57008	-122.72299	45.57007	-122.72295	34.6	30.6	N/A	N/A
SIL-03	PSY18	3/4/2016	45.57041	-122.72299	45.57043	-122.72304	26.3	22.4	150.4	N/A
SIL-04	G364	3/4/2016	45.57057	-122.72172	45.57048	-122.72184	12.7	9.1	57.5	Third attempt.
SIL-05	N/A	3/4/2016	45.56984	-122.72194	45.56986	-122.72204	40.3	36.8	N/A	N/A
SIL-06	N/A	3/4/2016	45.56906	-122.72191	45.56901	-122.72202	41.1	36.7	N/A	N/A
SIL-07	N/A	3/4/2016	45.56946	-122.72053	45.56955	-122.72041	36.8	33.3	N/A	N/A
SIL-08	N/A	3/4/2016	45.56883	-122.72073	45.56884	-122.72073	39.8	36.4	N/A	N/A
SIL-09	G382	3/4/2016	45.56815	-122.72028	45.56815	-122.72032	38.9	35.6	25.9	N/A
SIL-10	G379	3/4/2016	45.56833	-122.71874	45.56828	-122.71880	39.2	35.9	36.2	N/A
SIL-11	N/A	3/4/2016	45.56758	-122.71806	45.56758	-122.71809	39.9	36.7	N/A	N/A
SIL-12	G393	3/4/2016	45.56655	-122.71733	45.56657	-122.71718	39.0	35.8	22.9	Offset due to barge.
SIL-13	BT026	3/4/2016	45.56703	-122.71567	45.56690	-122.71571	31.6	28.5	54.1	Offset due to barge.
SIL-14	G397	3/4/2016	45.56615	-122.71476	45.56625	-122.71453	35.3	32.3	56.3	N/A
SIL-15	G402	3/4/2016	45.56571	-122.71579	45.56572	-122.71590	36.2	33.3	44.2	Second attempt.
SIL-16	G415	3/4/2016	45.56404	-122.71267	45.56429	-122.71262	30.0	27.3	89.5	Offset due to barge.
SIL-17	NA-4B	3/4/2016	45.56387	-122.71051	45.56387	-122.71051	28.8	26.1	14.9	N/A
SIL-18	N/A	3/4/2016	45.56208	-122.70867	45.56208	-122.70866	19.9	17.5	N/A	N/A
SIL-19	N/A	3/4/2016	45.56284	-122.70868	45.56284	-122.70868	22.8	20.2	N/A	N/A
060	G696	11/24/2014	45.569316	-122.72674	45.56932	-122.72673	N/A	31.5	1	N/A
062	G385	11/24/2014	45.567433	-122.71743	45.56743	-122.71742	N/A	31.1	3	N/A
063	G425	11/24/2014	45.562723	-122.70739	45.56272	-122.70739	N/A	11.2	1	N/A
064	G430	11/24/2014	45.561694	-122.70784	45.56169	-122.70785	N/A	7.3	3	N/A
065	G421	11/24/2014	45.563459	-122.71130	45.56345	-122.71130	N/A	19.7	2	N/A
066	G392	11/21/2014	45.566850	-122.72507	45.56684	-122.72508	N/A	17.0	4	N/A

ft, feet

LWG, Lower Willamette Group RI, remedial investigation N/A, not applicable

^a Sample from the LWG RI collocated with the sample collected in 2016 and identified in the "Sample Name" column.

Table 2
Aroclor Concentrations and Calculation of Total PCB Concentrations in Surface Sediment Samples

0	0	Result	Data
Sample ID			Qualifier
SIL-00	Aroclor 1016	<7.73	ND
SIL-00	Aroclor 1221	<7.73	ND
SIL-00	Aroclor 1232	<7.73	ND
SIL-00	Aroclor 1242	<7.73	ND
SIL-00	Aroclor 1248	<7.73	ND
SIL-00	Aroclor 1254	784	
SIL-00	Aroclor 1260	180	
SIL-00	Aroclor 1262	<7.73	ND
SIL-00	Aroclor 1268	<7.73	ND
SIL-00	Total PCBs	964	
SIL-01	Aroclor 1016	<7.20	ND
SIL-01	Aroclor 1221	<7.20	ND
SIL-01	Aroclor 1232	<7.20	ND
SIL-01	Aroclor 1242	<7.20	ND
SIL-01	Aroclor 1248	<7.20	ND
SIL-01	Aroclor 1254	841	
SIL-01	Aroclor 1260	155	
SIL-01	Aroclor 1262	<7.20	ND
SIL-01	Aroclor 1268	<7.20	ND
SIL-01	Total PCBs	996	
SIL-02	Aroclor 1016	<3.48	ND
SIL-02	Aroclor 1221	<3.48	ND
SIL-02	Aroclor 1232	<3.48	ND
SIL-02	Aroclor 1242	<3.48	ND
SIL-02	Aroclor 1248	<3.48	ND
SIL-02	Aroclor 1254	192	
SIL-02	Aroclor 1260	98.4	
SIL-02	Aroclor 1262	<3.48	ND
SIL-02	Aroclor 1268	<3.48	ND
SIL-02	Total PCBs	290.4	
SIL-03	Aroclor 1016	<3.39	ND
SIL-03	Aroclor 1221	<3.39	ND
SIL-03	Aroclor 1232	<3.39	ND
SIL-03	Aroclor 1242	<3.39	ND
SIL-03	Aroclor 1248 <3.39		ND
SIL-03	Aroclor 1254		
SIL-03	Aroclor 1260		
SIL-03	Aroclor 1262		
SIL-03	Aroclor 1268	<3.39	ND
SIL-03	Total PCBs	129.1	***************************************

Table 2
Aroclor Concentrations and Calculation of Total PCB Concentrations in Surface Sediment Samples

0 1 15		Result	Data
Sample ID	Compound	(µg/kg) ^a	Qualifier
SIL-04	Aroclor 1016	<0.667	ND
SIL-04	Aroclor 1221	< 0.667	ND
SIL-04	Aroclor 1232	< 0.667	ND
SIL-04	Aroclor 1242	< 0.667	ND
SIL-04	Aroclor 1248	< 0.667	ND
SIL-04	Aroclor 1254	24.7	
SIL-04	Aroclor 1260	8.91	
SIL-04	Aroclor 1262	< 0.667	ND
SIL-04	Aroclor 1268	<0.667	ND
SIL-04	Total PCBs	33.61	
SIL-05	Aroclor 1016	<0.695	ND
SIL-05	Aroclor 1221	<0.695	ND
SIL-05	Aroclor 1232	<0.695	ND
SIL-05	Aroclor 1242	< 0.695	ND
SIL-05	Aroclor 1248	< 0.695	ND
SIL-05	Aroclor 1254	25.9	3
SIL-05	Aroclor 1260	22.4	
SIL-05	Aroclor 1262	< 0.695	ND
SIL-05	Aroclor 1268	< 0.695	ND
SIL-05	Total PCBs	48.3	
SIL-06	Aroclor 1016	<0.724	ND
SIL-06	Aroclor 1221	<0.724	ND
SIL-06	Aroclor 1232	<0.724	ND
SIL-06	Aroclor 1242	<0.724	ND
SIL-06	Aroclor 1248	<0.724	ND
SIL-06	Aroclor 1254	29.2	
SIL-06	Aroclor 1260	22.7	
SIL-06	Aroclor 1262	< 0.724	ND
SIL-06	Aroclor 1268	<0.724	ND
SIL-06	Total PCBs	51.9	
SIL-07	Aroclor 1016	<0.698	ND
SIL-07	Aroclor 1221	<0.698	ND
SIL-07	Aroclor 1232	<0.698	ND
SIL-07	Aroclor 1242	<0.698	ND
SIL-07	Aroclor 1248	<0.698	ND
SIL-07	Aroclor 1254	49.5	
SIL-07	Aroclor 1260	31.6	
SIL-07	Aroclor 1262	<0.698	ND
SIL-07	Aroclor 1268	<0.698	ND
SIL-07	Total PCBs	81.1	

Table 2
Aroclor Concentrations and Calculation of Total PCB Concentrations in Surface Sediment Samples

Sample ID	Compound	Result	Data Qualifier
011.00	1 1010	(µg/kg) ^a	ND
SIL-08	Aroclor 1016	100 CHARLES AND	
SIL-08	Aroclor 1221	<1.40	ND
SIL-08	Aroclor 1232 <1.40		ND
SIL-08	Aroclor 1242	<1.40	ND
SIL-08	Aroclor 1248	<1.40	ND
SIL-08	Aroclor 1254	93	
SIL-08	Aroclor 1260	62.7	
SIL-08	Aroclor 1262	<1.40	ND
SIL-08	Aroclor 1268	<1.40	ND
SIL-08	Total PCBs	155.7	
SIL-09	Aroclor 1016	<0.703	ND
SIL-09	Aroclor 1221	<0.703	ND
SIL-09	Aroclor 1232	<0.703	ND
SIL-09	Aroclor 1242	<0.703	ND
SIL-09	Aroclor 1248	<0.703	ND
SIL-09	Aroclor 1254	58.7	
SIL-09	Aroclor 1260	44.7	
SIL-09	Aroclor 1262	<0.703	ND
SIL-09	Aroclor 1268	< 0.703	ND
SIL-09	Total PCBs	103.4	
SIL-10	Aroclor 1016	<3.48	ND
SIL-10	Aroclor 1221	<3.48	ND
SIL-10	Aroclor 1232	<3.48	ND
SIL-10	Aroclor 1242	<3.48	ND
SIL-10	Aroclor 1248	<3.48	ND
SIL-10	Aroclor 1254	190	
SIL-10	Aroclor 1260	111	2
SIL-10	Aroclor 1262	<3.48	ND
SIL-10	Aroclor 1268	<3.48	ND
SIL-10	Total PCBs	301	
SIL-11	Aroclor 1016	<2.13	ND
SIL-11	Aroclor 1221	<2.13	ND
SIL-11	Aroclor 1232	<2.13	ND .
SIL-11	Aroclor 1242	<2.13	ND
SIL-11	The state of the s		ND
SIL-11	Aroclor 1254 65.9		
SIL-11	Aroclor 1260 165		
SIL-11	Aroclor 1262 <2.13		ND
SIL-11	Aroclor 1268	<2.13	ND
SIL-11	Total PCBs	230.9	

Table 2
Aroclor Concentrations and Calculation of Total PCB Concentrations in Surface Sediment Samples

0 1 10		Result	Data
Sample ID	Compound	(µg/kg) ^a	Qualifier
SIL-12	Aroclor 1016	<6.92	ND
SIL-12	Aroclor 1221	<6.92	ND
SIL-12	Aroclor 1232	<6.92	ND
SIL-12	Aroclor 1242	<6.92	ND
SIL-12	Aroclor 1248	<6.92	ND
SIL-12	Aroclor 1254	193	
SIL-12	Aroclor 1260	230	
SIL-12	Aroclor 1262	<6.92	ND
SIL-12	Aroclor 1268	<6.92	ND
SIL-12	Total PCBs	423	· ·
SIL-13	Aroclor 1016	<0.691	ND
SIL-13	Aroclor 1221	<0.691	ND
SIL-13	Aroclor 1232	<0.691	ND
SIL-13	Aroclor 1242	<0.691	ND
SIL-13	Aroclor 1248	<0.691	ND
SIL-13	Aroclor 1254	59.8	
SIL-13	Aroclor 1260	85.5	
SIL-13	Aroclor 1262	< 0.691	ND
SIL-13	Aroclor 1268	< 0.691	ND
SIL-13	Total PCBs	145.3	
SIL-14	Aroclor 1016	<0.711	ND
SIL-14	Aroclor 1221	<0.711	ND
SIL-14	Aroclor 1232	<0.711	ND
SIL-14	Aroclor 1242	<0.711	ND
SIL-14	Aroclor 1248	<0.711	ND
SIL-14	Aroclor 1254	25.7	
SIL-14	Aroclor 1260	46.6	
SIL-14	Aroclor 1262	<0.711	ND
SIL-14	Aroclor 1268	<0.711	ND
SIL-14	Total PCBs	72.3	
SIL-15	Aroclor 1016	<0.590	ND
SIL-15	Aroclor 1221	< 0.590	ND
SIL-15	Aroclor 1232	<0.590	ND
SIL-15	Aroclor 1242	<0.590	ND
SIL-15	Aroclor 1248	oclor 1248 <0.590	
SIL-15	Aroclor 1254	33.6	
SIL-15	Aroclor 1260	32.8	
SIL-15	Aroclor 1262	<0.590	ND
SIL-15	Aroclor 1268	<0.590	ND
SIL-15	Total PCBs	66.4	

Table 2
Aroclor Concentrations and Calculation of Total PCB Concentrations in Surface Sediment Samples

		Result	Data
Sample ID	Compound	(µg/kg) ^a	Qualifier
SIL-16	Aroclor 1016	<0.690	ND
SIL-16	Aroclor 1221	oclor 1221 <0.690	
SIL-16	Aroclor 1232		
SIL-16	Aroclor 1242		
SIL-16	Aroclor 1248	<0.690	ND
SIL-16	Aroclor 1254	25.7	
SIL-16	Aroclor 1260	44.1	
SIL-16	Aroclor 1262	< 0.690	ND
SIL-16	Aroclor 1268	< 0.690	ND
SIL-16	Total PCBs	69.8	
SIL-17	Aroclor 1016	<0.722	ND
SIL-17	Aroclor 1221	<0.722	ND
SIL-17	Aroclor 1232	<0.722	ND
SIL-17	Aroclor 1242	< 0.722	ND
SIL-17	Aroclor 1248	<0.722	ND
SIL-17	Aroclor 1254	22.7	
SIL-17	Aroclor 1260	39.5	21
SIL-17	Aroclor 1262	<0.722	ND
SIL-17	Aroclor 1268	<0.722	ND
SIL-17	Total PCBs	62.2	
SIL-18	Aroclor 1016	<0.702	ND
SIL-18	Aroclor 1221	<0.702	ND
SIL-18	Aroclor 1232	<0.702	ND
SIL-18	Aroclor 1242	<0.702	ND
SIL-18	Aroclor 1248	<0.702	ND
SIL-18	Aroclor 1254	25.8	
SIL-18	Aroclor 1260	38.3	
SIL-18	Aroclor 1262	<0.702	ND
SIL-18	Aroclor 1268	<0.702	ND
SIL-18	Total PCBs	64.1	
SIL-19	Aroclor 1016	<1.02	ND
SIL-19	Aroclor 1221	<1.02	ND
SIL-19	Aroclor 1232	<1.02	ND
SIL-19	Aroclor 1242		
SIL-19	Aroclor 1248	lor 1248 <1.02	
SIL-19	Aroclor 1254	18	
SIL-19	Aroclor 1260	33.2	
SIL-19	Aroclor 1262	<1.02	ND
SIL-19	Aroclor 1268	<1.02	ND
SIL-19	Total PCBs	51.2	

Table 2
Aroclor Concentrations and Calculation of Total PCB Concentrations
in Surface Sediment Samples

W.			
Sample ID	Compound	Result (µg/kg) ^a	Data Qualifier
		(µg/kg)	European Calming Home C
SIL-20 *	Aroclor 1016	< 0.695	ND
SIL-20 *	Aroclor 1221	< 0.695	ND
SIL-20 *	Aroclor 1232	< 0.695	ND
SIL-20 *	Aroclor 1242	< 0.695	ND
SIL-20 *	Aroclor 1248	< 0.695	ND
SIL-20 *	Aroclor 1254	27.8	
SIL-20 *	Aroclor 1260	38.1	
SIL-20 *	Aroclor 1262	< 0.695	ND
SIL-20 *	Aroclor 1268	<0.695	ND
SIL-20 *	Total PCBs	65.9	
SIL-21 **	Aroclor 1016	<3.43	ND
SIL-21 **	Aroclor 1221	<3.43	ND
SIL-21 **	Aroclor 1232	<3.43	ND
SIL-21 **	Aroclor 1242	<3.43	ND
SIL-21 **	Aroclor 1248	<3.43	ND
SIL-21 **	Aroclor 1254	61.2	
SIL-21 **	Aroclor 1260 131		=
SIL-21 **	Aroclor 1262 <3.43		ND
SIL-21 **	Aroclor 1268	<3.43	ND
SIL-21 **	Total PCBs	192.2	

ND, not detected at or above the reporting limit

^aThe Aroclor concentrations in each sample were summed to generate a measure of total PCB concentration at each sampling location.

^{*}SIL-20 is a duplicate for SIL-17.

^{**}SIL-21 is a duplicate for SIL-13.

Table 3

Total Organic Carbon, Percent Solids, and Grain Size in Surface Sediment Samples

and the second	% Sand/Gravel	% Silt/Clay		% Solids
Sample ID	(0.063 mm to >	(< 0.005 mm to	TOC (mg/kg)	(% by
	2.00 mm)	0.063 mm)		weight)
SIL-00	12.5	87.4	18,000	42.5
SIL-01	19.3	80.6	19,000	38.5
SIL-02	17.2	82.8	19,000	48.6
SIL-03	52.2	47.8	15,000	50.9
SIL-04	90.0	10.0	7,700	72.1
SIL-05	8.6	91.4	20,000	34.9
SIL-06	5.9	94.1	20,000	33.9
SIL-07	12.7	87.3	17,000	36.9
SIL-08	11.7	88.3	19,000	36.3
SIL-09	17.1	83.0	22,000	34.2
SIL-10	16.1	83.9	19,000	36.3
SIL-11	9.1	91.0	22,000	30.4
SIL-12	17.8	82.2	20,000	32.7
SIL-13	19.3	80.7	21,000	36.2
SIL-14	12.4	87.6	21,000	31.5
SIL-15	97.0	3.1	7,500	78.8
SIL-16	8.4	91.6	7,500	30.8
SIL-17	9.4	90.6	20,000	34.2
SIL-18	6.2	93.8	20,000	35.0
SIL-19	9.2	90.8	21,000	34.2

TOC, total organic carbon

Table 4
Comparison of LWG RI Surface Sediment Samples to 2014/2016 Surface Sediment Samples

LWG RI Sample ID	Date Sampled	LWG RI Total PCB Result (µg/kg)	2014/2016 Sample ID	Date Sampled	2014/2016 Total PCB Result (µg/kg)	% Change
G696	11/30/2007	20.0	060	11/24/2014	15.7	⊸ -22%
G385	10/29/2004	983.0	062	11/24/2014	609.4	-38%
G425	10/7/2004	14.9	063	11/24/2014	47.3	1 217%
G430	10/22/2004	2.4	064	11/24/2014	48.5	1930%
G421	9/9/2004	555.4	065	11/24/2014	65.7	⊸ -88%
G392	10/8/2004	74.5	066	11/21/2014	223.9	1 201%
BT022	12/8/2005	106.0	SIL-02	3/4/2016	290.4	174%
BT026	12/12/2005	210.0	SIL-13	3/4/2016	145.3	⊸ -31%
G364	10/8/2004	148.0	SIL-04	3/4/2016	33.6	₩ -77%
G379	9/9/2004	380.0	SIL-10	3/4/2016	301.0	J -21%
G382	10/8/2004	446.0	SIL-09	3/4/2016	103.4	↓ -77%
G393	10/22/2004	2310.0	SIL-12	3/4/2016	423.0	⊸ -82%
G397	8/24/2004	330.0	SIL-14	3/4/2016	72.3	⊸ -78%
G402	9/9/2004	679.0	SIL-15	3/4/2016	66.4	₩ -90%
G415	10/22/2004	0.088	SIL-16	3/4/2016	69.8	⊸ -92%
NA-4B	10/21/2004	159.0	SIL-17	3/4/2016	62.2	-61%
PSY04	4/5/1998	116.0	SIL-19	3/4/2016	51.0	⊸ -56%
PSY18	4/4/1998	253.0	SIL-03	3/4/2016	129.0	⊸ -49%
PSY23	4/5/1998	43.0	SIL-00	3/4/2016	964.0	1 2142%
09R001	10/24/2002	144.5	SIL-18	3/4/2016	64.1	₩ -56%
N/A	N/A	N/A	SIL-01	3/4/2016	996	N/A
N/A	N/A	N/A	SIL-05	3/4/2016	48.3	N/A
N/A	N/A	N/A	SIL-06	3/4/2016	51.9	N/A
N/A	N/A	N/A	SIL-07	3/4/2016	81.1	N/A
N/A	N/A	N/A	SIL-08	3/4/2016	155.7	N/A
N/A	N/A	N/A	SIL-11	3/4/2016	230.9	N/A

N/A, not applicable

APPENDIX A

Sampling and Analysis Plan for Sediment Sampling

Sampling and Analysis Plan Sediment Sampling

Swan Island Lagoon Portland, Oregon

Prepared by:

engineers | scientists | innovators

621 SW Morrison Street, Suite 600 Portland, OR 97205 Telephone: (503) 222-9518 Fax (971) 271-5884 www.geosyntec.com

Project Number: HPH100E

January 12, 2016

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	
	1.1	Previous Sediment Characterization Studies
	1.2	Sampling and Analysis Plan Organization
2.0	PROJECT OBJECTIVES	
3.0	PROJECT TEAM AND RESPONSIBILITIES	
	3.1	Project Planning and Coordination
	3.3 3.4 3.5	Chemical and Physical Analyses of Sediment Samples 4 Quality Assurance/Quality Control Management 4 Reporting 4
4.0	SAMPLE COLLECTION AND HANDLING PROCEDURES4	
	4.1 4.2 4.3	Surface Sediment Sampling Scheme
	4.4 4.5 4.6	Equipment Decontamination Procedures7Sample Containers and Volumes7Sample Transport and Chain of Custody Procedures7
5.0	PHYSICAL AND CHEMICAL ANALYSIS 8	
	5.1	Quality Assurance/Quality Control85.1.1 Chain of Custody85.1.2 Limits of Detection95.1.3 Sample Storage Requirements95.1.4 Quality Assurance/Quality Control Samples95.1.5 Laboratory Report9
6.0	SEDIMENT CHEMISTRY DATA EVALUATION PROCEDURES 10	
7.0	REPORTING	
8.0	REE	TERENCES 11

TABLE OF CONTENTS (Continued)

FIGURES

Figure 1: Site Location

Figure 2: Proposed Sediment Sampling Locations

TABLES

Table 1: Proposed Sample Locations

Table 2: Sample Storage Criteria

Table 3: Analyte List, Quantitation Limits, Precision, and Accuracy Criteria for

Sediment

1.0 INTRODUCTION

In 2014, Geosyntec participated in a sediment sampling program sponsored by a small Remedial Group (Group) to evaluate natural recovery for polychlorinated biphenyls (PCBs) at the Portland Harbor Superfund site. The Group commissioned Kleinfelder to develop a Sampling and Analysis Plan (SAP), Quality Assurance Protection Plan (QAPP) and to execute the sediment sampling and chemical testing effort.

The Group's study collected over 125 surface sediment samples within the Superfund site between November 17 and December 3, 2014. Of the 125 samples, only six locations were located within Swan Island Lagoon (Figure 1). The results of the study indicate that the concentrations of PCBs throughout the Superfund site surface sediments are attenuating more rapidly than the Environmental Protection Agency (EPA) has estimated in their Feasibility Study (FS). In particular, three of the six Swan Island Lagoon samples had reduced concentration. The three Swan Island Lagoon samples that showed increased concentrations are near other known PCB source areas.

To build upon the Group's work in evaluating the use of monitored natural recovery and enhanced monitored natural recovery, additional sediment sampling is proposed to provide a more current and robust dataset within Swan Island Lagoon. The purpose of this SAP is to present the sampling approach and procedures that will be used to supplement the existing dataset within Swan Island Lagoon. To demonstrate that natural attenuation is ongoing, the objective of this study is to identify areas within Swan Island Lagoon that have been previously sampled from 2002-2007 during the Portland Harbor Remedial Investigation (RI) by the Lower Willamette Group (LWG 2012) and analyzed for PCBs.

Surface sediments will be collected and analyzed for PCBs in this study to compare to historical PCB results from the same locations in Swan Island Lagoon. If PCB concentrations are decreasing compared to past data, it can be assumed that sediment is depositing in Swan Island Lagoon.

As described in the Kleinfelder SAP and QAPP (Kleinfelder 2014a and 2014b), analytical and preparation methods will be performed in accordance with:

- EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Third Edition, Update V (EPA 2014);
- Standard Methods for the Examination of Water and Wastewater, 22nd Edition (APHA, AWWA, and Water Environment Federation 2012); and

ASTM International.

1.1 Previous Sediment Characterization Studies

A number of previous investigations were conducted within the Portland Harbor Superfund site by various environmental consultants and the EPA to assess site conditions and remediation alternatives. These previous investigations are summarized in the Kleinfelder SAP (Kleinfelder 2014a). A brief description of the 2015 Group study performed in the Portland Harbor Superfund site is provided below.

1.1.1 2014 Sediment Sampling, Portland Harbor

To address current PCB concentrations in surface sediments from the Portland Harbor study area and the upriver reach, Kleinfelder's study collected over 125 surface sediment samples between November 17 and December 3, 2014 (Kleinfelder 2015). The results of the testing program were submitted to the EPA in August 2015. As described in the project SAP, sediment sample locations were selected on a randomized grid to account for the range of PCB concentrations reported in previous studies including data used in the LWG RI/FS performed between 2004 and 2007 (Kleinfelder 2014a).

To assess current PCB sediment concentrations in the context of historical concentrations, the results of the 2014 PCB sampling were compared to total PCB concentrations reported from investigations performed in the LWG RI/FS. The 2015 Kleinfelder report concluded the following:

- A statistically significant decline in median total PCB concentrations in surface sediments of the Portland Harbor site has occurred over the last 10 years;
- The decline in PCB concentrations has been relatively consistent over each river mile in the Portland Harbor site and that natural recovery is occurring to a significant extent; and
- Substantial improvement in sediment quality has occurred, and Portland Harbor is less contaminated than it was in over a decade ago.

1.2 Sampling and Analysis Plan Organization

This SAP presents the project objectives in Section 2 and the project team and responsibilities are presented in Section 3, followed by discussions of sample collection methods, handling procedures, physical and chemical analyses, and data evaluation

procedures in Sections 4 through 6, respectively. Section 7 outlines the contents of the final sediment sampling report. Supporting information is provided in tables and figures. The QAPP developed by Kleinfelder for the Group Study will be followed for this sediment study (Kleinfelder 2014b).

2.0 PROJECT OBJECTIVES

The objectives of the sediment sampling project are summarized below:

- Collocate surface sediment samples with previous studies to determine whether natural recovery of PCBs (i.e., PCB concentrations are decreasing) is occurring more rapidly in Swan Island Lagoon than previously projected by the EPA; and
- Determine whether or not upland source controls are sufficient within Swan Island Lagoon by looking at changes in surface sediment PCB concentrations.

3.0 PROJECT TEAM AND RESPONSIBILITIES

This sediment characterization project will include: (1) project planning and coordination; (2) field sample collection; (3) chemical and physical analysis of sediment; (4) Quality Assurance/Quality Control (QA/QC) management; and (5) a final project report. Staffing and responsibilities for these tasks are outlined below.

3.1 Project Planning and Coordination

Mr. Keith Kroeger will be the overall project manager responsible for developing and completing the sampling program and for technical issues related to sampling and testing and preparation of the final project report. Mr. Howard Cumberland will be the Project Director responsible for providing senior technical review of all phases of the project.

3.2 Field Sample Collection

Mr. Kroeger will provide overall direction and supervision to the field sampling program including logistics, personnel assignments, and field operations. Mr. Kroeger will be responsible for ensuring accurate sample positioning; recording sample locations, depths, and identification; ensuring conformance to sampling and handling requirements, including field decontamination procedures; photographing, describing, and logging the samples; and maintaining chain of custody of the samples until they are delivered to the analytical laboratories. The Health and Safety Plan (HASP) developed by Kleinfelder for the Group Study will be followed for this SAP (Kleinfelder 2014c).

All personnel are required to review the HASP and understand the provisions, potential hazards, and required personal equipment.

3.3 Chemical and Physical Analyses of Sediment Samples

Ms. Alison Clements will be responsible for coordinating the chemical laboratory analyses of sediment samples. She will also instruct the laboratory to maintain required handling and analytical protocols, including detection limit requirements for sediment chemical analysis.

The Project Chemist at the analytical laboratory will be responsible for chemical analysis in accordance with the EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Third Edition, Update V (EPA 2014), Standard Methods for the Examination of Water and Wastewater, 22nd Edition, and ASTM International analytical testing protocols and other applicable QA/QC requirements. A written report of analytical results and QA/QC data will be prepared by the analytical laboratory and will be included as an appendix in the final report.

3.4 Quality Assurance/Quality Control Management

Ms. Julia Klens Caprio will serve as QA Manager for the sediment testing program. She will perform QA oversight for the laboratory program. She will stay fully informed of laboratory activities during sample preparation and analysis. She will review the laboratory analytical and QA/QC data to assure data are valid and procedures meet the required analytical QC limits.

3.5 Reporting

Ms. Alison Clements and Mr. Kroeger will be responsible for the preparation of the final project report documenting the sediment sampling activities, analytical results, and interpretation of the results. Mr. Cumberland will provide senior technical review of the final project report.

4.0 SAMPLE COLLECTION AND HANDLING PROCEDURES

A description of the sample collection and handling and chemical analysis procedures are detailed below. Further details on sample collection and handling procedures are provided in the Kleinfelder SAP and QAPP, respectively (Kleinfelder 2014a and 2014b).

4.1 Surface Sediment Sampling Scheme

A total of 20 surface sediment samples will be collected within Swan Island Lagoon (Figure 2). The sampling vessel will navigate to the sample location using the onboard navigation system and the sample location coordinates. A hydraulic winch system will be used to lower and raise the grab from the river bed. Once retrieved, the sample will be visually analyzed for acceptability. Overlying water will be siphoned from the acceptable sample and the sample material will be removed from the grab system. Field logs and forms will be completed and include descriptions of the sediment texture and color; sample penetration depth and quantity recovered; water depth, sediment surface disturbance, and presence of debris. Once debris are removed from the sediment sample, the sediment sample will be transferred to a stainless steel bowl to be homogenized. The samples will be placed in analytical method-specific containers. Table 1 presents the proposed sampling locations. Table 2 provides specifications for sample containers, sample volumes, and holding times.

4.2 <u>Field Operations and Equipment</u>

The sediment surface depth (0 to 30 cm) represents the biologically active horizon and is the basis for characterizing sediments for the sampling event. This surface depth is consistent with the 2014 Group's sample depth and LWG RI/FS sample depths in Swan Island Lagoon. For this reason, a 0.1-m² Van Veen grab sampler will be used for collecting surface sediments. Collecting surface sediment using a Van Veen grab sampler causes minimal disturbance to the surficial layer while providing sufficient capacity for collecting larger volumes of sediment.

The surface sampling method is consistent with the EPA Methods for Collection, Storage, and Manipulation of Sediment for Chemical and Toxicological Analyses: Technical Manual – Chapter 3 (EPA 2001).

After retrieval of the sediment sample, the acceptability of each sample will be assessed against sample acceptability criteria. A sample will be considered acceptable if the following criteria are met:

- Sampler is fully closed without obstruction or blocking of its mouth;
- Sample sediment does not touch the top of the sampler;
- Overlying water is present and relatively clear;
- Sampler has retrieved a minimum of 20 centimeters of sediment;
- No evidence of sample sediment loss; and
- No evidence of channeling or washout on the sample sediment surface.

Sediment samples not meeting these criteria will be rejected and sample collection will be repeated. If an acceptable sediment sample cannot be collected at the proposed location after two attempts, the location will be moved within a 200-foot radius of the target location, where two additional attempts will be made. The Field Supervisor will confirm all equipment is in good working order prior to initiating the sampling program.

Field Documentation. As samples are collected, logs and field notes of sediment sampling activities and observations will be maintained in a project notebook. Included in this documentation will be the following:

- Estimated elevation of each sediment sample;
- Positioning coordinates;
- Date and time of sampling;
- Field descriptions of the sediment;
- Log of sample identification and compositing scheme;
- · Chronological occurrence of events during sampling operations; and
- Deviations from the specifications of this SAP.

4.3 Positioning

The object of the positioning procedure is to accurately determine the positions of all sampling locations within ± 2 meters. This determination will be achieved by referencing each sampling location to the State Plan Coordinate System, Oregon North Zone and the Horizontal Datum: North American Datum of 1983 (NAD83) standard projection. Location information will be obtained using a global positioning system (GPS). Depths will be recorded to the nearest tenth of a foot.

The following parameters will be documented at each sampling location:

- Time and date;
- Horizontal location in state plane coordinates; and
- Water depth latitude and longitude.

These parameters will be measured using a combination of GPS and an electronic depth sounder. Positioning while sampling will be performed using the GPS sensor which is located directly above the load line for the hydraulic grab system. The GPS system will

provide inputs to an electronic chart plotting system and will guide the vessel to sample locations and record fixes as each sample is taken.

4.4 Equipment Decontamination Procedures

Sediment sampling equipment that comes in direct contact with the sample will be decontaminated prior to use and between each sampling event. All hand work (e.g., using stainless steel spoons for mixing the samples and filling sample containers) will be conducted with disposable nitrile gloves, which will be rinsed with distilled water before and after handling each individual sample to prevent cross-contamination. Clean equipment will be stored in a manner to prevent recontamination. Sampling equipment will be decontaminated according to the following procedure:

- Rinse with site water;
- Wash with a scrub brush using Alconox soap and water solution;
- Rinse twice with distilled water;
- Rinse with deionized water; and
- Dilute rinse waters with site water and discard into the river.

4.5 Sample Containers and Volumes

For each of the surface sample locations, approximately 16 ounces of sediment will be collected for physical and chemical analysis of bulk sediment. See Table 2 for container and sample size information.

Each sample container will be clearly labeled with the project name and number, sample location identification, type of analysis requested, sampling date and time, preservative type (if applicable), name or initials of person(s) preparing the sample, and referenced by entry into the logbook. The 2014 Kleinfelder QAPP discusses sample containers and preservation techniques in further detail (Kleinfelder 2014b).

4.6 Sample Transport and Chain of Custody Procedures

Containerized sediment samples will be transported to the appropriate laboratory for further processing and testing. Sample transport procedures will be as follows:

• Individual sample containers will be packed to prevent breakage and transported in a sealed ice chest or other suitable container. A sufficient amount of ice will be used to maintain a temperature of 4°C +/- 2°C.

- Each cooler or container containing the sediment samples for analysis will be delivered to the laboratory within 24 hours of being sealed.
- The shipping containers will be clearly labeled with sufficient information (name of project, time and date container was sealed, person sealing the container, and consultant's office address) to enable positive identification.
- Glass jars will be separated in the shipping container by shock absorbent material (e.g., bubble wrap) to prevent breakage.
- Ice will be placed in separate plastic bags and sealed. A sufficient amount of ice will be used to maintain a temperature of 4°C +/- 2°C.
- A sealed envelope containing custody forms will be enclosed in a plastic bag and taped to the inside lid of the cooler.
- Signed and dated custody seals will be placed across the openings on all coolers prior to shipping.

Upon transfer of sample possession to the designated laboratory, the custody form will be signed by the person(s) transferring custody. Upon receipt of samples at the laboratory, the shipping container seal will be broken, and the condition of the samples will be recorded by the receiver. Custody forms will continue to be used to track sample handling, including inter-laboratory transfer of samples, and final disposition.

5.0 PHYSICAL AND CHEMICAL ANALYSIS

The holding times and volume and storage requirements for physical and chemical testing are summarized in Table 2. The analytical methods and detection limit goals for sediment analyses are compiled in Table 3.

The surface sediment samples will be analyzed for grain size (ASTM D422-modified), PCBs/Aroclors (EPA Method 8082A), and total organic carbon (TOC) (SM 5310B-modified).

5.1 Quality Assurance/Quality Control

The following QA/QC procedures will be implemented during the project to ensure sample integrity and data quality. The 2014 Kleinfelder QAPP discusses QA/QC objectives, organization, and functional activities associated with the site investigation in further detail (Kleinfelder 2014b).

5.1.1 Chain of Custody

A chain of custody record for each set of samples will be maintained during sample handling and transport and will accompany sample shipments to the analytical laboratories. The chain of custody information that will continue to be tracked at the analytical laboratory includes sample identification number, date and time of sample receipt, analytical parameters, location and conditions of storage, date and time of removal from and return to storage, signature of person removing and returning the sample, reason for removing from storage, and final disposition of the sample.

5.1.2 Limits of Detection

The surface sediment samples will be analyzed according to the test methods and detection limit goals identified in Table 3.

5.1.3 Sample Storage Requirements

The surface sediment samples for physical and chemical testing will be maintained at the testing laboratory in accordance with the sample holding limitations and storage requirements listed in Table 2. Twenty-two sediment samples, including two duplicate surface sediment samples, will be maintained under proper storage conditions until the chemistry data are deemed acceptable by the EPA.

5.1.4 Quality Assurance/Quality Control Samples

Quality Control spike samples including matrix spike (MS) and matrix spike duplicate (MSD), laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) (or blank spike/blank spike duplicate, and surrogates) will be performed at the analytical laboratory, as specified in Table 3.

5.1.5 Laboratory Report

A written report will be prepared by the analytical laboratory documenting the following activities associated with the analysis of project samples:

- Analytical results of QA/QC samples;
- Protocols used during analyses;
- Chain of custody procedures, including explanation of any deviation from those identified herein;
- Any protocol deviations from the approved sampling plan; and
- Location and availability of data.

6.0 SEDIMENT CHEMISTRY DATA EVALUATION PROCEDURES

Of the 20 sample locations proposed in Swan Island Lagoon, 14 of these locations are collocated with LWG RI/FS sample locations. Six of the 20 sample locations proposed are new sample locations in Swan Island Lagoon (i.e., not sampled during previous investigations). These six sample locations are proposed at the head of Swan Island Lagoon in areas that show a stronger tendency for deposition. Additionally, the six Swan Island Lagoon sample results from the 2014 Group study will also be included in the overall evaluation.

Sediment PCB concentrations detected in the sediment samples will be compared to the collocated LWG RI/FS data. If PCB concentrations are lower than the LWG RI/FS concentrations, it can be assumed that newly deposited sediments are covering the bedded sediments and reducing the overall risk to biological receptors. This line of evidence would demonstrate that newly deposited sediments are covering the bedded sediments and reducing the overall risk to biological receptors. If PCB concentrations are higher than the corresponding LWG RI/FS concentrations, there may be an ongoing PCB source within the Swan Island Lagoon. Sources could include private and City storm sewer outfalls discharging to Swan Island Lagoon, ongoing Shipyard activities, and/or sediments contaminated with PCBs being transported from outside the Swan Island Lagoon in the main stem of the River and depositing in the Swan Island Lagoon.

This evidence could be presented to the EPA, prior to development of the Site Conceptual Remedy, in an effort to encourage them to quantify and evaluate the ongoing effects of natural recovery within Swan Island Lagoon and the viability of monitored natural recovery as a component of the FS's active remedial alternatives.

7.0 REPORTING

A sediment characterization report documenting all activities associated with collection, sample handling and shipping, and physical and chemical analyses will be prepared. The chemical testing report from the analytical laboratory (including raw data) will be included as an appendix. At a minimum, the following will be included in the final report:

- Type of sampling equipment used;
- Protocols and procedures used during sampling and testing and an explanation of any deviations from the sampling plan protocols;
- Descriptions of each sample;

- Methods used to locate the sampling positions within an accuracy of ±2 meters;
- Maps and tables identifying locations where the sediment samples were collected and reported in easting and northing to the nearest tenth of a foot on State Plane Coordinates and NAD83 coordinates in latitude and longitude;
- Chain of custody procedures used, and explanation of any deviations from the sampling plan procedures;
- Tabular summary of chemical testing results compared to LWG RI/FS data;
 and
- Interpretation of the results to assist in estimating the projected remedy costs.

8.0 REFERENCES

- American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation 2012. Standard Methods for the Examination of Water and Wastewater, 22nd Edition. January 5, 2012.
- Environmental Protection Agency (EPA) 2001. EPA Methods for Collection, Storage, and Manipulation of Sediment for Chemical and Toxicological Analyses: Technical Manual, Office of Water, EPA 823-B-01-002.
- Environmental Protection Agency (EPA) 2014. Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods. U.S. EPA SW-846, Third Edition. Update V. July 2014.
- Kleinfelder 2014a. Sediment Sampling and Analysis Plan, Portland Harbor Superfund Site, Portland, Oregon. November 7, 2014.
- Kleinfelder 2014b. Quality Assurance Project Plan, Portland Harbor Superfund Site, Portland, Oregon. November 7, 2014.
- Kleinfelder 2014c. Sediment Sampling and Analysis Health and Safety Plan, Portland Harbor Superfund Site, Portland, Oregon. October 31, 2014.
- Kleinfelder 2015. Sediment Sampling Data Report, Portland Harbor Superfund Site, Portland, Oregon. June 1, 2015.
- Lower Willamette Group (LWG) 2012. Draft Portland Harbor Feasibility Study. March 2012.

Geosyntec consultants

FIGURES

Geosyntec consultants

TABLES

Table 1
Proposed Sample Locations

Na contract of the contract of		
Proposed Sample Identification	Latitude	Longitude
SIL-00	45.56843	-122.72417
SIL-01	45.56887	-122.72284
SIL-02	45.57008	-122.72299
SIL-03	45.57041	-122.72299
SIL-04	45.57057	-122.72172
SIL-05	45.56984	-122.72194
SIL-06	45.56906	-122.72191
SIL-07	45.56946	-122.72053
SIL-08	45.56883	-122.72073
SIL-09	45.56815	-122.72028
SIL-10	45.56833	-122.71874
SIL-11	45.56758	-122.71806
SIL-12	45.56655	-122.71733
SIL-13	45.56703	-122.71567
SIL-14	45.56615	-122.71476
SIL-15	45.56571	-122.71579
SIL-16	45.56404	-122.71267
SIL-17	45.56387	-122.71051
SIL-18	45.56208	-122.70867
SIL-19	45.56284	-122.70868

Table 2 Sample Storage Criteria

Sample Type	Analytical Holding Time	Preservation Temperature	Container Size	
Grain Size	Not applicable	Ambient temperature	8-oz glass jar	
Total Organic Carbon	14 days for	Cool to ≤ 6°C, not	8-oz glass jar	
	analysis	frozen		
PCBs	14 days for extraction 40 days after extraction for analysis	Cool to ≤ 6ºC, not frozen	8-oz glass jar	

Table 3
Analyte List, Quantitation Limits, Precision, and Accuracy Criteria for Sediment

Analytes	Analytical Method	Reporting Limit	MDL	MS/MSD (%R)	MS/MSD (RPD)	LCS/LCSD (%R)	LCS/LCSD (RPD)
PCBs (µg/kg)							
Aroclor 1016	U.S. EPA Method 8082A	1.33	0.67	47-134	30	47-134	30
Aroclor 1221	U.S. EPA Method 8082A	1.33	0.67	X =	-	:=	-
Aroclor 1232	U.S. EPA Method 8082A	1.33	0.67	-	on -	8 = =	-
Aroclor 1242	U.S. EPA Method 8082A	1.33	0.67	-	- 56	_	=
Aroclor 1248	U.S. EPA Method 8082A	1.33	0.67	-	= 3	-	-
Aroclor 1254	U.S. EPA Method 8082A	1.33	0.67	-		8.7	-
Aroclor 1260	U.S. EPA Method 8082A	1.33	0.67	47-134	30	47-134	30
Aroclor 1262	U.S. EPA Method 8082A	1.33	0.67	-		-	- 1
Aroclor 1268	U.S. EPA Method 8082A	1.33	0.67	-		N=	-
DCBP (surrogate)	U.S. EPA Method 8082A	B	-	44-111	-	-	-
Conventional Parameters							
Gravel (>2.0 mm)	ASTM D 422m	% of Total	-3	3 		: -	-
Sand (0.063 mm - 2.00 mm)	ASTM D 422m	% of Total		-	-	n =	- 1
Silt (0.005 mm < 0.063 mm)	ASTM D 422m	% of Total		-		-	-
Clay (<0.005 mm)	ASTM D 422m	% of Total	₩.	# =	-	8 4	- 1
Percent Retained 4.75 mm sieve (#4)	ASTM D 422m	% of Total	-	18	-	-	
Percent Retained 2.00 mm sieve (#10)	ASTM D 422m	% of Total		-	-	. -	-
Percent Retained 0.85 mm sieve (#20)	ASTM D 422m	% of Total			=.:		=
Percent Retained 0.425 mm sieve (#40)	ASTM D 422m	% of Total		-		-	-
Percent Retained 0.250 mm sieve (#60)	ASTM D 422m	% of Total		-	=:	, -	-
Percent Retained 0.150 mm sieve (#100)	ASTM D 422m	% of Total	=:	(6	-	-	
Percent Retained 0.106 mm sieve (#140)	ASTM D 422m	% of Total		.=	-	-	
Percent Retained 0.075 mm sieve (#200)	ASTM D 422m	% of Total		-	-	-	-
Percent Retained 0.063 mm sieve (#230)	ASTM D 422m	% of Total		10=	-	-	-
Total Organic Carbon (mg/kg)	SM5310B MOD	200	100		-	85-115	20

Notes

DBCP = decachlorobiphenyl, surrogate for U.S. EPA Method 8082A included in all samples (laboratory and field)

%R = percent recovery

RPD = relative percent difference

APPENDIX B

Technical Memorandum, Dye Tracer Model Simulations

621 SW Morrison St., Suite 600 Portland, OR 97205 PH 503.222.9518 FAX 971.271.5884 www.geosyntec.com

Technical Memorandum

Dye Tracer Model Simulations

Date:

29 December 2014

To:

Howard Cumberland, and Scott Rowlands, Geosyntec Consultants

From:

Rob Annear, Paul Hobson, and Brian Apple, Geosyntec Consultants

Subject:

Geosyntec Project: HPH100B, Hydrodynamic Model, Task 3

EXECUTIVE SUMMARY

In order to better understand the transport potential of suspended particles in the Swan Island Lagoon (Lagoon), a particle tracking analysis was performed using the AQ-EFDC model (Model). The Model was used to simulate neutrally buoyant dye tracer particles with no settling velocities. A previous analysis into the depositional nature of the Lagoon estimated the average water velocities were approximately 0.0030 m/s within the Lagoon (Annear et al., 2014). These slow water velocities can temporarily or, in the case of particles with higher settling velocities, more permanently trap introduced suspended particles. The water velocities within the Lagoon were estimated to be greater during the flood tide rather than the ebb tide, which would suggest a greater propensity for the Lagoon to move suspended particles to the head of the Lagoon and deposit along the way (Annear et al., 2014).

The dye particle tracking analysis consisted of using the Model for two types of simulation scenarios: comparing particle transport between low, medium, and high flow regimes when the dye is introduced at the same location within the Lagoon, and comparing the dye transport when the dye is introduced at different locations in and around the Lagoon under the medium flow regime.

Under the various flow regimes, the dye was transported downstream along the northeast bank of the Willamette River (River). Transverse mixing was very limited within the main stem of the Willamette River due to the increased river flow water velocities, particularly during the high flow regime. The mixed semidiurnal tidal cycle has a noticeable effect on the hydrodynamics and, as a result, the transport of the dye within the Lagoon and the main stem River. During periods when the two high and low tides of the tidal cycle are approximately the same size, the water levels within the Lagoon do not fluctuate greatly and there is a delay in the transport of dye

within the Lagoon. When the two daily high and low tides are of markedly different sizes, the transport of dye was accelerated to the head or entrance of the Lagoon, respectively. However, under the various flow regimes, the dye concentration within the Lagoon persists at levels less than 0.5% of the initial concentration one month after injection.

The location of the dye injection had an effect on how and to what degree the dye was transported. If the dye injection occurred downstream of the Lagoon along the main stem of the Willamette River, the majority of the dye is transported rapidly downstream with minimal transverse mixing. During extreme flood tidal conditions, minor concentrations could migrate upstream and enter the Lagoon, persisting at very low levels (0.005% of initial concentration one month post-injection). Similarly, there is a potential for the dye to migrate into the Lagoon from upstream sources along the main stem of the Willamette River. One month after injection, there are higher residual dye concentrations in the Lagoon and the entrance of the Lagoon than in the main stem of the River or at the release location. After reaching the entrance of the Lagoon, it took approximately four days before the dye was transported to the head of the Lagoon. The dye concentrations at the head of the Lagoon are orders of magnitude lower than in the main stem of the River, but persist for a much longer period of time.

If the dye is injected directly into the Lagoon there is a tendency for the dye to be forced to the head of the Lagoon before slowly flushing out of the Lagoon after several additional days. The dye does not completely flush out of the Lagoon but rather equilibrates to a near constant value across the Lagoon, at less than 0.5% of the initial concentration. When the dye is injected on the Swan Island side of the Lagoon, the movement of the dye into the main stem of the Willamette River occurs more quickly and it takes longer for the dye to spread to the head of the Lagoon than if the dye is injected on the Mocks Bottom side. The model simulations show there is a small clockwise current within the Lagoon during ebb tides, so as the dye is transported to the head of the Lagoon if it's injected from the Mocks Bottom side and to the entrance of the Lagoon from the Swan Island side. This transport pattern persists to varying degrees when the other injection locations are simulated. This flow and current pattern is influenced by the orientation of the entrance of the Lagoon; as water flows into the Lagoon during flood tides it is forced towards the Mocks Bottom side and the head of the Lagoon. Even though the flushing of the Lagoon begins more quickly when dye is injected on the Swan Island side, the location of the injection point does not significantly alter Lagoon concentrations one month post injection.

The results of this particle tracking analysis are extremely conservative in nature due to the neutral buoyancy of the dye, particularly for dye injections directly into the Lagoon due to the low average water velocity which would facilitate the settling of the non-cohesive particle sizes.

The dye tracer approach to studying the fate and transport of sediment particles (or any attached chemical of interest, COI) in the water column represents a conservative approach since it assumes a neutrally buoyant particle that allows the dye to travel the most under the tidally varying flow conditions. The dye tracer results indicate that dye released into the Lagoon tends to linger much longer in the Lagoon before its transport downstream. In some cases when the dye is released into the Willamette River, depending on the release location, the dye can be transported into the Lagoon. If the sediment particles had an associated settling velocity then they would be expected to settle out more quickly and closer to their release point, but the COIs dissolved in the water column may be expected to behave more like the dye and potentially be transported further from the release point.

Overall the dye tracer model simulation further confirmed that the Swan Island Lagoon is a depositional environment and more specifically:

- Dye releases into the Lagoon tend to stay in the Lagoon, with some mass lost to the
 Willamette River but a lingering plume in the Lagoon. These results indicate the
 velocities are very low and tend to keep discharges of even light particles around. If the
 dye (sediment) particles were heavier than they would sink faster and remain in the
 Lagoon.
- Dye releases in the main stem of the Willamette River tend to follow the east bank of the River closely and in some locations circulate around to spread into the Lagoon. This further reinforces the concept that the Lagoon receives sediments and water quality constituents from the main stem of the River, depending on where the discharges occur.

INTRODUCTION

The main objective of the Task 3 analysis was to better understand the transport potential of suspended particles (and potentially associated COIs) under various flow conditions. The AQ-EFDC Model (Model) supports a Lagrangian trajectory subroutine that allows the simulation of neutrally buoyant particles, such as a theoretical dye tracer. Using this subroutine, dye tracer model scenarios were developed to simulate the release of individual dye injections at ten specific locations in Swan Island Lagoon and along the east bank of the Willamette River as shown in Figure 1. The modeled or simulated dye does not degrade or react with other constituents and the particles are neutrally buoyant, neither sinking nor rising in the water column. Therefore, the dye particles do not have a settling velocity unlike suspended sediments. Conceptually this is similar to the dissolved phase of water quality constituents that may be present in the water column. The dye injections at Locations 1-9 were modeled as 3-hour slug inputs of a constant dye concentration of 100,000 units to simulate stormwater outfall flow during a storm event; these injections were repeated every three months in the simulations. The injection at Location 10 was modeled as a 48-hour dye slug injection of a constant dye concentration of 200,000 units to simulate discharge to the river from the Ballast Water Treatment Plant (BWTP) at the Swan Island Ship Yard. Table 1 shows the shortened six month/one year time periods simulated in the Model. The shortened simulation periods were implemented due to a greater resolution of the flow regimes (shortened periods used daily average flows to determine timeframes rather than annual average flows) and a reduction in computational effort. The dye inputs were treated as singular events; only one location experienced an injection per model simulation.

Table 1: Simulation Time Periods.

Scenario	Flow Regime	Five-Year Time Period	Six-Month/One-Year Time Period
1 7 1	L ow Flow	October 1, 2000 -	April 1, 1992 – September
1	Low Flow	November 7, 2005	30, 1992
2	Medium Flow	October 1, 1991 -	October 1, 2004 –
2	Medium Flow	September 30, 1996	September 30, 2005
3	High Flow	September 28, 1995 -	October 1, 1998 –
		September 30, 2000	September 30, 1999

The dye injection locations correspond to the City of Portland outfalls (Locations 3-8 (Vogt, 2002), a private outfall (Location 9), the BWTP outfall (Location 10), or were selected to better understand the effects of a shoreline release into the main stem of the Willamette River (Location 1), or near the Lagoon's entrance (Location 2). The upstream extent for model output

on the main stem of the Willamette River was row #129 of the model grid for dye injection Locations 1-8, as notated by the white line in Figure 1. The locality of the dye injection Locations 9 and 10 necessitated the extension of the model output grid cells further upstream to row #118), as shown in Figure 1.

Figure 1: Dye injection point locations for tracer studies. The salmon colored area represents the extended model output cells for the tracer study. The white line represents the original upstream extent for model output.

MODEL SCENARIOS

In general, two model scenario types were investigated:

- 1) A comparison of dye concentrations using the same dye injection location between the flow regimes list in Table 1; and
- 2) A comparison of dye concentrations from the dye injection locations during the medium flow regime. The dye injections occurred independently of one another.

The two model scenario types illustrate transport of the dye during different flow regimes and from different locations in the Lagoon.

Comparison between Flow Regimes for Dye Releases at Location 8

Dye injections at Location 8 were simulated under the three flow regimes as listed in Table 1. The location was chosen due to its position in the middle of the Lagoon. The comparisons between the flow regimes were compared in January of each flow regime's respective simulation year, given in Table 1, because of the recurring nature of the slug injections in the simulations. The dye injections occurred every three months and after the first injection in January, there was zero dye concentration in the water column prior to the release, residual dye concentrations were present within the Model for the subsequent dye injections. These residual concentrations alter the spatial extent and magnitude of the concentration plumes of the newer dye slug injections, which made it difficult to accurately compare effects between the flow regimes.

Prior to conducting the comparisons between the flow regimes, an assessment was performed to verify the simulated hydrodynamics in the month of January 1992 were representative of the low flow regime, whose shortened simulation period began in April 1992 rather than the start of the water year in October 1991. A comparison of the spatial and temporal dye concentration trends between the months of January and July, the month of the first dye injection in the shortened simulation period, in 1992 under the low flow regime demonstrated very little change, as shown in Figure 2 and Figure 3. Due to the similar trends and the generalized nature of the dye releases the use of the results from January 1992 were deemed acceptable as a surrogate for the low flow regime results.

The colors used in the time-series plot lines in the Figure 2 through Figure 5 correspond to the marker colors in the concentration gradient plot above the time series plot. The dye injection location is designated by the black color marker. Due to the large concentration of dye at the time of injection, a logarithmic scale was used for the vertical axis in the time-series plot. The magnitudes and overall trends of the dye concentrations at the various locations throughout the model domain are similar between the figures. One exception was the mid-channel concentrations lasted for a slightly longer timespan in July. This was due to the lower River flow rates, which made it more difficult to flush out dye during the ebb tide that had been transported upstream by the flood tide.

In Figure 3 through Figure 5, the time-series of dye concentrations at various locations throughout the Lagoon and the Willamette River are presented for the flow regimes over the month of January. Dye concentrations in the Lagoon (black, blue, and green line time-series)

were similar for the low and high flow regimes whereas concentrations within the Willamette River (brown and gray line time-series) were more similar for the low and medium flow regimes.

Under the medium flow regime, the dye took longer to spread from the injection location, as is evident in the time-series plots for the black, blue and green markers. At the beginning of January 2005 (medium flow), the two daily high and low tides were fairly consistent and the water levels within the Lagoon did not fluctuate greatly; unlike January 1992 (low flow) when the tide was increasing or January 1999 (high flow) when the tide was decreasing. These tides accelerated the spread of the dye (to the head of the Lagoon if the tide was increasing or towards the entrance of the Lagoon if the tide was decreasing), resulting in the observed temporal patterns. Therefore, for each marker, there was a noticeable lag in either the decrease or increase in dye concentrations. For example, at the injection location, it took approximately one and a half days for the concentration to drop to 100 units under the low and high flow regimes, whereas it took approximately four days under the medium flow regime.

Under the various flow regimes, the dye was transported downstream along the northeast bank of the Willamette River. The concentrations along the bank (as shown by the purple and light blue line time-series plots) varied between 1 - 10 units throughout the month. At the end of the month, dye concentrations along the northeastern bank of the River became fairly constant at 1 unit across the flow regimes. This value is 0.001% of the injection concentration of 100,000 units. The dye concentrations within the Lagoon exhibited slight variations for the different flow regimes as shown in Table 2.

Table 2: Average concentrations in the Lagoon and along the northeastern bank of the River (downstream of the entrance of the Lagoon) approximately one month and three months after the dye injection at Location 8.

	End of	January	End of March		
Flow Regime	Lagoon (units)	NE Bank (units)	Lagoon (units)	NE Bank (units)	
Low	50	1	7	0.1	
Medium	240	1	120	0.4	
High	100	1	20	0.1	

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 8

Figure 2: Dye concentrations at end of three-hour dye slug injection in July 1992 (low flow regime).

Figure 3: Dye concentrations at end of three-hour dye slug injection in January 1992 (surrogate for low flow regime).

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 9

Figure 4: Dye concentrations at end of three-hour dye slug injection in January 2005 (medium flow regime).

Figure 5: Dye concentrations at end of three-hour dye slug injection in January 1999 (high flow regime).

The Willamette River flow limited the degree of local transverse mixing; the line time-series for the brown and gray mid-channel marker locations in Figure 3 through Figure 5 illustrate the dye plume staying close to the River bank. Across the three flow regimes, the concentration at the brown marker location never exceeded 10 units as shown in Table 3. The average concentration during the low and medium flow regimes was approximately 0.2 units; the concentration dropped to 0.0001 units during the high flow regime. The dye concentrations at the gray marker location were negligible under the various flow regimes.

Table 3: Mid-channel concentrations per flow regime.

	Brown	Marker	Gray Marker	
Flow Regime	Average Concentration	Maximum Concentration	Average Concentration	Maximum Concentration
Low	0.227	8.495	0.0001	0.019
Medium	0.187	6.075	0.001	0.098
High	0.0001	0.027	0	0

In order to better interpret the variations in the dye concentrations per flow regime, the model output was divided into four color coded regions, as shown in Figure 6. The average dye concentrations within each region were calculated at the end of the 3-hour dye injection and at one day, one week, one month, two months, and three months after the dye injection (Figure 7 through Figure 10). In general, the dye concentration trends are similar for the three flow regimes. The previously mentioned lag in the diffusion of the dye for the medium flow regime is apparent in Figures 8 and 9, but the main difference between the flow regimes is the retention of dye within the Lagoon during the medium flow regime as shown in Figure 7. Under this flow regime, the dye concentration in the Lagoon after one, two, and three months were approximately 290%, 500%, and 660%, respectively, higher than the concentrations for the high flow regime. The slower diffusion of dye and a strong flood tide explain the small spike in the upstream dye concentration after one week under the medium flow regime. The slower diffusion rate caused a greater concentration of the dye in the vicinity of the Lagoon and the strong flood tide moved the dye upstream.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 11

Figure 6: Regions for the average dye concentrations presented in Figures 7 through 10. The Lagoon, Lagoon entrance, and downstream regions were the same for the simulations. In computing the upstream average concentration (Figure 10), the orange region was used for simulations where dye was released at injection locations 1 through 8. For releases simulated at injection locations 9 and 10, the upstream region was extended to include both the orange and salmon regions.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 12

Figure 7: Average dye concentrations within the Lagoon per flow regime.

Figure 8: Average dye concentrations at the Lagoon entrance per flow regime.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 13

Figure 9: Average dye concentrations downstream of the Lagoon per flow regime.

Figure 10: Average dye concentrations upstream of the Lagoon per flow regime.

The results of the first model scenario indicate the type of flow regime significantly altered the average dye concentrations in the Lagoon. Within the Lagoon, the medium flow regime consistently simulated average concentrations which were 100 - 150 units higher than the low or high flow regimes after one month due to the lower tidal influence during the medium flow regime. The largest average Lagoon dye concentration was approximately 350 units one day after the dye injection in the medium flow regime. Overall, the temporal patterns for the dye concentrations within the Lagoon were more similar between the low and high flow regimes, whereas those within the main stem of the Willamette River were more similar between the low and medium flow regimes. The similarities were due to the tidal cycle and magnitude of the Willamette River's flow, respectively. As previously mentioned, the timing of the semidiurnal tidal cycle caused a delay in the transport of the dye within the Lagoon during the medium flow regime, and illustrated the effect the tide has on the hydrodynamics within the Lagoon. The flow within the main stem River during the high flow regime was great enough to limit almost all transverse mixing, rapidly transporting the dye along the northeast bank of the River instead.

Comparison of Injection Locations under the Medium Flow Regime

The second type model scenario investigated was the comparison of the dye concentrations based on dye injection location under the medium flow regime. The medium flow regime was chosen as the conservative option, based on the higher average dye concentrations, in general, during the flow regime. Five of the ten injection locations are discussed below; the results for the remaining locations were too similar to those presented to warrant their own discussion and can be found in Appendix A. Location 10, corresponding to the BWTP discharge location, is one of those discussed. This injection location has a dye concentration two times what was used at the other injection locations and the dye injection lasted for 48-hours rather than three hours. The main result was an increase in the dye concentration found within the Lagoon at the end of January from approximately 2 units to 20 units in comparison to other main stem River injection locations.

For each injection location, several figures have been provided (Figure 11 through 71). First, an image delineating the locations of individual model cells where dye concentration time-series output is presented, followed by the color-coded time-series plots. In these plots, the time-series plot for the injection location is shown in black with a small gap occurring at day three. The gap is due to limiting the plotted concentration values so that variations in the dye concentration are distinguishable at the lower concentration levels. The maximum simulated dye concentration for each cell is also presented in the plots.

Next, a composite figure consisting of a dye concentration gradient plot and its related color-coded time-series plot is presented. The gradient plot is a visualization of dye concentrations

throughout the Lagoon and within the localized region of the Willamette River at the end of the 3-hour dye input. The time-series plot is a composite plot which illustrates dye concentrations at distinct cells for the entire month of January, not just an individual cell. Due to the large variation in dye concentrations simulated throughout the study area, the concentrations in the time-series plot are on a log-scale. The red vertical line in the time-series plots indicates the simulation time at which the spatial gradient plot was produced.

After the composite figure, three spatial gradient plots are presented which illustrate the spatial variation of dye concentrations within the study area at three specific points in time: one day, one week, and one month after the end of the dye injection. These plots are provided to better display the transport of dye over time.

Dye Injection Location #1

The individual model cell locations and associated time-series for the dye injection at Location #1 (IL1) that corresponds with a hypothetical outfall on the northeast bank of the main stem of the River downstream of the Lagoon are shown in Figure 11 and Figure 12. This location was chosen to investigate if dve could be transported from a downstream source into the Lagoon in a significant manner. As Figure 12 illustrates, dye was quickly transported downstream when released directly into the main stem of the Willamette River, resulting in the large spike in the green line time-series plot. Table 4 lists the sum of the dye concentrations by each spatial region shown in Figure 6. After one day, there was a 94% reduction dye concentration within the downstream region with an overall reduction of approximately 85%. The discrepancy in the two percentages is due to dye aggregating at the entrance to the Lagoon. Due to the flow of the Willamette River, transverse spreading of the dye was minimal, shown by the pink time-series plot in Figure 12, and the majority of the dye was conveyed along the northeastern bank of the Willamette River as shown in Figure 13 through Figure 16. During flood tide, a small amount of dye was transported upstream where it entered the Lagoon and persisted at very low concentrations, as shown by the blue time-series plot in Figure 12 and both the blue line and the brown line time-series plots in Figure 13.

The temporal patterns found in the composite time-series plot in Figure 13 were due to tidal fluctuations in Willamette River flow. Figure 15 illustrates the ability of these fluctuations to force dye upstream. In general, the average dye concentrations persist at very low levels a month after release: approximately 5 units within the Lagoon, 1 unit at the Lagoon's entrance, and 0.01 units within the main stem of the Willamette River, as shown in Figure 16. These concentrations equate to 0.005%, 0.001%, and 0.00001% of the release concentration, respectively. Therefore, the dye can be transported upstream but not in any significant quantities.

The temporal patterns and magnitudes of dye concentrations for injection at Location #9 were similar to this location and the figures for that location (Figure 66 - Figure 71) can be found in Appendix A.

Conclusion: Releases from this location would primarily migrate downstream along the bank and very minor concentrations could migrate upstream into the Lagoon during tidal events.

Figure 11: IL1 - Model cell locations of individual dye concentration time-series and associated time series plot colors.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 17

Figure 12: IL1 - Individual model cell dye concentration time-series.

Table 4: IL1 - Sum of dye concentrations within spatial regions at end of the 3-hour dye injection and one day after injection. A value of 'n/a' signifies no reduction in concentrations after the one day.

	Lagoon	Lagoon Entrance	River - Downstream	River - Upstream	Totals
End of Injection	0.00	0.00	37,368.57	0.00	37,368.57
1 Day After End	0.21	3,522.55	2,151.49	0.00	5,674.26
% Reduction	n/a	n/a	94.2%	n/a	84.8%

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 18

Figure 13: IL 1 - End of 3hr dye slug injection.

Figure 14: IL1 - 1 day after the dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 19

Figure 15: IL1 - 1 week after the dye slug injection.

Figure 16: IL1 - 1 month after the dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 20

Dye Injection Location #2

The individual model cell locations and the time-series plots for the dye injection at Location #2 (IL2), corresponds to a private outfall approximately 700 ft. northeast (NE) of the Lagoon's entrance, are shown in Figure 17 and Figure 18. IL2 was investigated to determine if the dye introduced at the Lagoon entrance would exhibit a greater transport potential than those introduced within the Lagoon proper. The majority of the dye was initially retained within the Lagoon before slowly flushing into the main-stem of the Willamette River and transported downstream, as shown in Figure 19 through Figure 22 and Table 5. According to Table 5, the overall percent reduction in dye concentrations after one day was 24.5%; this was a much lower reduction than was experienced under IL1. This was not unexpected since, as Figure 20 illustrates, the dye was just beginning to leave the Lagoon after one day.

When the dye is directly injected into the Lagoon, including the entrance, a secondary spike in the time-series concentration for that location occurred, as shown by the black time-series in Figure 18. This occurred due to the aforementioned movement of the dye around the Lagoon. The dye does not completely flush out of the Lagoon but rather equilibrates to a near constant value, as shown by the concentrations at the end of the simulation period for the black and green line time-series in Figure 19 which represent the dye concentrations at the head and entrance of the Lagoon, respectively. Similar to IL1, the dye moved along the northeastern bank of the Willamette River when transported downstream. Tidal variations were large enough to force small amounts of the dye upstream for a limited time as shown in Figure 21.

In general, the average dye concentrations a month after release were as follows: approximately 290 units within the Lagoon, 15 units at the Lagoon's entrance, and 1 unit within the main stem of the Willamette River, as shown in Figure 22. These concentrations equate to 0.29%, 0.015%, and 0.001% of the dye release concentration, respectively. The patterns and magnitudes of concentrations for injection Locations #3 through #8 were similar to this location and the figures for those locations (through Figure 65) are presented in Appendix A.

Conclusion: The dye release locations at the entrance of the Lagoon show dispersion and persistence of higher concentrations within the lagoon. Dilute dye concentrations migrate downstream along the bank.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 21

Figure 17: IL2 - Model cell locations of individual dye concentration time-series and associated plot colors.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 22

Figure 18: IL2 - Individual model cell dye concentration time-series.

Table 5: IL2 - Sum of the dye concentrations within explanatory regions at end of the 3-hour dye injection and one day after injection. A value of 'n/a' signifies no reduction in concentrations after the one day.

	Lagoon	Lagoon Entrance	River - Downstream	River - Upstream	Totals
End of Injection	47,383.20	0.00	0.00	0.00	47,383.20
1 Day After End	35,759.83	0.92	0.00	0.00	35,760.75
% Reduction	24.5%	n/a	n/a	n/a	24.5%

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 23

Figure 19: IL2 - End of 3hr dye slug injection.

Figure 20: IL2 - 1 day after the dye slug injection.

Figure 21: IL2 - 1 week after the dye slug injection.

Figure 22: IL2 - 1 month after the dye slug injection.

Dye Injection Location #3 (IL3) corresponds to the City of Portland's stormwater outfall (OFM-1) located approximately 2,300 ft. east-southeast (ESE) from the entrance of the Lagoon on the Mock's Bottoms side. The individual model cell locations and associated dye concentrations time-series for the IL3 injection location are shown in Figure 23 and Figure 24.

In Figure 24, the vertical scale on each plot is different to accurately show concentration changes over time at each location. Once again, the gap in the dye concentration time-series of the upper left plot is due to limiting the vertical concentration scale to 1,000 units in order to better visualize the concentration temporal patterns post injection. There is no actual gap in the model output. As Figure 24 illustrates, approximately three days or one week passed since the dye injection before a dye concentration was detected at the head or entrance of the Lagoon, respectively. The greatest flux of dye experienced in the main stem River was downstream of the Lagoon and occurred approximately 13 days after the injection.

Figure 23: IL3 - Model cell locations of individual dye concentration time-series and associated plot colors.

Figure 24: IL3 - Individual model cell dye concentration time-series.

Similar to IL2 location, the majority of the dye injected at IL3 was initially retained within the Lagoon before being slowly flushed into the main stem of the Willamette River and transported downstream, as shown in Figures 25 through 28. In addition, a secondary spike in the dye time-series concentration occurred, shown by the black and green line time-series plots in Figure 24. Approximately one week after the dye injection, the dye concentration reached a near constant value within the Lagoon, with slightly elevated concentrations in the middle of the Lagoon as compared to the entrance and head of the Lagoon, notated by the darker green coloring in Figure 27. Similar to IL1 and IL2, the dye plume moved along the northeastern bank of the Willamette River when transported downstream. Once again, tidal variations were large enough to force a small amount of dye upstream for a limited time as shown in Figure 27.

In general, the average dye concentrations a month after release were as follows: approximately 300 units within the Lagoon, 14 units at the Lagoon's entrance, and 1 unit within the main stem of the Willamette River, as shown in Figure 28. These concentrations equate to 0.30%, 0.014%, and 0.001% of the release concentration, respectively.

Conclusion: Dye release locations in the upper portion of the Lagoon show dispersion and the persistence of higher concentrations within the Lagoon similar to release locations at the entrance of the Lagoon. Dilute concentrations migrate downstream along the northeastern bank with very little transverse mixing in the main stem of the River.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 27

Figure 25: IL3 - End of 3 hour dye slug injection.

Figure 26: IL3 - 1 day after the dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 28

Figure 27: IL3 - 1 week after the dye slug injection.

Figure 28: IL3 - 1 month after the dye slug injection.

The dye Injection Location #7 (IL7) corresponds to the City of Portland's stormwater outfall located approximately 3,300 ft. southeast (SE) from the entrance of the Lagoon on the Swan Island side of the Lagoon. The individual model cell locations and associated dye concentration time-series for IL7 are shown in Figures 29 and 30.

Figure 29: IL7 - Model cell locations of individual dye concentration time-series and associated plot colors.

When the dye is injected on the Swan Island side of the Lagoon, the movement of dye into the main stem of the Willamette River occurs more quickly and it takes longer for the dye to spread to the head of the Lagoon. Comparing Figures 25 and 31 suggests there is a small clockwise current within the Lagoon during ebb tides, as the dye is transported to the head of the Lagoon from IL3 and to the entrance of the Lagoon from IL7. This clockwise current is exhibited in Figure 32, a plot of the simulated velocity vectors six hours after the end of dye injection. This pattern persists in varying degrees with the other dye injection locations, indicating the dye injected from the Mocks Bottom side of the Lagoon preferentially travels towards the head of the Lagoon while the dye injected from the Swan Island side travels towards the entrance of the Lagoon during ebb tides. The flow pattern is influenced by the orientation of the entrance of the

Lagoon; as water flows into the Lagoon during flood tides it is forced towards the Mocks Bottom side and the head of the Lagoon.

The accelerated transport of the dye out of the Lagoon is shown by comparing the timing of the dye concentration spikes in the blue and pink line time-series in Figures 24 and 30. In Figure 24, the maximum dye concentrations occur on day 15 and 16, approximately, for model cells at the entrance of the Lagoon and downstream of the Lagoon, respectively. In Figure 30, these concentrations occur on day 9 and 11. Even though the flushing of the Lagoon begins more quickly when the dye is injected on the Swan Island side, the equilibrated Lagoon concentrations one month after the dye injection do not significantly vary between the IL3 and IL7 dye injection simulations. However, the secondary spike in dye concentrations notated in the green line time-series at IL2 and IL3 is not seen at IL7.

Conclusion: The dye release locations on the Swan Island side of the Lagoon experience accelerated transport out of the Lagoon and a longer travel time to the head of the Lagoon compared to dye released on the Mocks Bottom side of the Lagoon. The dye transport suggests there is a minor clockwise current within the Lagoon, particularly during ebb tides.

Figure 30: IL7 - Individual model cell dye concentration time-series.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 31

Figure 31: IL7 - End of 3hr dye slug injection.

Figure 32: Simulated water velocity vectors at 9am on January 4, 2005 illustrating the clockwise current within the Lagoon.

Figure 33: IL7 - 1 day after the dye slug injection.

Figure 34: IL7 - 1 week after the dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 33

Figure 35: IL7 - 1 month after the dye slug injection.

Figure 36 shows the four model cell locations where modeled dye concentration results were analyzed including the dye injection Location #10 (IL10) that corresponds to the BWTP outfall location, represented by the black dot in the figure. The salmon colored area represents the spatial domain analyzed from the model output.

Figure 36: IL10 - Model cell locations of individual dye concentration time-series and associated plot colors.

Figure 37 shows the time-series of the dye concentrations at each of the four model cell locations. The black line plot in the upper left of the figure shows the dye concentration at the injection location and shows the spike in concentration over the 48 hour release period. At the entrance of the Lagoon there is a short term spike in the dye concentration approximately one to two days after the injection that gradually decreases over time. The gradual decrease is due to tidal cycling. After reaching the entrance of the Lagoon, it took approximately four days before dye was transported to the head of the Lagoon as shown in the upper right plot. The dye concentrations at the head of the Lagoon are orders of magnitude lower than in the main stem of the Willamette River, but persist for a much longer period.

Figure 37: IL10 - Individual model cell dye concentration time-series.

Figure 38 shows the highest dye concentrations are in the main stem River and entrance to the Lagoon and dissipates quickly over space. The plume clearly hugs the east bank of the Willamette River and does not go very far upstream from the injection point (black dot). The time series plots show the impacts of the tidal forcing causing the dye concentration at several locations to increase and decrease over time.

After the first day after the injection, the dye plume had expanded down into the Lagoon but the concentrations in the main stem of the River decreased by approximately 84% from 830 units to 130 units in the eastern half of the River, as shown in Figure 39. The plume has spread across the River, resulting in low concentrations during a flood tide and was then subsequently flushed from the western half of the River with the ebb tide. The few remaining areas with concentrations on the west bank are on the order of 0.001 units.

After one week the dye had spread longitudinally down the Lagoon but not transversely across the main stem of the River, as shown in Figure 40. After one month, the spatial pattern of the dye plume had not changed but the dye concentrations continued to dissipate, as seen in comparing Figures 40 and 41.

Conclusion: A limited potential for the movement of dye into the Lagoon exists. Once the dye reaches the entrance of the Lagoon, it took approximately four days for the dye to reach the head of the Lagoon, a distance of approximately 5,000 feet. The majority of the dye was transported quickly downstream the main stem along the northeastern bank.

Figure 38: IL10 - End of 2 day dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 37

Figure 39: IL10 - 1 day after the dye slug injection.

Figure 40: IL10 - 1 week after the dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 38

Figure 41: IL10 - 1 month after the dye slug injection.

CONCLUSIONS

The type of flow regime significantly altered the simulated average dye concentration in the Lagoon, with concentrations being the greatest during the medium flow regime. The temporal patterns of the dye concentration within the Lagoon were more similar between the low and high flow regimes, whereas those within the main stem of the Willamette River were more similar between the low and medium flow regimes. The tidal cycle has a noticeable effect on the hydrodynamics and, as a result, the transport of the dye within the Lagoon and the main stem of the Willamette River. The flow within the main stem of the River during the high flow regime was great enough to limit almost all transverse mixing, rapidly transporting the dye downstream along the northeast bank of the River.

Under the different flow regimes and injection locations studied, the dye was transported downstream along the northeast bank of the Willamette River. The flow of the River limited the degree of local transverse mixing, and dye was rarely transported beyond the mid-channel. The largest differences in dispersion of the dye between the injection locations were whether the injection location was within the main stem of the Willamette River or the Lagoon itself. If the dye was injected into the main stem of the Willamette River, it was quickly transported

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 39

downstream along the northeastern River bank with only minor amounts of dye forced into the Lagoon during high flood tides. This occurred whether the injection location was upstream or downstream of the entrance of the Lagoon. However, if the dye was injected into the Lagoon, it exhibited a tendency to persist in the Lagoon in small concentrations relative to the amount injected. In the case of IL1, the hypothetical outfall on the main stem of the River and downstream of the Lagoon's entrance, approximately 85% of the dye within the study area had been transported out of the study area after one day. In contrast, an overall reduction of only approximately 25% was simulated after one day for IL2, the private outfall just inside the entrance of the Lagoon. Furthermore, after one month, the average dye concentration within the Lagoon, at the Lagoon's entrance, and within the main stem of the Willamette River were approximately 5 units, 1 unit, and 0.01 units, respectively, when the dye was injected into the main stem at IL1. These average concentrations rose to 290 units, 15 units, and 1 unit, respectively, when the injection location moved to within the Lagoon at IL2. The other injection locations within the Lagoon (IL3 – 8) produced similar average concentrations as IL2.

However, the Model only simulated neutrally buoyant dye particles with no settling velocities. Therefore, the slow water velocities found within the Lagoon can temporarily or, in the case of particles with higher settling velocities, permanently trap introduced suspended particles. If the particles were allowed to settle, the majority of non-cohesive particle sizes would likely settle out within the Lagoon.

621 SW Morrison St., Suite 600 Portland, OR 97205 PH 503.222.9518 FAX 971.271.5884 www.geosyntec.com

REFERENCES

Annear, R., P. Hobson, and B. Apple. (2014). Confidential Technical Memorandum – Hydrodynamic Scenarios to Assess Depositional Nature in the Lagoon. July 2014.

Vogt, L. (2002). Swan Island Industrial Park: Storm Water Basin Maps – Site Plan. Modified on March 4, 2004. October 2002.

621 SW Morrison St., Suite 600 Portland, OR 97205 PH 503.222.9518 FAX 971.271.5884 www.geosyntec.com

APPENDIX A

DYE INJECTION LOCATION #4

Figure 42: IL4 - Model cell locations of individual dye concentration time-series and associated plot colors.

Figure 43: IL4 - Individual model cell dye concentration time-series.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 42

Figure 44: IL4 - End of 3hr dye slug injection.

Figure 45: IL4 - 1 day after the dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 43

Figure 46: IL4 - 1 week after the dye slug injection.

Figure 47: IL4 - 1 month after the dye slug injection.

Figure 48: IL5 - Model cell locations of individual dye concentration time-series and associated plot colors.

Figure 49: IL5 - Individual model cell dye concentration time-series.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 45

Figure 50: IL5 - End of 3hr dye slug injection.

Figure 51: IL5 - 1 day after the dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 46

Figure 52: IL5 - 1 week after the dye slug injection.

Figure 53: IL5 - 1 month after the dye slug injection.

Figure 54: IL6 - Model cell locations of individual dye concentration time-series and associated plot colors.

Figure 55: IL6 - Individual model cell dye concentration time-series.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 48

Figure 56: IL6 - End of 3hr dye slug injection.

Figure 57: IL6 - 1 day after the dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 49

Figure 58: IL6 - 1 week after the dye slug injection.

Figure 59: IL6 - 1 month after the dye slug injection.

Figure 60: IL8 - Model cell locations of individual dye concentration time-series and associated plot colors.

Figure 61: IL8 - Individual model cell dye concentration time-series.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 51

Figure 62: IL8 - End of 3hr dye slug injection.

Figure 63: IL8 - 1 day after the dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 52

Figure 64: IL8 - 1 week after the dye slug injection.

Figure 65: IL8 - 1 month after the dye slug injection.

Figure 66: IL9 - Model cell locations of individual dye concentration time-series and associated plot colors.

Figure 67: IL9 - Individual model cell dye concentration time-series.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 54

Figure 68: IL9 - End of 3hr dye slug injection.

Figure 69: IL9 - 1 day after the dye slug injection.

Task 3, Dye Tracer Model Simulations and Analysis 29 December 2014 Page 55

Figure 70: IL9 - 1 week after the dye slug injection.

Figure 71: IL9 - 1 month after the dye slug injection.

APPENDIX C Surface Sediment Sample Datasheets

	Project Information	
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3/4/10	Van Veen grab Sampler	Sample Team: KK, AC
. / .	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:	near dry clocks	
Station:	J	
SIL Samp	ole Collection and Description	
Sample ID:	Containers: 2 (8 0 2 glass jui	Sample Time: 1 - 35
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any Color (Munsell color scale) Moisture Classification (thickness of Redox Potential Dis	THE TALL TILL MAR	K CMI IS THEN
Color (Munsell color scale)	gray John III ove	1 JUPA TO STIFF
Moisture Clayley	SIF	
1 1000/100/1000/0000/11/10000 OT 11/000/11 OTGITAL DIE	7	
Presence (and %) of biological structures (e.g., chi		e.g., twigs, leaves), shells
no alpins, no	oder, no sheen	
Odor/Sheen Evaluation:		D / O / D D D D D D D D D D D D D D D D
Observed (Y/N) Color: Swirl Te	st: Odor: Sudan	IV (Y/N): UV Light (Y/N):
Attempt 1		
Time: 11.24	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 - 30	Water Depth: 43-4-55.7	Rejected
GPS Coordinates: N 45 \$50848		
Comment: ASCH 25 PH	alle to boom, sa	impler did not sea
Attempt 2		
Time: (1: 35	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0-30	Water Depth: 55. 7	Rejected
GPS Coordinates: N 45 50857	W 122. 7 2395	
Comment:	, -	
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Comment:		

Project Information		
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/16 3/4/10	Van Veen grab Sampler	Sample Team: KK, AC
2/11/10	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	/
Subarea:		Sec.
Station:		
Sample Collection and Description		
Sample ID: VALUE - 0	Containers: 2 (8 0 2 9 1 a st juin	Sample Time: LFS
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any	to orgal case silt	Mier roll in
Color (Munsell color scale)	to gray soft Silt ayey silt with	000 301 (10
		Jana Tens
Presence/location/thickness of Redox Potential Dis	continuity Layer (a visual indication of black)	
Presence (and %) of biological structures (e.g., chi	1	e.g., twigs, leaves), shells
Sheen, Small meta	y bits, no odop	
Odor/Sheen Evaluation:		
Observed (Y/N) Color: Swirl Test: Odor: SudanIV (Y/N): UV Light (Y/N): UV Light (Y/N):		
Attempt 1		
Time: 11:48	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 30	Water Depth: 44 . 3	Rejected
GPS Coordinates: N 45.5088	T, W 122.722	83
Comment:		
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
Attempt 3	BL I VIII	Constitution of the second
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		

Project Information			
Project: HPH100D	Sampling Method:	Contractor: Ballard	
Date: 3/3/16-3/4/10	Van Veen grab Sampter	Sample Team: KK, AC	
	Sample Location		
Mill Area:	Description of Location and Channel Bottom:		
Subarea:			
Station:			
Sample Collection and Description			
Sample ID: RANT - 02	Containers: 2 (8 oz glass jan	Sample Time: 20	
Sediment Type (e.g., silt, sand)		•	
Texture (e.g., fine-grain, poorly sorted)			
Stratification, if any Color (Munsell color scale) Moisture Presence/location/thickness of Redox Potential Dis	aland Only Cill	our Call to	
Color (Munsell color scale)	o gray soft silt	over just 10	
Moisture SHICH CLO	MOU SIH		
Presence/location/thickness of Redox Potential Dis	continuity Layer (a visual indication of black)		
Presence (and %) of biological structures (e.g., chironomids, tubes, macrophytes), organic debris (e.g., twigs, leaves), shells			
Sheen I John Wo	ody depris, penoli	oar	
Odor/Sheen Evaluation:	· ·		
Observed (Y/N) Y Color: Swirl Tes	st: Odor: Sudan	IV (Y/N): UV Light (Y/N):	
Attempt 1			
Time: (1:20	Photo Number:	Successful (circle one)	
Penetration Depth (cm): () - 30	Water Depth: 34. Q	Rejected	
GPS Coordinates: N 45.57007, W 122.72295			
Comment:			
Attempt 2			
Time:	Photo Number:	Successful (circle one)	
Penetration Depth (cm):	Water Depth:	Rejected	
GPS Coordinates:			
Comment:			
Attempt 3			
Time:	Photo Number:	Successful (circle one)	
Penetration Depth (cm):	Water Depth:	Rejected	
GPS Coordinates:			
Comment:			

4 of 20 Page for 40

Mill Area: Subarea: Station: Sample ID: Sample Sediment Type (e.g., silt, sand) Texture (e.g., fine-grain, poorly sorted)	Sampling Method: An Veen grab Sampler Sample Location Description of Location and Channel Bottom: Collection and Description Containers: 2 (8 02 glass jack) San ay Suff Siff Continuity Layer (a visual indication of black)	Sample Time: [1-14-
Mill Area: Subarea: Station: Sample Sample ID: (a.g., silt, sand) Texture (e.g., fine-grain, poorly sorted)	Sample Location Description of Location and Channel Bottom: Collection and Description Containers: 2 (8 oz glass jack) Sandy SOFF SIFF Containers	Sample Time: [1-14-
Subarea: Station: Sample ID: Sample Sediment Type (e.g., silt, sand) Texture (e.g., fine-grain, poorly sorted)	Description of Location and Channel Bottom: Collection and Description Containers: 2 (8 oz glass jan) Gray SOFF SIFF Containers	•
Subarea: Station: Sample ID: Sample Sediment Type (e.g., silt, sand) Texture (e.g., fine-grain, poorly sorted)	e Collection and Description Containers: 2 (8 oz glass jan gray SOFF Silf of Sandy Sut	•
Station: Sample ID: Sample Sediment Type (e.g., silt, sand) Texture (e.g., fine-grain, poorly sorted)	gray SOFF Silt of	•
Sample ID: Sample Sample Sample ID: Sample ID: Sample ID: Sediment Type (e.g., silt, sand) Texture (e.g., fine-grain, poorly sorted)	gray SOFF Silt of	•
Sample ID: (a.g., silt, sand) Texture (e.g., fine-grain, poorly sorted)	gray SOFF Silt of	•
Sediment Type (e.g., silt, sand) Texture (e.g., fine-grain, poorly sorted)	gray soft silt o Sandy sut	•
Texture (e.g., fine-grain, poorly sorted)	gray soft silt co	over sitty san
Texture (e.g., fine-grain, poorly sorted) Stratification, if any Color (Munsell color scale)	gray soft silt o Sandy sut	over sitty san
Stratification, if any Color (Munsell color scale)	gray soft silt o	over sitty san
Color (Munsell color scale)	Sandy Sut	iver string sure
	Sandy Jut	
Moisture to SOFF S		11
Presence/location/thickness of Redox Potential Disco	ontinuity Layer (a visual indication of black)	
Presence (and %) of biological structures (e.g., chirog		
Some woody debr	S, no sheen, no	oagr
Odor/Sheen Evaluation:		
Observed (Y/N) Color: Swirl Test:	Odor: Sudar	nIV (Y/N): UV Light (Y/N):
Attempt 1		
	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 - 30	Nater Depth: 20.3 3 W 122.72364	Rejected
GPS Coordinates: N 45. 57043	3, W 122,72304	t e
Comment:	1	
attempt 2		American de la companya del companya de la companya del companya de la companya d
Time: F	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
ttempt 3	*	
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		3 - 4
Comment:		

	Project Information	
Project: HPH1000	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3/4/11	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		V
SIL San	ple Collection and Description	
Sample ID: WHAT - OH	Containers: 2 (8 02 glass jui	Sample Time: 11:03
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		u .
Stratification, if any	2-(1 0:11 - 10: 7:3	· Naud.
Color (Munsell color scale) // WW N	soft silt over gra	y samo
Moisture	· · · · · · · · · · · · · · · · · · ·	J
Presence/location/thickness of Redox Potential D	Discontinuity Layer (a visual indication of black)	
	hironomids, tubes, macrophytes), organic debris	
some rocks; no	odor, no Sheen, S	some mody des
Odor/Sheen Evaluation:		J
Observed (Y/N) Color: Swirl T	est:Odor:Sudar	nIV (Y/N): UV Light (Y/N):
Attempt 1		
Time: 1() 57	Photo Number:	Successful (circle one)
Penetration Depth (cm): (7) - 37)	Water Depth: 12.5	(Rejected)
GPS Coordinates: N US 570	53. W 122.72182	
Comment: Coarse Sand	, less than 1/2 f	ull
Attempt 2		
Time: [[:00	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 30	Water Depth: 2 . 5	Rejected
GPS Coordinates: N 45 570	153, W 122.721	82
comment: CO ause Sand,	Less than 1/2 Ful	
Attempt 3		
Time: [[: 0 3	Photo Number:	Successful (circle one)
Penetration Depth (cm): () - 3()	Water Depth: 12 . 7	Rejected
GPS Coordinates: N US 571	348 W122.72184	
Comment: MOVED		

	Project Information	
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3/4/10	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station		
Sample Collection and Description		
Sample ID: No. 105	Containers: 2 (8 0 2 91 a st jan	Sample Time: (0:5/
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any Color (Munsell color scale) brown Moisture Clayey	and Cost oil mier	cost to stiff
Color (Munsell color scale)	37749 3077 3111 000	John Co Jane
Moisture CLUMKY	31 14	
Presence/location/thickness of Redox Potential Dis	continuity Layer (a visual indication of black)	
Presence (and %) of biological structures (e.g., chironomids, tubes, macrophytes), organic debris (e.g., twigs, leaves), shells		
	or, no sheen	
Odor/Sheen Evaluation: Observed (Y/N)		
	000100001	11 (1714) OV LIGHT (1714)
Attempt 1	Dhata Niverbay	Successful) (circle one)
Time: 10 - 51	Photo Number:	Rejected
Penetration Depth (cm): 0 - 30 GPS Coordinates: N U5.5098	Water Depth: 40.3	Rejected
	U, W 14-7220	4
Comment:		
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth;	Rejected
GPS Coordinates:		
Comment:		
Somments.		
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		

Project Information		
Project: HPH1_00D	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3 4 (1	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		8
SIL Samp	le Collection and Description	
Sample ID: VALUE - 00	Containers: 2 (8 02 glass juin	Sample Time: (1:55
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any Color (Munsell color scale) Moisture Presence/location/thickness of Redox Potential Dis	and cock Cit	MARK CAFLIN
Color (Munsell color scale) Drown T	grows sort sitt	0001 0017 10
Moisture Cighty	Mit clayer Sitt	
Presence/location/thickness of Redox Potential Dis	continuity Layer (a visual indication of black)	
Presence (and %) of biological structures (e.g., chironomids, tubes, macrophytes), organic debris (e.g., twigs, leaves), shells		
no alphs, no	sheen, no odo	
Odor/Sheen Evaluation:		10.11 1.1 0.78 D
Observed (Y/N)_\(\sum_\) Color: Swirl Test: Odor: SudanIV (Y/N): UV Light (Y/N):		
Attempt 1		
Time: 11:55	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 - 30	Water Depth: 41	Rejected
GPS Coordinates: N 45. 56901 W 122. 72202		
Comment:		
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		3
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		

8 of 20 Page For 110

	Project Information	
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/14 3/4/10	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		
SIL Samp	le Collection and Description	
Sample ID: WMM - () 7	Containers: 2 (8 02 glass jun	Sample Time: 10:40
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any	an ac sit mor	DOFL to Stiff
Color (Munsell color scale)	Jest Jort II II OVOI	3011 10 11111
Stratification, if any Color (Munsell color scale)	21.14	
1 Teserrocation and the control of the dox 1 oternial bic	donard Layor (a road material or or or or	
Presence (and %) of biological structures (e.g., chi		e.g., twigs, leaves), stiells
Odor/Sheen Evaluation:	dor, no sheep	20.5
Observed (Y/N) Color: Swirl Tes	st: Odor: Sudan	IV (Y/N): UV Light (Y/N):
Attempt 1		
Time: (0:40	Photo Number:	Successful (circle one)
Penetration Depth (cm): () 3()	Water Depth: 30.8	Rejected
GPS Coordinates: 1 45.5695		041
Comment:	1 James 1	V I I
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS*Coordinates:		
Comment:		
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
- 1		

9\$ of 20 Page 70 40

	Project Information	nii ba J. Ji Sen
Project: HPH1 OOD	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3/4/110	Van Veen grab Sampler	Sample Team: KK, AC
, , , ,	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		
SIL Samp	le Collection and Description	
Sample ID: 100 - 08	Containers: 2 (8 02 glass jan	Sample Time: 10:25
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any	act oil a	DION TODE IN CUIT
Color (Munsell color scale)	o gray soft sin c	IVER JUFF TO SHIH
Stratification, if any Color (Munsell color scale)	ayey silt	
1 Todario di Ostato III di India di Control	continuity East of the field in allocation or black,	
Presence (and %) of biological structures (e.g., chi	ronomids, tubes, macrophytes), organic debris	(e.g., twigs, leaves), shells
Odor/Sheen Evaluation:		
Observed (Y/N) Color: Swirl Tes	st:Odor:Sudar	nIV (Y/N): UV Light (Y/N):
Attempt 1	•	
Time: (0:15	Photo Number:	Successful (circle one)
Penetration Depth (cm): () - 2()	Water Depth: 37.8	Rejected
GPS Coordinates: N 45.5 (088)	1. W 122.72073	?
Comment:	7	
2		
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		

10 of 20 Page 901 40

Project Information			
Project: HPH100D	Sampling Method:	Contractor: Ballard	
Date: 3/3/16 34/10	Van Veen grab Sampler	Sample Team: KK, AC	
	Sample Location		
Mill Area:	Description of Location and Channel Bottom:		
Subarea:			
Station:			
SIL Sample Collection and Description			
Sample ID: 19 - 09	Containers: 2 (8 0 2 glass jui	Sample Time: 10 : 21	
Sediment Type (e.g., silt, sand)			
Texture (e.g., fine-grain, poorly sorted)			
Stratification, if any Color (Munsell color scale) Drivin TO Moisture Gray Co	a all CAGI FILL MAN	onft to Stiff	
Color (Munsell color scale) DN WN TV	gray soft sitt over	alle d	
Moisture 9 Yavy Cla	gen sit winn s	una	
Presence/location/trickness of Redox Potential Dis	continuity Layer (a visual indication of black)		
Presence (and %) of biological structures (e.g., chi		e.g., twigs, leaves), shells	
	odor, no sheen		
Odor/Sheen Evaluation:	te Odor Sudani	\(\O\mu\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Observed (Y/N) Color: Swirl Test: Odor: SudanIV (Y/N): UV Light (Y/N):			
Attempt 1	Photo Number:	Successful (circle one)	
Time: (0 = 21 Penetration Depth (cm): (3 = 30	1	A DESCRIPTION AND A DESCRIPTION OF A DES	
Penetration Depth (cm): 0 30 GPS Coordinates: 1 45.5108	Water Depth: 38.9	27	
Comment:			
Attempt 2			
	Photo Number:	Successful (circle one)	
Penetration Depth (cm):	Water Depth:	Rejected	
GPS Coordinates:			
Comment:			
	ž.		
Attempt 3			
Time:	Photo Number:	Successful (circle one)	
Penetration Depth (cm):	Water Depth;	Rejected	
GPS Coordinates:			
Comment:	17		

Project Information	The second secon
Sampling Method:	Contractor: Ballard
Van Veen grab Sampler	Sample Team: KK, AC
Sample Location	
Description of Location and Channel Bottom:	
ple Collection and Description	
Containers: 2 (8 02 glass jui	Sample Time: [] : []
	ι.
	ion a finter chil
leir gray soft sitt of	10 SOFT 10 171t
P.V	ow clauser sitt
iscontinuity Layer (a visual indication of black)	
nironomids, tubes, macrophytes), organic debris	
odor, no sheen	7
1	
est:Odor:Sudar	n/V (Y/N): UV Light (Y/N):
Photo Number:	Successful (circle one)
Water Depth: 34.2	Rejected
18, W 122. 7188	0
,	
*	and the second s
Photo Number:	Successful (circle one)
Water Depth:	Rejected
Photo Number:	Successful (circle one)
Photo Number: Water Depth:	Successful (circle one) Rejected
Photo Number: Water Depth:	Successful (circle one) Rejected
	- ' '
	Sampling Method: Van Veen grab Sampler Sample Location Description of Location and Channel Bottom: ple Collection and Description Containers: 2 (8 oz glass jan) Scott Sitt On iscontinuity Layer (a visual indication of black) nironomids, tubes, macrophytes), organic debris Odor: Sudar Photo Number: Water Depth: 34 . 2 Photo Number:

9	Project Information	
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3/4/ 0	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		
Sam Sam	ple Collection and Description	
Sample ID:	Containers: 2 (8 02 glass jui	Sample Time: 10:02
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any Color (Munsell color scale)	Cast Cit 81/0x	NOUS CLOUDER STA
Color (Munsell color scale)	gravy sort still over	grang changes of
Moisture		
Presence/location/thickness of Redox Potential Di	scontinuity Layer (a visual indication of black)	
Presence (and %) of biological structures (e.g., ch	ironomids, tubes, macrophytes), organic debris (i	
Odor/Sheen Evaluation:	7	, , , , , , , , , , , , , , , , , , , ,
Observed (Y/N) Color: Swirl Te	st: Odor: Sudan	IV (Y/N): UV Light (Y/N):
Attempt 1		
Time: 10:02	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 - 30	Water Depth: 39, 9	Rejected
GPS Coordinates: N 4550 75	58 W 122 7181	79
Comment:		
	1	
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:	a 4	
Attempt 3	.,	
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		

	Project Information	
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3/4/10	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		
SIL Sam	ple Collection and Description	
Sample ID: WAT - 12	Containers: 2 (8 02 glass jui	Sample Time: 9:54
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any	oracill nor as	au Clarley Silt
Stratification, if any Color (Munsell color scale)	dray jobs stu over di	my carry y
Moisture	1 ,	
Presence/location/thickness of Redox Potential D		1,
Presence (and %) of biological structures (e.g., cl	nironomids, tubes, macrophytes), organic debris (), whim no amode
Odor/Sheen Evaluation: Observed (Y/N) Color: Swirl To		No Sheer
Attempt 1		
Time: 9:54	Photo Number:	Successful (circle one)
Penetration Depth (cm): () -30	Water Depth: 29 ()	Rejected
GPS Coordinates: N 45.5 6 (05	7, W122, 71718	
0	ourge	
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
		ľ

	Project Information	
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3/4/10	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		×
SIL Sam	ple Collection and Description	
Sample ID: 13	Containers: 2 (8 oz glass jan	Sample Time: $q: U5$
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		_
Stratification, if any	1	a dayne
Stratification, if any Color (Munsell color scale)	to gray suff sitt ov	ergray chargey.
Moisture	, 9	0 0
Presence/location/thickness of Redox Potential D	iscontinuity Layer (a visual indication of black)	
Presence (and %) of biological structures (e.g., c	nironomids, tubes, macrophytes), organic debris (e.g., twigs, leaves), shells
Odor/Sheen Evaluation:		
Observed (Y/N) Color; Swirl Tr	est:Odor:Sudar	nIV (Y/N): UV Light (Y/N):
Attempt 1		
Time: 0:45	Photo Number:	Successful (circle one)
Penetration Depth (cm): () - 30	Water Depth: "3 . U	Rejected
GPS Coordinates: N U5.5 (a)	90 W 122 715	71
comment: duplicate sa	nple 1886-21, 0	Gret du to barge
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
	11	
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:	2	
Comment:		
		h _i

	Project Information	
Project: HPH1 000	Sampling Method:	Contractor: Ballard
Date: 3/3/10 24 10	Van Veen grab Sampler	Sample Team: KK, AC
7111	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		
SIL Samp	le Collection and Description	
Sample ID: 14	Containers: 2 (8 0 2 glass just	Sample Time: 9:30
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any Color (Munsell color scale)	MOTHER CACK CILL ONCE	AND CAURUSIN
Color (Munsell color scale)	3 01 100 3014 3111 000	Jims Citted J.
Moisture		
Presence/location/thickness of Redox Potential Dis		
Presence (and %) of biological structures (e.g., chi		e.g., twigs, leaves), shells
	odor, no Shoen	, , , , , , , , , , , , , , , , , , ,
Odor/Sheen Evaluation:	t. Odov Sudan	IV (Y/N): UV Light (Y/N):
Observed (Y/N) Color: Swirl Tes	it. Odor. Sudam	1V (1714) OV Light (1714)
Attempt 1		o S El (rindo cos)
Time: 9:30	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 - 30	Water Depth: 35.3	Rejected
GPS Coordinates: N 45, 5 lolo 25	W 122. 71453	
Comment:		
AM.,		
Attempt 2	Disate Number	Successful (circle one)
Time:	Photo Number:	
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
Somment.		

	Project Information	
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3/4/10	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	
Mill Area;	Description of Location and Channel Bottom:	,
Subarea:		
Station:		
SIL Sam	ole Collection and Description	
Sample ID: WART - 15	Containers: 2 (8 0 2 glass jui	Sample Time: 9:25
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any	0.31	
Color (Munsell color scale) 6 7 Wn	ver gray silly sa	Will HIM FILES
Moisture	V	
Presence/location/thickness of Redox Potential Dis	scontinuity Layer (a visual indication of black)	
Presence (and %) of biological structures (e.g., chi		
110 Odor, no sh	een, Various size	nocks, one correct
Odor/Sheen Evaluation:	W	
Observed (Y/N) \(\bigcup \) Color: Swirl Te	st: Ódor: Sudan	IV (Y/N): UV Light (Y/N):
Attempt 1	0	
Time: C C	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 - 30	Water Depth: 3(p. 2	Rejected
GPS Coordinates: N 45.505	71, W 122.713	79
Comment: JAWS FIRM W	ith rocks + shells	
Attempt 2		
Time: 0:25	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 -30	Water Depth: 30 . 2	Rejected
GPS Coordinates: N U5.5(571 W 122 3	11590
Comment:		
	9	
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
		5

	Project Information	
Project: HPH 1 00D	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3/4/10	Van Veen grab Sampter	Sample Team: KK, AC
	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		
SIL San	ple Collection and Description	
Sample ID: 10	Containers: 2 (8 02 glass jan	Sample Time: 9:05
Sediment Type (e.g., silt, sand)		,
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any	In array cold city	ENPER MOUNT CIAL
Color (Munsell color scale)	to gray soft silt	over gray day
Moisture	···) i H
Presence/location/thickness of Redox Potential D	iscontinuity Layer (a visual indication of black)	
	hironomids, tubes, macrophytes), organic debris (e.g., twigs, leaves), shells
no albris, no	odor, no sheen	
Odor/Sheen Evaluation:		(F. 500)
Observed (Y/N) Color: Swirl T	est: Odor: Sudan	IV (Y/N): UV Light (Y/N):
Attempt 1	· · · · · · · · · · · · · · · · · · ·	
Time: 4:15	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 - 30	Water Depth: 30.0	Rejected
GPS Coordinates: V 45 - WWW	150429 W 122	71262
comment: Offset dull to	barge, N 100 F	t. south
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		

3/	Project Information	
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/10 3/4/10	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		
Samp	le Collection and Description	
Sample ID: NAME - 7	Containers: 2 (8 oz glass jui	Sample Time: 8:54
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any		
Color (Munsell color scale) DYONN TO	gray Soft silt ove	raray
Color (Munsell color scale) Drown to Moisture Clayey	Sift	3
Presence/location/thickness of Redox Potential Dis-	continuity Layer (a visual indication of black)	
Presence (and %) of biological structures (e.g., chir		e.g., twigs, leaves), shells
no debris, no of	dor, no sheen	
Odor/Sheen Evaluation:		
Observed (Y/N)_\(\sum_\) Color: Swirl Tes	t: Odor: Sudan	IV (Y/N): UV Light (Y/N):
Attempt 1		
Time: 8:54	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 - 30	Water Depth: 28	Rejected
GPS Coordinates: N 45, 50 38 +	W 122, 71051	
comment: duplicate same	pte wind -20	
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		

	Project Information	
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/16 3/4/10	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	/e
Mill Area:	Description of Location and Channel Bottom:	
Subarea:	-	
Station;		
SIL Sam	ple Collection and Description	
Sample ID: VALUE B	Containers: 2 (8 0 7 glass juin	Sample Time: \$15
Sediment Type (e.g., silt, sand) SOST Silt		
Texture (e.g., fine-grain, poorly sorted)		
Stratification, if any Color (Munsell color scale)	COM GIL Auge	0 22 11 0 12 281 1
Cofor (Munisell color scale) DYOWN 10	gray soft sitt over	gray cayey
Moisture		V J silt
Presence/location/thickness of Redox Potential Di	scontinuity Layer (a visual indication of black)	
Presence (and %) of biological structures (e.g., ch		e.g., twigs, leaves), shells
No debrisino od	or, no sheen	
Odor/Sheen Evaluation:		1
Observed (Y/N) Color: Swirl Te	st: Odor: Sudan	IV (Y/N):UV Light (Y/N):
Attempt 1		
Time: 8:15	Photo Number:	Successful (circle one)
Penetration Depth (cm): 030	Water Depth: 19, 9	Rejected
GPS Coordinates: 1 4 5.51 08	W 122.70866	
Comment:		
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		~
Comment:	M	*
	Photo Number:	Successful (circle one)
Attempt 3		Successful (circle one) Rejected
Attempt 3 Time:	Photo Number:	

	Project Information	The same of the sa
Project: HPH100D	Sampling Method:	Contractor: Ballard
Date: 3/3/TO 3/4/10	Van Veen grab Sampler	Sample Team: KK, AC
	Sample Location	
Mill Area:	Description of Location and Channel Bottom:	
Subarea:		
Station:		
SIL Samp	ole Collection and Description	
Sample ID: WWW - 19	Containers: 2 (8 0 2 glass just	Sample Time: 8:30
Sediment Type (e.g., silt, sand)		
Texture (e.g., fine-grain, poorly sorted)	. 7	
Stratification, if any Color (Munsell color scale) Moisture	soft silt over ga	ry clayey sil
Presence/location/thickness of Redox Potential Dis	continuity Layer (a visual indication of black)	
Presence (and %) of biological structures (e.g., chi	ronomids, tubes, macrophytes), organic debris (o	
Odor/Sheen Evaluation: Observed (Y/N) Color: Swirl Tes		
Attempt 1	2.4	
Time: $Q:3(a)$	Photo Number:	Successful (circle one)
Penetration Depth (cm): 0 - 30	Water Depth: 22.8	Rejected
GPS Coordinates: N 45 5 6 284	W 122 +0868	
Comment:		
Attempt 2		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		
Attempt 3		
Time:	Photo Number:	Successful (circle one)
Penetration Depth (cm):	Water Depth:	Rejected
GPS Coordinates:		
Comment:		

APPENDIX D Laboratory Analytical Report

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Friday, August 12, 2016

Keith Kroeger GeoSyntec 621 SW Morrison St, Suite 600 Portland, OR 97204

RE: Portland Harbor Sediment / HPH100D

Enclosed are the results of analyses for work order <u>A6C0180</u>, which was received by the laboratory on 3/4/2016 at 1:00:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION							
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received			
SIL-00	A6C0180-01	Sediment	03/04/16 11:35	03/04/16 13:00			
SIL-01	A6C0180-02	Sediment	03/04/16 11:48	03/04/16 13:00			
SIL-02	A6C0180-03	Sediment	03/04/16 11:20	03/04/16 13:00			
SIL-03	A6C0180-04	Sediment	03/04/16 11:14	03/04/16 13:00			
SIL-04	A6C0180-05	Sediment	03/04/16 11:03	03/04/16 13:00			
SIL-05	A6C0180-06	Sediment	03/04/16 10:51	03/04/16 13:00			
SIL-06	A6C0180-07	Sediment	03/04/16 11:55	03/04/16 13:00			
SIL-07	A6C0180-08	Sediment	03/04/16 10:40	03/04/16 13:00			
SIL-08	A6C0180-09	Sediment	03/04/16 10:25	03/04/16 13:00			
SIL-09	A6C0180-10	Sediment	03/04/16 10:21	03/04/16 13:00			
SIL-10	A6C0180-11	Sediment	03/04/16 10:11	03/04/16 13:00			
SIL-11	A6C0180-12	Sediment	03/04/16 10:02	03/04/16 13:00			
SIL-12	A6C0180-13	Sediment	03/04/16 09:54	03/04/16 13:00			
SIL-13	A6C0180-14	Sediment	03/04/16 09:45	03/04/16 13:00			
SIL-14	A6C0180-15	Sediment	03/04/16 09:36	03/04/16 13:00			
SIL-15	A6C0180-16	Sediment	03/04/16 09:25	03/04/16 13:00			
SIL-16	A6C0180-17	Sediment	03/04/16 09:05	03/04/16 13:00			
SIL-17	A6C0180-18	Sediment	03/04/16 08:54	03/04/16 13:00			
SIL-18	A6C0180-19	Sediment	03/04/16 08:15	03/04/16 13:00			
SIL-19	A6C0180-20	Sediment	03/04/16 08:36	03/04/16 13:00			
SIL-20	A6C0180-21	Sediment	03/04/16 00:00	03/04/16 13:00			
SIL-21	A6C0180-22	Sediment	03/04/16 00:00	03/04/16 13:00			
SIL-00-RSM	A6C0180-23	Sediment	03/04/16 11:35	03/04/16 13:00			
SIL-01-RSM	A6C0180-24	Sediment	03/04/16 11:48	03/04/16 13:00			
SIL-02-RSM	A6C0180-25	Sediment	03/04/16 11:20	03/04/16 13:00			
SIL-03-RSM	A6C0180-26	Sediment	03/04/16 11:14	03/04/16 13:00			
SIL-04-RSM	A6C0180-27	Sediment	03/04/16 11:03	03/04/16 13:00			
SIL-05-RSM	A6C0180-28	Sediment	03/04/16 10:51	03/04/16 13:00			
SIL-06-RSM	A6C0180-29	Sediment	03/04/16 11:55	03/04/16 13:00			
SIL-07-RSM	A6C0180-30	Sediment	03/04/16 10:40	03/04/16 13:00			
SIL-08-RSM	A6C0180-31	Sediment	03/04/16 10:25	03/04/16 13:00			
SIL-09-RSM	A6C0180-32	Sediment	03/04/16 10:21	03/04/16 13:00			
SIL-10-RSM	A6C0180-33	Sediment	03/04/16 10:11	03/04/16 13:00			
SIL-11-RSM	A6C0180-34	Sediment	03/04/16 10:02	03/04/16 13:00			
SIL-12-RSM	A6C0180-35	Sediment	03/04/16 09:54	03/04/16 13:00			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Zomenighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION						
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received		
SIL-13-RSM	A6C0180-36	Sediment	03/04/16 09:45	03/04/16 13:00		
SIL-14-RSM	A6C0180-37	Sediment	03/04/16 09:36	03/04/16 13:00		
SIL-15-RSM	A6C0180-38	Sediment	03/04/16 09:25	03/04/16 13:00		
SIL-16-RSM	A6C0180-39	Sediment	03/04/16 09:05	03/04/16 13:00		
SIL-17-RSM	A6C0180-40	Sediment	03/04/16 08:54	03/04/16 13:00		
SIL-18-RSM	A6C0180-41	Sediment	03/04/16 08:15	03/04/16 13:00		
SIL-19-RSM	A6C0180-42	Sediment	03/04/16 08:36	03/04/16 13:00		
SIL-20-RSM	A6C0180-43	Sediment	03/04/16 00:00	03/04/16 13:00		
SIL-21-RSM	A6C0180-44	Sediment	03/04/16 00:00	03/04/16 13:00		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Dua & Smerighini

NWMAR152576 Page 3 of 45

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger 08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Poly	chlorinated E	Biphenyls E	PA 8082A			
A 1	Result	MDL	Reporting Limit	** **	Dilution	Date Analyzed	Method	Notes
Analyte SIL-00-RSM (A6C0180-23RE1)	Result	WIDE	Matrix: Sec	Units	Batch: 603089		Wethou	C-0
Aroclor 1016	ND	7.73	15.4	ug/kg dry	10	03/29/16 18:27	EPA 8082A	
		7.73	15.4	ug/kg ury	10	03/29/10 18.27	LIA 6062A	
Aroclor 1221	ND			n	i.	ň	ũ	
Aroclor 1232	ND	7.73	15.4	,,		,,	ži.	
Aroclor 1242	ND	7.73	15.4			,,		
Aroclor 1248	ND	7.73	15.4			,	,	P-10
Aroclor 1254	784	7.73	15.4		"		,	P-10 P-10
Aroclor 1260	180	7.73	15.4		"2 11	e ne		P-10
Aroclor 1262	ND	7.73	15.4		· ·	,		
Aroclor 1268	ND	7.73	15.4	"			ii.	
Surrogate: Decachlorobiphenyl (Surr)			Recovery: 86 %	Limits: 44-120 %	E) out	M I	"	
SIL-01-RSM (A6C0180-24RE1)			Matrix: See	diment	Batch: 603089	97		C-07
Aroclor 1016	ND	7.20	14.3	ug/kg dry	10	03/29/16 19:24	EPA 8082A	
Aroclor 1221	ND	7.20	14.3	п	Ü	H	n	
Aroclor 1232	ND	7.20	14.3	н	Ü	n .	ij	
Aroclor 1242	ND	7.20	14.3	и	Ü	H ()	ñ	
Aroclor 1248	ND	7.20	14.3	'n	H.	m :	an an	
Aroclor 1254	841	7.20	14.3	2	<u>"</u>	m:	n	P-10
Aroclor 1260	155	7.20	14.3	2	ii.		n n	P-10
Aroclor 1262	ND	7.20	14.3	'n	Ŋ.	X 1	n	
Aroclor 1268	ND	7.20	14.3	'n	9.	9 15	n	
Surrogate: Decachlorobiphenyl (Surr)		10	Recovery: 82 %	Limits: 44-120 %	i u	, in p	"	
SIL-02-RSM (A6C0180-25RE1)			Matrix: Sec	diment	Batch: 603089	97		C-07
Aroclor 1016	ND	3.48	6.90	ug/kg dry	5	03/29/16 20:21	EPA 8082A	
Aroclor 1221	ND	3.48	6.90	ñ	W	n ·	ij	
Aroclor 1232	ND	3.48	6.90	ñ	Ü	W	Ü	
Aroclor 1242	ND	3.48	6.90	n	н	.01	n	
Aroclor 1248	ND	3.48	6.90	n	· nc	и	n	
Aroclor 1254	192	3.48	6.90	20	. 10	п	n	P-10
Aroclor 1260	98.4	3.48	6.90	"	n	21		P-10
Aroclor 1262	ND	3.48	6.90	,	90	ÿ.	v	
Aroclor 1268	ND	3.48	6.90	n	0)	Ü	
Surrogate: Decachlorobiphenyl (Surr)			Recovery: 76 %	Limits: 44-120 %	; m		u	
SIL-03-RSM (A6C0180-26RE1)	8		Matrix: Sec	diment	Batch: 603089	97		C-07
Aroclor 1016	ND	3.39	6.72	ug/kg dry	5	03/29/16 21:18	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Zmenighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600 Portland, OR 97204

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

8		Polyc	niorinated	Biphenyls El	PA 8082A			
Analyte	Result	MDL	Reporting Limit		Dilution	Date Analyzed	Method	Notes
SIL-03-RSM (A6C0180-26RE1)	Result	MDL	Matrix: Se	Units	Batch: 60308	Provide Invasor Cross Control	Wethod	C-(
Aroclor 1221	ND	3.39	6.72		5	"	EPA 8082A	
				ug/kg dry	J "	n.	EFA 0002A	
Aroclor 1232	ND	3.39	6.72	н	0	u	и	
Aroclor 1242	ND	3.39	6.72	180			2000 20 0 0	
Aroclor 1248	ND	3.39	6.72				en.	P-10
Aroclor 1254	89.8	3.39	6.72		30.5			
Aroclor 1260	39.3	3.39	6.72		31.3	w.		P-10
Aroclor 1262	ND	3.39	6.72	:W	70	u u		
Aroclor 1268	ND	3.39	6.72		350	<u>u</u>	ęn	
Surrogate: Decachlorobiphenyl (Surr)		$R\epsilon$	ecovery: 74 %	Limits: 44-120 %	j,	T	i n	
SIL-04-RSM (A6C0180-27RE2)			Matrix: Se	diment E	Batch: 60308	97		C-(
Aroclor 1016	ND	0.667	1.32	ug/kg dry	1	03/30/16 16:54	EPA 8082A	
Aroclor 1221	ND	0.667	1.32		Ĭ,	- u	n	
Aroclor 1232	ND	0.667	1.32		20	716		
Aroclor 1242	ND	0.667	1.32	"	,,,	ii .	n	
Aroclor 1248	ND	0.667	1.32	11	Ĭ	n	n	
Aroclor 1254	24.7	0.667	1.32	2.00	"	W	0.	P-10
Aroclor 1260	8.91	0.667	1.32	(4)	,,,	OFF.	U	P-10
Aroclor 1262	ND	0.667	1.32	8.00	"	ETAS	11.	
Aroclor 1268	ND	0.667	1.32	ar	n	in.	Tr.	
Surrogate: Decachlorobiphenyl (Surr)		Re	ecovery: 79 %	Limits: 44-120 %		188	n	
SIL-05-RSM (A6C0180-28RE2)			Matrix: Se	diment E	Batch: 603089	97		C-0
Aroclor 1016	ND	0.695	1.38	ug/kg dry	1	03/30/16 17:49	EPA 8082A	
Aroclor 1221	ND	0.695	1.38	"	0		II.	
Aroclor 1232	ND	0.695	1.38	. (10)	ij	•	(N)	
Aroclor 1242	ND	0.695	1.38	н	Ü		и	
Aroclor 1248	ND	0.695	1.38	н	Ü	W.	п	
Aroclor 1254	25.9	0.695	1.38	v H C	ū	Ü	п	P-10
Aroclor 1260	22.4	0.695	1.38	(Н.	л	307	9103	P-10
Aroclor 1262	ND	0.695	1.38	н	и	(H)	(HE)	
Aroclor 1268	ND	0.695	1.38	"	u	TO TO	u	<i>5</i>)
Surrogate: Decachlorobiphenyl (Surr)	10/05/54	00000000	ecovery: 63 %	Limits: 44-120 %	i ii			
SIL-06-RSM (A6C0180-29RE2)		***	Matrix: Se		3atch: 603089	97		C-0
Aroclor 1016	ND	0.724	1.44	ug/kg dry	1	03/30/16 18:44	EPA 8082A	V
Aroclor 1221	. ND	0.724	1.44	-887	,,	11		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa't Smeinghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600 Portland, OR 97204

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

<u> </u>		i- Oly C	inormated I	Biphenyls E	. A 0002A			
1.001	Develo	MDI	Reporting		D.I.	D	Marina	Market
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes C-0
SIL-06-RSM (A6C0180-29RE2)	3.70	0.70	Matrix: Se		Batch: 60308	97	ED 1 0000 1	U-(
Aroclor 1232	ND	0.724	1.44	ug/kg dry	1	"	EPA 8082A	
Aroclor 1242	ND	0.724	1.44		11			
Aroclor 1248	ND	0.724	1.44				ū	_maren
Aroclor 1254	29.2	0.724	1.44		70	"	u.	P-10
Aroclor 1260	22.7	0.724	1.44		.00		"	P-10
Aroclor 1262	ND	0.724	1.44			М	U.	
Aroclor 1268	ND	0.724	1.44		.0	м	u	
Surrogate: Decachlorobiphenyl (Surr)		R	Recovery: 77 %	Limits: 44-120 %	6	n	tt.	
SIL-07-RSM (A6C0180-30RE2)			Matrix: Se	diment	Batch: 60308	97		C-0
Aroclor 1016	ND	0.698	1.38	ug/kg dry	1	03/30/16 19:40	EPA 8082A	
Aroclor 1221	ND	0.698	1.38	"	0	11	ï	
Aroclor 1232	ND	0.698	1.38	11.	1911	n	н	
Aroclor 1242	ND	0.698	1.38	n	346	n	н	
Aroclor 1248	ND	0.698	1.38	<u>o</u>	30	Ü		
Aroclor 1254	49.5	0.698	1.38	Œ	310	II.	<u>n</u>	P-10
Aroclor 1260	31.6	0.698	1.38	ij	и.	Ü	n	P-10
Aroclor 1262	ND	0.698	1.38	<u>u</u>	100	u	W.	
Aroclor 1268	ND	0.698	1.38	II.	и	Ü	n	
Surrogate: Decachlorobiphenyl (Surr)		R	lecovery: 58 %	Limits: 44-120 %	6 "	11	n	
SIL-08-RSM (A6C0180-31RE2)			Matrix: Se	diment	Batch: 60308	97		C-0
Aroclor 1016	ND	1.40	2.78	ug/kg dry	2	03/30/16 16:54	EPA 8082A	
Aroclor 1221	ND	1.40	2.78		n	ñ	\overline{a}	
Aroclor 1232	ND	1.40	2.78	и	800	м	n	
Aroclor 1242	ND	1.40	2.78	и.	in.	м	11	
Aroclor 1248	ND	1.40	2.78	n.	,n	<u>#</u>	<u>u</u>	
Aroclor 1254	93.0	1.40	2.78	n,	(11)	n	н	P-10
Aroclor 1260	62.7	1.40	2.78	н	.0	<u>jį</u>	Ĭ.	P-10
Aroclor 1262	ND	1.40	2.78	n	0	ĬĬ.	Ü	
Aroclor 1268	ND	1.40	2.78	11	.11	•	W.	
Surrogate: Decachlorobiphenyl (Surr)		R	ecovery: 91 %	Limits: 44-120 %	6 "	n.	н	
SIL-09-RSM (A6C0180-32RE2)			Matrix: Se		Batch: 60308	97		C-0
Aroclor 1016	ND	0.703	1.40	ug/kg dry	1	03/30/16 17:49	EPA 8082A	
Aroclor 1221	ND	0.703	1.40	"	100	u u	0	
Aroclor 1232	ND	0.703	1.40	: 11	3 H 2	n:	σ	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Polycl	nlorinated	Biphenyls EP	A 8082A			
		Taronto Caracia	Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-09-RSM (A6C0180-32RE2)			Matrix: Se	diment B	atch: 60308	97		C-0
Aroclor 1242	ND	0.703	1.40	ug/kg dry	1	•	EPA 8082A	
Aroclor 1248	ND	0.703	1.40	(III	11	11	n	
Aroclor 1254	58.7	0.703	1.40	п	n	TI.	n	P-10
Aroclor 1260	44.7	0.703	1.40	и	"		n	P-10
Aroclor 1262	ND.	0.703	1.40	п	11	11	n	
Aroclor 1268	ND	0.703	1.40	2.300	311.7	11	±.H	
Surrogate: Decachlorobiphenyl (Surr)		Re	covery: 76 %	Limits: 44-120 %	11	n	и	
SIL-10-RSM (A6C0180-33RE2)			Matrix: Se	diment B	atch: 60309	15		C-(
Aroclor 1016	ND	3.48	6.91	ug/kg dry	5	03/30/16 18:44	EPA 8082A	
Aroclor 1221	ND	3.48	6.91		30 %	SHE	3 11	
Aroclor 1232	ND	3.48	6.91	п	Tr.	11	<u>. 11</u>	
Aroclor 1242	ND	3.48	6.91	n	10	.01	U	
Aroclor 1248	ND	3.48	6.91	THE STATE OF THE S		206		
Aroclor 1254	190	3.48	6.91	n	11	U	11	P-10
Aroclor 1260	111	3.48	6.91	n	w	in.	· tr	P-10
Aroclor 1262	ND	3.48	6.91	n	If	, H	11	
Aroclor 1268	ND	3.48	6.91			3.003	30.	
Surrogate: Decachlorobiphenyl (Surr)		Re	covery: 72 %	Limits: 44-120 %	n	п	10	
SIL-11-RSM (A6C0180-34RE2)			Matrix: Se	diment B	atch: 60309	15		C-0
Aroclor 1016	ND	2.13	4.22	ug/kg dry	2	03/30/16 19:40	EPA 8082A	
Aroclor 1221	ND	2.13	4.22	300	п	, and	310	
Aroclor 1232	ND	2.13	4.22	· II.	ÿi		н	
Aroclor 1242	ND	2.13	4.22	Ü	n	3 H =	31	
Aroclor 1248	ND	2.13	4.22	TI.	Ü	7.00		
Aroclor 1254	65.9	2.13	4.22	TI.	9	10	n	P-10
Aroclor 1260	165	2.13	4.22	п	, ÿ	71	n	P-10
Aroclor 1262	ND	2.13	4.22	u	,,	n	n	
Aroclor 1268	ND	2.13	4.22	300	"	300	300	
Surrogate: Decachlorobiphenyl (Surr)		Re	covery: 95 %	Limits: 44-120 %	11	11.	, m	
SIL-12-RSM (A6C0180-35RE1)			Matrix: Se	diment B	atch: 60309	15		C-0
Aroclor 1016	ND	6.92	13.7	ug/kg dry	10	03/29/16 20:21	EPA 8082A	
Aroclor 1221	ND	6.92	13.7	W.	tr.	100	30	
Aroclor 1232	ND	6.92	13.7	, n	iii	11	10	
Aroclor 1242	ND	6.92	13.7		n	m	n	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dura & Smerighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		. 0.90		Biphenyls E				
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-12-RSM (A6C0180-35RE1)	resuit	1,12,2	Matrix: Se	1.0000000000000000000000000000000000000	Batch: 60309			C-0
Aroclor 1248	ND	6.92	13.7	ug/kg dry	10	u.	EPA 8082A	
Aroclor 1254	193	6.92	13.7	"	HS	u	n	P-10
Aroclor 1260	230	6.92	13.7	ĸ	310	tt.	и.	P-10
Aroclor 1262	ND	6.92	13.7	п	3.00		н	
Aroclor 1268	ND	6.92	13.7	Ü		<u>u</u>	п	
Surrogate: Decachlorobiphenyl (Surr)		R	ecovery: 70 %	Limits: 44-120 %	6 "	W.	er .	
SIL-13-RSM (A6C0180-36RE1)			Matrix: Se	diment	Batch: 60309	15		C-0
Aroclor 1016	ND	0.691	1.37	ug/kg dry	1	03/29/16 21:17	EPA 8082A	
Aroclor 1221	ND	0.691	1.37	ď		T .	9.	
Aroclor 1232	ND	0.691	1.37	Œ		"	"	
Aroclor 1242	ND	0.691	1.37	Œ	W.	"	U	28
Aroclor 1248	ND	0.691	1.37	Ü	· tr	n	ű	
Aroclor 1254	59.8	0.691	1.37	n	(0)	п	"	P-10
Aroclor 1260	85.5	0.691	1.37	n	300	и.	ũ	P-10
Aroclor 1262	ND	0.691	1.37	Œ	306	и	11:	
Aroclor 1268	ND	0.691	1.37	y,	U.	'n	п	
Surrogate: Decachlorobiphenyl (Surr)		R	lecovery: 55 %	Limits: 44-120 9	6 "	*	TI.	
SIL-14-RSM (A6C0180-37RE1)			Matrix: Se	diment	Batch: 60309	15		C-0
Aroclor 1016	ND	0.711	1.41	ug/kg dry	1	03/29/16 17:35	EPA 8082A	
Aroclor 1221	ND	0.711	1.41	Œ	, U	72		
Aroclor 1232	ND	0.711	1.41	Ü	U	"	u	
Aroclor 1242	ND	0.711	1.41	Ü	.0		u	
Aroclor 1248	ND	0.711	1.41	ũ		n		
Aroclor 1254	25.7	0.711	1.41	u	T	ñ	n	P-10
Aroclor 1260	46.6	0.711	1.41	11	. 11	н	и.	P-10
Aroclor 1262	ND	0.711	1.41	tr.	916	N.	**	
Aroclor 1268	ND	0.711	1.41	o	· t	Ĭ,	tf.	
Surrogate: Decachlorobiphenyl (Surr)		R	ecovery: 46 %	Limits: 44-120 %	6 "	n	Ű	
SIL-15-RSM (A6C0180-38RE1)			Matrix: Se	diment	Batch: 60309	15		C-0
Aroclor 1016	ND	0.590	1.17	ug/kg dry	1	03/29/16 18:30	EPA 8082A	
Aroclor 1221	ND	0.590	1.17	Œ			9	
Aroclor 1232	ND	0.590	1.17	ũ	u	•		
Aroclor 1242	ND	0.590	1.17	ü	n	Ü	u	
Aroclor 1248	ND	0.590	1.17	o o	30	ñ	Ř	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jusa & Smeinghine

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Polycl	nlorinated E	Biphenyls E	PA 8082A			
Months Associa	n li	MDI	Reporting		Dilation		N 6-41 J	Notes
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes C-07
SIL-15-RSM (A6C0180-38RE1)	(maile	0.500	Matrix: Se	PROPERTY AND ADDRESS OF THE PROPERTY OF THE PR	Batch: 60309	15	ED4 0000 t	P-10
Aroclor 1254	33.6	0.590	1.17	ug/kg dry	1		EPA 8082A	P-10 P-10
Aroclor 1260	32.8	0.590	1.17	".	anc			P-10
Aroclor 1262	ND	0.590	1.17	"	311		" "	
Aroclor 1268	ND	0.590	1.17		: H /F			
Surrogate: Decachlorobiphenyl (Surr)	×	Re	covery: 99 %	Limits: 44-120 %	ó "	¥.	11	
SIL-16-RSM (A6C0180-39RE1)			Matrix: Se	diment	Batch: 60309	15		C-07
Aroclor 1016	ND	0.690	1.37	ug/kg dry	1	03/29/16 19:26	EPA 8082A	
Aroclor 1221	ND	0.690	1.37	п	n	ü	u u	
Aroclor 1232	ND	0.690	1.37	Ü		Ü	!!	
Aroclor 1242	ND	0.690	1.37	ï	11	y,	9	
Aroclor 1248	ND	0.690	1.37	п	* (10)	II .	TI TI	
Aroclor 1254	25.7	0.690	1.37	n	11	n n	ii .	P-10
Aroclor 1260	44.1	0.690	1.37	п	n.	n	11	P-10
Aroclor 1262	ND	0.690	1.37	н	8116	#	TI .	
Aroclor 1268	ND	0.690	1.37	"	110	и	tt.	
Surrogate: Decachlorobiphenyl (Surr)		Re	covery: 61 %	Limits: 44-120 %	6 "	ű	11	
SIL-17-RSM (A6C0180-40RE1)			Matrix: Se	diment	Batch: 60309	15		C-07
Aroclor 1016	ND	0.722	1.43	ug/kg dry	1	03/29/16 20:21	EPA 8082A	
Aroclor 1221	ND	0.722	1.43	ii.	н	m.	rr .	
Aroclor 1232	ND	0.722	1.43	щ	H	Ü		
Aroclor 1242	ND	0.722	1.43	н	11	Ü	ij	
Aroclor 1248	ND	0.722	1.43	Ü	36	n	Û	
Aroclor 1254	22.7	0.722	1.43	ũ	.10	п	ű	P-10
Aroclor 1260	39.5	0.722	1.43	н		п	ü	P-10
Aroclor 1262	ND	0.722	1.43	н	110	н	п	
Aroclor 1268	ND	0.722	1.43	н	W SMC	и	n	
Surrogate: Decachlorobiphenyl (Surr)		Re	covery: 72 %	Limits: 44-120 %	6 "	9	"	
SIL-18-RSM (A6C0180-41RE1)			Matrix: Se	diment	Batch: 60309	15		C-07
Aroclor 1016	ND	0.702	1.39	ug/kg dry	1	03/29/16 21:17	EPA 8082A	
Aroclor 1221	ND	0.702	1.39	и	.10			
Aroclor 1232	ND	0.702	1.39	н		n		
Aroclor 1242	ND	0.702	1.39	н	,	n	и	
Aroclor 1248	ND	0.702	1.39	ñ	n	n	n	
Aroclor 1254	25.8	0.702	1.39	n	n	ñ	n e	P-10

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gusa & Zomenighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Portland, OR 97204

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Polyc	niorinated l	Biphenyls E	PA 8082A			
9 A	55% V-25	10.7759.000.00	Reporting				100 to 100	5255 W
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-18-RSM (A6C0180-41RE1)			Matrix: Se		Batch: 60309	202	9.	C-07
Aroclor 1260	38.3	0.702	1.39	ug/kg dry	1	0	EPA 8082A	P-10
Aroclor 1262	ND	0.702	1.39	"	Ø.	,,	10	
Aroclor 1268	ND	0.702	1.39	n		"	ïi .	
Surrogate: Decachlorobiphenyl (Surr)		F	Recovery: 66 %	Limits: 44-120 %	% "	,	y	
SIL-19-RSM (A6C0180-42RE1)			Matrix: Se	diment	Batch: 60309	15		C-0
Aroclor 1016	ND	1.02	2.03	ug/kg dry	. 1	03/29/16 22:11	EPA 8082A	
Aroclor 1221	ND	1.02	2.03	"	m.		,tr	
Aroclor 1232	ND	1.02	2.03	22	n	n	tr	
Aroclor 1242	ND	1.02	2.03	'n	ĬĬ.	"	7	
Aroclor 1248	ND	1.02	2.03	n	"	2	"	
Aroclor 1254	18.0	1.02	2.03	n	и.	9	"	P-10
Aroclor 1260	33.2	1.02	2.03	Ü	п	> 20	Ü	P-10
Aroclor 1262	ND	1.02	2.03	Ü	Ü	9	19	
Aroclor 1268	ND	1.02	2.03	,,	ĸî	i.ii	70	
Surrogate: Decachlorobiphenyl (Surr)		F	lecovery: 63 %	Limits: 44-120 %	% "		Ü	
SIL-20-RSM (A6C0180-43)		<u>\$</u>	Matrix: Se	diment	Batch: 60308	37		C-0
Aroclor 1016	ND	0.695	1.38	ug/kg dry	1	03/28/16 17:11	EPA 8082A	
Aroclor 1221	ND	0.695	1.38	ī	H.		17	
Aroclor 1232	ND	0.695	1.38	2	ñ.	n	ŧŧ	
Aroclor 1242	ND	0.695	1.38		ŭ.	20	X	
Aroclor 1248	ND	0.695	1.38		<u>#</u>	"	11	
Aroclor 1254	27.8	0.695	1.38	Ü	ii.	Ü	ÿ	P-10
Aroclor 1260	38.1	0.695	1.38	n	u.	9		P-10
Aroclor 1262	ND	0.695	1.38	,	u	,	Û	
Aroclor 1268	ND	0.695	1.38	#	п	n	Ü	
Surrogate: Decachlorobiphenyl (Surr)		I	lecovery: 68 %	Limits: 44-120 %	% "	2	N.	
SIL-21-RSM (A6C0180-44RE1)			Matrix: Se	diment	Batch: 60308	37		C-0
Aroclor 1016	ND	3.43	6.80	ug/kg dry	5	03/29/16 12:20	EPA 8082A	
Aroclor 1221	ND	3.43	6.80	17	n	31	11	
Aroclor 1232	ND	3.43	6.80	Ĭi.	11.	77	W	
Aroclor 1242	ND	3.43	6.80		10.	n	Ĩ	
Aroclor 1248	ND	3.43	6.80	ū	U		Ü	
Aroclor 1254	61.2	3.43	6.80	s: Ū	u	n	Ü	P-10
Aroclor 1260	131	3.43	6.80	u u	. 0	10	н	P-10

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Jomenyhini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

Polychlorinated Biphenyls EPA 8082A										
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes		
SIL-21-RSM (A6C0180-44RE1)	7 d		Matrix: Sed	iment	Batch: 603083	37		C-0		
Aroclor 1262	ND	3.43	6.80	ug/kg dry	5	11	EPA 8082A			
Aroclor 1268	ND	3.43	6.80	"	. "		u			
Surrogate: Decachlorobiphenyl (Surr)		Re	covery: 67 %	Limits: 44-120 %	6 "	11	n.			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Zmenghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

Portland, OR 97204

621 SW Morrison St, Suite 600

Project Number: HPH100D Project Manager: Keith Kroeger

Reported: 08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

Conventional Chemistry Parameters										
			Reporting				Common and the	sim-		
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes		
SIL-00 (A6C0180-01)			Matrix: Sed	iment						
Batch: 6030253										
Total Organic Carbon	18000	1222	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-01 (A6C0180-02)			Matrix: Sed	iment						
Batch: 6030253										
Total Organic Carbon	19000	10000000	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-02 (A6C0180-03)			Matrix: Sed	iment				****		
Batch: 6030253										
Total Organic Carbon	19000))===()	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-03 (A6C0180-04)			Matrix: Sed	iment						
Batch: 6030253	10/2/2001		222	1700	a a					
Total Organic Carbon	15000		200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-04 (A6C0180-05)			Matrix: Sed	iment						
Batch: 6030253	200000		2024	2						
Total Organic Carbon	7700		200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-05 (A6C0180-06)			Matrix: Sed	iment						
Batch: 6030253										
Total Organic Carbon	20000	(400 0)	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-06 (A6C0180-07)			Matrix: Sed	iment						
Batch: 6030253						Najer Najarii i choo u chhoolann dha a casha				
Total Organic Carbon	20000	(202)	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-07 (A6C0180-08)			Matrix: Sed	iment						
Batch: 6030253										
Total Organic Carbon	17000		200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-08 (A6C0180-09)			Matrix: Sed	iment						
Batch: 6030253		11								
Total Organic Carbon	19000	1	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-09 (A6C0180-10)			Matrix: Sed	iment						
Batch: 6030253			0224A7/hhann	41 Broad						
Total Organic Carbon	22000	(===):	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-10 (A6C0180-11)			Matrix: Sed	iment						
Batch: 6030253	ag sacrator tanco		201.000000	2/1/2	W.	Editologi, Collegendo de Status	Sign and the second second			
Total Organic Carbon	19000		200	mg/kg	1	03/17/16 17:20	SM 5310B MOD			
SIL-11 (A6C0180-12)			Matrix: Sed	iment						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awas Smeinghine

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600 Portland, OR 97204 Project Number: HPH100D Project Manager: Keith Kroeger Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Con	ventional	Chemistry Para	meters			
			Reporti					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-11 (A6C0180-12)			Matrix: S	Sediment				
Batch: 6030253								
Total Organic Carbon	22000	P\$0.547	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD	
SIL-12 (A6C0180-13)			Matrix: S	Sediment				
Batch: 6030253								
Total Organic Carbon	20000		200	mg/kg	1	03/17/16 17:20	SM 5310B MOD	
SIL-13 (A6C0180-14)			Matrix: S	Sediment				
Batch: 6030253							7/	
Total Organic Carbon	21000	222	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD	
SIL-14 (A6C0180-15)			Matrix: S	Sediment				
Batch: 6030253								
Total Organic Carbon	21000		200	mg/kg	1	03/17/16 17:20	SM 5310B MOD	
SIL-15 (A6C0180-16)			Matrix: S	Sediment				
Batch: 6030253								
Total Organic Carbon	7500	1555	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD	
SIL-16 (A6C0180-17)			Matrix: S	Sediment				
Batch: 6030253								
Total Organic Carbon	7500	() 	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD	
SIL-17 (A6C0180-18)			Matrix: S	ediment				
Batch: 6030253								
Total Organic Carbon	20000		200	mg/kg	î	03/17/16 17:20	SM 5310B MOD	
SIL-18 (A6C0180-19)			Matrix: S	iediment				
Batch: 6030253								
Total Organic Carbon	22000	STATE	200	mg/kg	1	03/17/16 17:20	SM 5310B MOD	
SIL-19 (A6C0180-20)			Matrix: S	ediment				
Batch: 6030253								
Total Organic Carbon	21000		200	mg/kg	1	03/17/16 17:20	SM 5310B MOD	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmeinghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Grain Si	ze by ASTM D 4	22m/PSE1	Parameters	3		
			Reporting		# Parties 1975			
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-00 (A6C0180-01)			Matrix: Sedim	ent	Batch: 603028	34		
Gravel (>2.00mm)	0.12			% of Total	1	03/17/16 16:20	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve	0.06			17	ũ	30	n	GS-01
(#4)								
Percent Retained 2.00 mm sieve	0.06	200		T .	īi.			GS-01
(#10)								V/20/20/0006
Sand (0.063mm - 2.00mm)	12.4	222		v	Ü	u u	n	GS-01
Percent Retained 0.85 mm sieve	0.58			TT.	u	л.	Ü	GS-01
(#20)								50115001
Percent Retained 0.425 mm	0.89			.0	"	W	n	GS-01
sieve (#40)				96	и	H1)3		
Percent Retained 0.250 mm	1.29			41		9113	AII	GS-01
sieve (#60)					"	w	0	GS-01
Percent Retained 0.150 mm	2.52			27	35	300	27	03-01
sieve (#100)	2 27			W.	й	и	30°	GS-01
Percent Retained 0.106 mm	2.37							05-01
sieve (#140)	3.30				н	и	11	GS-01
Percent Retained 0.075 mm sieve (#200)	3.30	(250)						00 01
Percent Retained 0.063 mm	1.49			n	Ä	70	ii .	GS-01
sieve (#230)	1.47							
Silt (0.005mm < 0.063mm)	68.2			н	и	910	30 %	GS-01
Clay (< 0.005 mm)	19.2			н	н	н	30	GS-01
	19.2							
IL-01 (A6C0180-02)			Matrix: Sedim	Designation in the contract of	Batch: 603028			02,200,00
Gravel (>2.00mm)	0.41	-		% of Total	1	03/17/16 16:20	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve	0.00			ñ	ű	n	n	GS-01
(#4)								2213
Percent Retained 2.00 mm sieve	0.41			11	u	31%	и .	GS-01
(#10)				n	u.	TI.	,	00.01
Sand (0.063mm - 2.00mm)	18.9							GS-01
Percent Retained 0.85 mm sieve	4.25			Ü	Ü	0	,,	GS-01
(#20)	(805-800)			n			,,	~~ ~ .
Percent Retained 0.425 mm	5.30	222		.!!		0		GS-01
sieve (#40)	2.12			Ü	ü	n	"	CC 01
Percent Retained 0.250 mm	3.43			d.	W.	M.V.	"	GS-01
sieve (#60)	A =-			Ū.	n.		,	GS-01
Percent Retained 0.150 mm	2.71			30		250.0		U3-01
sieve (#100)	1.40			0	и	38	"	GS-01
Percent Retained 0.106 mm	1.42					***	**	G3-01
sieve (#140)								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmenighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

Portland, OR 97204

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Grain Siz	ze by ASTM D	422m/PSET	Parameters	<u> </u>		
			Reporting				8 8	
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-01 (A6C0180-02)			Matrix: Sedin	ient E	Batch: 603028	34		
Percent Retained 0.075 mm	1.34			% of Total	1	HE.	ASTM D 422m	GS-01
sieve (#200)	**************************************			g	Tr.	H	vi.	00.01
Percent Retained 0.063 mm	0.49			10	110	7)	15	GS-01
sieve (#230) Silt (0.005mm < 0.063mm)	54.9			. 0	0	W.	<u>u</u>	GS-01
Clay (< 0.005 mm)	25.7			or or	0	<u>u</u>	n .	GS-01
SIL-02 (A6C0180-03)			Matrix: Sedim	nent E	Batch: 603028	34		
Gravel (>2.00mm)	0.12			% of Total	1	03/17/16 16:20	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve	0.00			0	ng.	II.	tr.	GS-01
(#4)								
Percent Retained 2.00 mm sieve	0.12			Ü	10	W.	Œ	GS-01
(#10)					u.	н	Œ	66.01
Sand (0.063mm - 2.00mm)	17.1				,,	n n	u u	GS-01
Percent Retained 0.85 mm sieve	0.12				300	V .	.fr	GS-01
(#20) Percent Retained 0.425 mm	0.33			e ë	ii.	n	ŭ	GS-0
sieve (#40)	0.55							
Percent Retained 0.250 mm	1.51			115	311%	M	tt.	GS-0
sieve (#60)								
Percent Retained 0.150 mm	4.23				ag	ű.	<u>u</u>	GS-01
sieve (#100)	3.50			n.		н	ri .	GS-01
Percent Retained 0.106 mm sieve (#140)	3.30	2.000						GB-01
Percent Retained 0.075 mm	5.02			10	31	W.	N.	GS-01
sieve (#200)								
Percent Retained 0.063 mm	2.37			n'	, m	n	ii.	GS-01
sieve (#230)	5,			M:	ж.	1040	и	GC 01
Silt (0.005mm < 0.063mm)	64.0	2 444 3			n. H	1000		GS-01
Clay (< 0.005 mm)	18.8	(.110			GS-01
SIL-03 (A6C0180-04)			Matrix: Sedim	nent E	Batch: 603028	34		
Gravel (>2.00mm)	0.63			% of Total	1	03/17/16 16:20	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve	0.12			K.	,m	11	m .	GS-01
(#4)	0.70			w	11		· m	GS-01
Percent Retained 2.00 mm sieve	0.50	-		n		.mr		GS-01
(#10) Sand (0.063mm - 2.00mm)	51.6			0	5 002	- u:	11	GS-01
Percent Retained 0.85 mm sieve	1.17			11	.00	, ur	· u	GS-01
(#20)	1.1/							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa-A Zmenghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600 Portland, OR 97204

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Grain Si	ze by ASTM D	422m/PSET	Parameters	3		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-03 (A6C0180-04)			Matrix: Sedin	nent B	atch: 603028	34		
Percent Retained 0.425 mm	5.42	7455		% of Total	1	н	ASTM D 422m	GS-01
sieve (#40)	2 22			n	'n	и	,,	00.01
Percent Retained 0.250 mm	14.5			3 9 %	"	MU:		GS-01
sieve (#60) Percent Retained 0.150 mm	15.8			•	7	10		GS-01
sieve (#100)								
Percent Retained 0.106 mm	6.80		61	200	,,	, II	n.	GS-01
sieve (#140)								
Percent Retained 0.075 mm	6.09			300	11	(14)	an .	GS-01
sieve (#200)	1.50			n	'n	и	11	GS-01
Percent Retained 0.063 mm sieve (#230)	1.76							03-01
Silt (0.005mm < 0.063mm)	33.9	100000			,	M.		GS-01
Clay (< 0.005 mm)	13.9	1900		•	<i>y</i>	m.		GS-01
SIL-04 (A6C0180-05)			Matrix: Sedin	nent B	atch: 603028	34		
Gravel (>2.00mm)	1.02			% of Total	1	03/17/16 16:20	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve	0.46			· ·	,	и	ш	GS-01
(#4)	32.32							
Percent Retained 2.00 mm sieve	0.56	-		.0	"	W		GS-01
(#10)								
Sand (0.063mm - 2.00mm)	89.0				u.	n		GS-01
Percent Retained 0.85 mm sieve	0.91			11	11	n	10	GS-01
(#20)	16.3			· ·		н	n	GS-01
Percent Retained 0.425 mm sieve (#40)	10.5							05-01
Percent Retained 0.250 mm	36.9			:00	"	170	.116	GS-01
sieve (#60)								
Percent Retained 0.150 mm	26.7	(Inches		11	11	n	и	GS-01
sieve (#100)					ï	767	W200	
Percent Retained 0.106 mm	5.15	222				30/	и	GS-01
sieve (#140) Percent Retained 0.075 mm	2.42				ñ	TI.	п	GS-01
sieve (#200)	2.42							00 01
Percent Retained 0.063 mm	0.66			II.	"	TI.	n	GS-01
sieve (#230)								
Silt (0.005mm < 0.063mm)	7.00			Н	п	305	(10)	GS-01
Clay (< 0.005 mm)	3.00			W	3 n	\$ 11 3	16	GS-01
SIL-05 (A6C0180-06)			Matrix: Sedin	nent B	atch: 603028	34		
Gravel (>2.00mm)	0.15			% of Total	1	03/17/16 16:20	ASTM D 422m	GS-01

Apex Laboratories

 $\label{thm:condition} \textit{The results in this report apply to the samples analyzed in accordance with the chain of }$ custody document. This analytical report must be reproduced in its entirety.

Gua A Zmeinghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Grain Siz	ze by ASTM D 4	22m/PSET	Parameters			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-05 (A6C0180-06)			Matrix: Sedime	ent B	atch: 603028	34		
Percent Retained 4.75 mm sieve	0.15	(1444)		% of Total	1	, m	ASTM D 422m	GS-01
(#4) Percent Retained 2.00 mm sieve (#10)	0.00	1		14	11	W	.0	GS-01
Sand (0.063mm - 2.00mm)	8.48			n n	U		u	GS-01
Percent Retained 0.85 mm sieve (#20)	1.90	(57.3);		it	0	п	u -	GS-01
Percent Retained 0.425 mm sieve (#40)	1.73	1855)		ा	ett e	N.H.	(H)	GS-01
Percent Retained 0.250 mm sieve (#60)	0.55	9 9		lu .	ar :	"m	ः #	GS-01
Percent Retained 0.150 mm sieve (#100)	1.18				.01	и	и	GS-01
Percent Retained 0.106 mm sieve (#140)	1.13	1 <u>0.00</u>		п		in.	n	GS-01
Percent Retained 0.075 mm sieve (#200)	1.38	1 555 0				и	n	GS-01
Percent Retained 0.063 mm sieve (#230)	0.62	(200)		AM.	310	U	и	GS-01
Silt (0.005mm < 0.063mm)	60.5			THE STATE OF THE S	н	H 2	n	GS-01
Clay (< 0.005 mm)	30.9			n	300	3.00	n	GS-01
SIL-06 (A6C0180-07)			Matrix: Sedime	ent B	atch: 603028	4		
Gravel (>2.00mm)	0.09			% of Total	1	03/17/16 16:20	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve (#4)	0.09	(AT.	н	v	n.	GS-01
Percent Retained 2.00 mm sieve (#10)	0.00	:		(III)	n	EU.	3 0	GS-01
Sand (0.063mm - 2.00mm)	5.80	(202)		0	n	u	11.	GS-01
Percent Retained 0.85 mm sieve (#20)	1.19	(222)		"	U	in .	Tu .	GS-01
Percent Retained 0.425 mm sieve (#40)	1.07			u .	Ü		31	GS-01
Percent Retained 0.250 mm sieve (#60)	0.52			M.	U	n	и	GS-01
Percent Retained 0.150 mm sieve (#100)	0.88			2002	30 .7	3 H :	SEC.	GS-01
Percent Retained 0.106 mm sieve (#140)	0.77			И	н	u .	W	GS-01
Percent Retained 0.075 mm sieve (#200)	0.95	(222)		, M		W		GS-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Grain Si.	ze by ASTM D 422m/PSE	- i raiailletei	-		
A	Result	MDL	Reporting Limit Units	Dilution	Date Analyzed	Method	Notes
Analyte	Kesuit	MDL	Ointo	0.000.000.000.000.000		Wethod	140103
SIL-06 (A6C0180-07)	12.72		Matrix: Sediment	Batch: 60302	"	1.0ELLD 100	GS-0
Percent Retained 0.063 mm	0.43		% of Tota	1 1	3. 2.	ASTM D 422m	GS-0
sieve (#230) Silt (0.005mm < 0.063mm)	65.5		· ·	0	Ü	in.	GS-0
Clay (< 0.005 mm)	28.6		ĬĬ.	Ü	и.	n	GS-0
SIL-07 (A6C0180-08)			Matrix: Sediment	Batch: 60302	84		
Gravel (>2.00mm)	0.00	(1 <u>444-4</u>)	% of Tota	1 1	03/17/16 16:20	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve	0.00		· ·		iii	i in	GS-01
(#4)							
Percent Retained 2.00 mm sieve	0.00		u	U	H.	100	GS-01
(#10)		8.					3 <u>2</u> 20 s
Sand (0.063mm - 2.00mm)	12.7	-	300	30%	1.00	0.000	GS-0
Percent Retained 0.85 mm sieve	2.67			30%	OU.	an .	GS-0
(#20)	1 70		u	0	00	10	GS-0
Percent Retained 0.425 mm	1.78		530	<u> </u>			05-0
sieve (#40) Percent Retained 0.250 mm	1.29		· ·	.00	n	m .	GS-0
sieve (#60)	1.29						
Percent Retained 0.150 mm	2.81		u u		0.	10	GS-0
sieve (#100)							
Percent Retained 0.106 mm	1.85	18 1111 1	±0.	11	u u	ii .	GS-0
sieve (#140)							(2)2 1
Percent Retained 0.075 mm	1.74		300	11.	300	300	GS-0
sieve (#200)	0.60		्ष	U	in:	in .	GS-0
Percent Retained 0.063 mm	0.60						05-0
sieve (#230) Silt (0.005mm < 0.063mm)	55.2	(<u>1888</u>)	· ·		u		GS-0
Clay (< 0.005 mm)	32.1	2 (12 (2 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1			n		GS-0
SIL-08 (A6C0180-09)	52.1		Matrix: Sediment	Batch: 60302	84		
Gravel (>2.00mm)	0.05		% of Tota		03/17/16 16:20	ASTM D 422m	GS-0
Percent Retained 4.75 mm sieve	0.01		,, 0011000	r. Tr	"	"	GS-0
(#4)	0.01						
Percent Retained 2.00 mm sieve	0.04	12121111111111111111111111111111111111	u			н	GS-0
(#10)	ertoreout.						
Sand (0.063mm - 2.00mm)	11.6	-	· ·	0	W	н	GS-0
Percent Retained 0.85 mm sieve	1.96		u	u.		н	GS-0
(#20)							
Percent Retained 0.425 mm	1.76			O.	Ħ	M	GS-0
sieve (#40)							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenyhini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Grain Si	ze by ASTM D	422m/PSET	Parameters	S		
			Reporting		Supplement	soules as seen and		
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-08 (A6C0180-09)			Matrix: Sedim	ent B	atch: 60302			
Percent Retained 0.250 mm	1.69			% of Total	1	W	ASTM D 422m	GS-01
sieve (#60)	2.45			II.	iii	ï	ii.	GS-01
Percent Retained 0.150 mm sieve (#100)	2.45	(020)						05-01
Percent Retained 0.106 mm	1.52			"		Ü	Ü	GS-01
sieve (#140)								
Percent Retained 0.075 mm	1.62	####		ш	1.00	n.	n.	GS-01
sieve (#200)	0.62			"	энэ	и	n.	GS-01
Percent Retained 0.063 mm sieve (#230)	0.63							03-01
Silt (0.005mm < 0.063mm)	57.8			ĬĬ.	.00	I	e g	GS-01
Clay (< 0.005 mm)	30.5	202		"		M.	<u>u</u>	GS-01
SIL-09 (A6C0180-10)			Matrix: Sedim	ent B	atch: 60302	84		
Gravel (>2.00mm)	0.28	***		% of Total	1	03/17/16 16:20	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve	0.02	-		п	75305	п	II .	GS-01
(#4)								
Percent Retained 2.00 mm sieve	0.25			n.	11	"	н	GS-01
(#10) Sand (0.063mm - 2.00mm)	16.8			W	i,	n	W	GS-01
Percent Retained 0.85 mm sieve	2.80			10-	0	"		GS-01
(#20)								
Percent Retained 0.425 mm	4.33			TI .		W.	W	GS-01
sieve (#40)				ij.	ii .	n .	ñ	05.01
Percent Retained 0.250 mm	3.65	2,555,51		16	(,00)	"	"	GS-01
sieve (#60) Percent Retained 0.150 mm	3.57			17	383	17	"	GS-01
sieve (#100)								
Percent Retained 0.106 mm	1.05	(1000)		Ü	n	u.	v.	GS-01
sieve (#140)				ıı.		n n	11	00.01
Percent Retained 0.075 mm	0.99					***	38	GS-01
sieve (#200) Percent Retained 0.063 mm	0.37			ni.		n.	ŭ.	GS-01
sieve (#230)	· · · · · · · · · · · · · · · · · · ·							
Silt (0.005mm < 0.063mm)	55.2			и.	"	n	Œ.	GS-01
Clay (< 0.005 mm)	27.8			м	3003	H.	H.	GS-01
IL-10 (A6C0180-11)			Matrix: Sedim	ent B	atch: 603046	59		
Gravel (>2.00mm)	0.29			% of Total	1	03/17/16 21:27	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve	0.29			Œ.	0.	TT.	n.	GS-01
(#4)								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Zmenghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported: 08/12/16 11:59

Portland, OR 97204

Project Manager: Keith Kroeger

ANALYTICAL SAMPLE RESULTS

		Grain Si	ze by ASTM D	422m/PSE	Parameters	3		
6 S			Reporting		122120 J.W			**
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-10 (A6C0180-11)			Matrix: Sedim	ent	Batch: 603046			
Percent Retained 2.00 mm sieve	0.00			% of Total	1	· ii	ASTM D 422m	GS-01
(#10)				н	u u	w	n	00.0
Sand (0.063mm - 2.00mm)	15.8	1777						GS-0
Percent Retained 0.85 mm sieve	2.63			// II /	300	, n	н	GS-0
(#20)				₹ VIII	30%	u	SM:	GS-0
Percent Retained 0.425 mm	2.42	(ALC:		9000	US-0
sieve (#40)	3.48			н	u	ar.	THE	GS-0
Percent Retained 0.250 mm	3.48							05-0
sieve (#60) Percent Retained 0.150 mm	3.44			,	u	u u	n	GS-0
sieve (#100)	3,44							
Percent Retained 0.106 mm	1.53			n		· ·	n .	GS-0
sieve (#140)	1100	• • • • • • • • • • • • • • • • • • • •						
Percent Retained 0.075 mm	1.65	: :		n	u	и	n	GS-0
sieve (#200)								
Percent Retained 0.063 mm	0.67			2011	310%	2 86 5	306	GS-0
sieve (#230)								
Silt (0.005mm < 0.063mm)	55.0			n	300	X/ W *	n	GS-0
Clay (< 0.005 mm)	28.9				п	M	n .	GS-0
SIL-11 (A6C0180-12)			Matrix: Sedim	ent	Batch: 603046	69		
Gravel (>2.00mm)	0.01		/ 1 T - 1 1 E	% of Total	1	03/17/16 21:27	ASTM D 422m	GS-0
Percent Retained 4.75 mm sieve	0.00			žU:	3 H (%	XXX	.m	GS-01
(#4)	0.00							
Percent Retained 2.00 mm sieve	0.01			,,	ж.	n	ji .	GS-0
(#10)								
Sand (0.063mm - 2.00mm)	9.08			11	_1			GS-0
Percent Retained 0.85 mm sieve	0.59	(2527				(0)	, u	GS-0
(#20)								
Percent Retained 0.425 mm	1.26			***	n	n	·II	GS-0
sieve (#40)								
Percent Retained 0.250 mm	1.29	1990		âŒ	и	11	T .	GS-0
sieve (#60)	10000000			300	n .	en:	316	
Percent Retained 0.150 mm	2.13	(***		e un	311.2	UTE:	M0	GS-0
sieve (#100)					n .	u.	н	00.0
Percent Retained 0.106 mm	1.35			M.	10 mg	140		GS-0
sieve (#140)	1.72			ir.	"	ū	и	GS-0
Percent Retained 0.075 mm	1.72							05-0
sieve (#200) Percent Retained 0.063 mm	0.75			w	•	w	n	GS-0
sieve (#230)	0.73	H araa AV						- UD-U

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenyhini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Grain Si	ze by ASTM D	122m/PSET	Parameters	3		
Washington and			Reporting					24
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-11 (A6C0180-12)			Matrix: Sedim		atch: 603040	ALICAS CONTRACTOR OF THE PROPERTY OF THE PROPE		
Silt (0.005mm < 0.063mm)	62.6	(% of Total	1	u.	ASTM D 422m	GS-01
Clay (< 0.005 mm)	28.4			Tr.	Tr.	er.	"	GS-01
SIL-12 (A6C0180-13)			Matrix: Sedim	ent B	atch: 603046	69		
Gravel (>2.00mm)	1.01	III WARNEY		% of Total	1	03/17/16 21:27	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve (#4)	0.52	(1 755) .		Ü	.11	Ű.	n	GS-01
Percent Retained 2.00 mm sieve (#10)	0.49			r.	SH2	tt.	n -	GS-01
Sand (0.063mm - 2.00mm)	16.8			<u>u</u>	u	ű	m .	GS-01
Percent Retained 0.85 mm sieve (#20)	3.10			Ý.	, U.	W.	"	GS-01
Percent Retained 0.425 mm sieve (#40)	3.69	-		ű.		Œ.	Ü	GS-01
Percent Retained 0.250 mm sieve (#60)	3.50			ď		Œ.	u	GS-01
Percent Retained 0.150 mm sieve (#100)	3.12			e .	W	H [®]	ű	GS-01
Percent Retained 0.106 mm sieve (#140)	1.42			н	800	It.	u	GS-01
Percent Retained 0.075 mm sieve (#200)	1.44			6	36	IF ₁₀	U	GS-01
Percent Retained 0.063 mm sieve (#230)	0.57	-		n.	W.	и	<u>u</u>	GS-01
Silt (0.005mm < 0.063mm)	56.3			N.		ŭ.	11	GS-01
Clay (< 0.005 mm)	25.9			u u	N.	ĸ	"	GS-01
SIL-13 (A6C0180-14)			Matrix: Sedim	ent B	atch: 603046	69		
Gravel (>2.00mm)	0.37			% of Total	1	03/17/16 21:27	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve (#4)	0.20				M	M.	n'	GS-01
Percent Retained 2.00 mm sieve (#10)	0.17			н) II	1 (1)	"	GS-01
Sand (0.063mm - 2.00mm)	18.9			ı.	Ä	n	n.	GS-01
Percent Retained 0.85 mm sieve (#20)	1.36	1 801 1		и	n.	TI.	ï	GS-01
Percent Retained 0.425 mm sieve (#40)	2.70	(Here)		n	311/2	O.	п	GS-01
Percent Retained 0.250 mm sieve (#60)	4.22			u	11	er.	n	GS-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goad Zmenghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Grain Si	ze by ASTM D 42	22m/PSET	Parameters	3		
70. p. v	100 mm	1	Reporting	H		#21 1 4 4		
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-13 (A6C0180-14)			Matrix: Sedime	nt B	atch: 603046			
Percent Retained 0.150 mm	4.37			% of Total	1	н	ASTM D 422m	GS-0
sieve (#100) Percent Retained 0.106 mm	2.21			10	Ü	10		GS-0
sieve (#140)								
Percent Retained 0.075 mm	2.85				Ä	n.	n	GS-0
sieve (#200)					н	ni i	,,	GS-0
Percent Retained 0.063 mm	1.18						и.	GS-C
sieve (#230) Silt (0.005mm < 0.063mm)	55.4			W.	н	30%	8 02	GS-0
Clay (< 0.005 mm)	25.3			u	н	Ser S	0.7	GS-0
	_0.0		Matrix: Sedime		atch: 603046	20		
IL-14 (A6C0180-15)			watrix: Sedime			(MAC)	4 CTT 4 D 400	00.01
Gravel (>2.00mm)	0.00	200		% of Total	1	03/17/16 21:27	ASTM D 422m	GS-0
Percent Retained 4.75 mm sieve (#4)	0.00			и:	М		".	GS-0
Percent Retained 2.00 mm sieve	0.00			ŭ.	н	387	0.1	GS-0
(#10)						-000	7667.5	
Sand (0.063mm - 2.00mm)	12.4			n .	Ŋ.	н	9	GS-0
Percent Retained 0.85 mm sieve #20)	1.52			,,	"	H	n.	GS-0
Percent Retained 0.425 mm sieve (#40)	2.53			n	"	W	, v	GS-0
Percent Retained 0.250 mm	1.36	555		n	Ĭ	н	0 -	GS-0
sieve (#60)								
Percent Retained 0.150 mm sieve (#100)	1.71			я	n		er i	GS-0
Percent Retained 0.106 mm	1.55			n	9.	и	n :	GS-0
sieve (#140)					92			
Percent Retained 0.075 mm sieve (#200)	2.55			н	u ·	10.		GS-0
Percent Retained 0.063 mm	1.14			n	Ü	n	%	GS-0
sieve (#230)								
Silt (0.005mm < 0.063mm)	61.2			n	it	•	70	GS-0
Clay (< 0.005 mm)	26.4	575		11	u.	**	п	GS-0
IL-15 (A6C0180-16)			Matrix: Sedime	nt B	atch: 603046	19		
Gravel (>2.00mm)	14.3	200		% of Total	1	03/17/16 21:27	ASTM D 422m	GS-0
Percent Retained 4.75 mm sieve #4)	8.47			"	•	U	Ü	GS-0
Percent Retained 2.00 mm sieve (#10)	5.83			ñ	Ü	II.	ñ	GS-0

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmenighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

Analyte	Result		Reporting					
Analyte	Result							
		MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-15 (A6C0180-16)			Matrix: Sedim	ent	Batch: 603046	69	6.	
Sand (0.063mm - 2.00mm)	82.7			% of Total	1	U	ASTM D 422m	GS-01
Percent Retained 0.85 mm sieve (#20)	5.95			9.	31	A (C	n,	GS-01
Percent Retained 0.425 mm sieve (#40)	33.3			W	"	u	"	GS-01
Percent Retained 0.250 mm sieve (#60)	33.6			, K		n	W.	GS-01
Percent Retained 0.150 mm sieve (#100)	8.48			Ű.	"	⊎મદે	n	GS-01
Percent Retained 0.106 mm sieve (#140)	0.96			п	9.1 9.1	- MP.	и	GS-01
Percent Retained 0.075 mm sieve (#200)	0.32	(<u>u</u>		11	"	GS-01
Percent Retained 0.063 mm sieve (#230)	0.06		υ	, iii	<u></u>	11	n.	GS-01
Silt (0.005mm < 0.063mm)	2.20			ø	n	11	W.	GS-01
Clay (< 0.005 mm)	0.90			U	10	(W	u .	GS-01
SIL-16 (A6C0180-17)			Matrix: Sedim	ent	Batch: 603046	69		
Gravel (>2.00mm)	0.00	-		% of Total	1	03/17/16 21:27	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve (#4)	0.00	-		u	U	И	11	GS-01
Percent Retained 2.00 mm sieve (#10)	0.00			II.	17.		ar.	GS-01
Sand (0.063mm - 2.00mm)	8.35			THE STATE OF THE S	Jr.	м	(M)	GS-01
Percent Retained 0.85 mm sieve (#20)	1.42			(H)	:11	ane	3.00	GS-01
Percent Retained 0.425 mm sieve (#40)	1.79	()		NIN [®]	H-7.	m	CM:	GS-01
Percent Retained 0.250 mm sieve (#60)	1.76			ж	H	11	и	GS-01
Percent Retained 0.150 mm sieve (#100)	1.18	(222)		"	n.	u .	"	GS-01
Percent Retained 0.106 mm sieve (#140)	0.71	1 300 0)		n	и	w	u	GS-01
Percent Retained 0.075 mm sieve (#200)	1.02			TI.	30	2.00	9 0 °	GS-01
Percent Retained 0.063 mm sieve (#230)	0.48	3 13		ď	in .	'n	ч	GS-01
Silt (0.005mm < 0.063mm)	57.8			· u	"	,	*	GS-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Grain Si	ze by ASTM D	122m/PSET	Parameters	.		
W. 1.7	D - 1	MDI	Reporting		Date:	D. A. I. I	Madh: 3	NI. 4
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SIL-16 (A6C0180-17)			Matrix: Sedim		Batch: 603046			
Clay (< 0.005 mm)	33.8			% of Total	1	n,	ASTM D 422m	GS-01
SIL-17 (A6C0180-18)			Matrix: Sedim	ent E	Batch: 603046	9		
Gravel (>2.00mm)	0.00			% of Total	1	03/17/16 21:27	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve (#4)	0.00			"	N.	W/	n	GS-01
Percent Retained 2.00 mm sieve (#10)	0.00			"	ű.	m.	W	GS-01
Sand (0.063mm - 2.00mm)	9.44	===		Ü	10	n .	n	GS-01
Percent Retained 0.85 mm sieve (#20)	0.84			Ü	n)	n *	n e	GS-01
Percent Retained 0.425 mm sieve (#40)	1.02			"	И	n	'n	GS-01
Percent Retained 0.250 mm sieve (#60)	0.93	===			GS-01			
Percent Retained 0.150 mm sieve (#100)	1.97					n		GS-0
Percent Retained 0.106 mm sieve (#140)	1.77			ĬĬ.	n	'n		GS-0
Percent Retained 0.075 mm sieve (#200)	2.09	===			GS-0			
Percent Retained 0.063 mm sieve (#230)	0.81	===		**	"	n	и	GS-0
Silt (0.005mm < 0.063mm)	54.4			"	0.00		м	GS-01
Clay (< 0.005 mm)	36.2			н	0.00	21	н	GS-01
SIL-18 (A6C0180-19)			Matrix: Sedim	ent E	Batch: 603046	9		
Gravel (>2.00mm)	0.04			% of Total	1	03/17/16 21:27	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve (#4)	0.00			ñ.	u	ii .	ű	GS-01
Percent Retained 2.00 mm sieve (#10)	0.04			"	:JI:	sr	n	GS-01
Sand (0.063mm - 2.00mm)	6.16			n	in.	H	Ĭi.	GS-01
Percent Retained 0.85 mm sieve (#20)	0.11			"	m	N.	Ä	GS-01
Percent Retained 0.425 mm sieve (#40)	1.25			"	M.	11		GS-01
Percent Retained 0.250 mm sieve (#60)	1.08			U	n	n	Ü	GS-01
Percent Retained 0.150 mm sieve (#100)	0.90	100		11	11	ï	ï	GS-0

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Zmenghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

		Grain Si	ze by ASTM D 422m/PS	SET Parameter	'S		
			Reporting				
Analyte	Result	MDL	Limit Units	Dilution	Date Analyzed	Method	Notes
SIL-18 (A6C0180-19)			Matrix: Sediment	Batch: 60304	69		
Percent Retained 0.106 mm	0.74	(Applied)	% of To	tal 1	и	ASTM D 422m	GS-01
sieve (#140)							
Percent Retained 0.075 mm	1.31			W	u u	,,,	GS-01
sieve (#200)	12/12/2		2 W		u.	n n	GC 61
Percent Retained 0.063 mm	0.77			303	1500	1.10	GS-01
sieve (#230)	67.3		n	u u	W.	n	GS-01
Silt (0.005mm < 0.063mm)			n.	ni.	n .	in.	GS-01
Clay (< 0.005 mm)	26.5	(******					J3-VI
SIL-19 (A6C0180-20)			Matrix: Sediment	Batch: 60304	69		
Gravel (>2.00mm)	0.06	222	% of To	tal 1	03/17/16 21:27	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve	0.00		T .		n	u	GS-01
(#4)			ıı	'n	n		GS-01
Percent Retained 2.00 mm sieve	0.06			9.000		3.11	G2-01
(#10) Sand (0.063mm - 2.00mm)	9.13		in the same of the	40.7		-0	GS-01
Percent Retained 0.85 mm sieve	1.43		SMC	(H .):	ST0	en.	GS-01
(#20)	1.70	(PERC)					~~~**
Percent Retained 0.425 mm	1.95	-	11	<u></u>	jn .	U	GS-01
sieve (#40)	2062042420						
Percent Retained 0.250 mm	1.35	1555	"	n .	n	u	GS-01
sieve (#60)							
Percent Retained 0.150 mm	1.05		.0	n	"	n	GS-01
sieve (#100)			Cross	981	500	120	22.00
Percent Retained 0.106 mm	0.96		u u	n	•	ж	GS-01
sieve (#140)	1 57			**	· tt	а	GS-01
Percent Retained 0.075 mm	1.57		4.11		9.10		U3-01
sieve (#200) Percent Retained 0.063 mm	0.81		OII.	30	· u	и	GS-01
sieve (#230)	V.01						55 01
Silt (0.005mm < 0.063mm)	57.1		30,	JI.	.01	п	GS-01
Clay (< 0.005 mm)	33.7			0			GS-01
Ciay (> 0.003 mm)	33.7						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

NWMAR152598 Page 26 of 45

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600 Portland, OR 97204 Project Number: HPH100D Project Manager: Keith Kroeger Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

			Per	cent Dry Weigh	t				
			Repor	ting					
Analyte	Result	MDL	Lin	nit Units	D	ilution	Date Analyzed	Method	Notes
SIL-00 (A6C0180-01)			Matrix:	Sediment	Batch	: 60302	13		i.
% Solids	42.5		1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-01 (A6C0180-02)		Я	Matrix:	Sediment	Batch	: 60302	13		
% Solids	38.5	222	1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-02 (A6C0180-03)			Matrix:	Sediment	Batch	: 60302	13		
% Solids	48.6		1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-03 (A6C0180-04)			Matrix:	Sediment	Batch	: 60302	13		
% Solids	50.9	1	1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-04 (A6C0180-05)			Matrix:	Sediment	Batch	: 60302	13		
% Solids	72.1	204	1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-05 (A6C0180-06)			Matrix:	Sediment	Batch	: 603021	13		
% Solids	34.9		1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-06 (A6C0180-07)			Matrix:	Sediment	Batch	: 603021	13		
% Solids	33.9		1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-07 (A6C0180-08)			Matrix:	Sediment	Batch	: 603021	13		
% Solids	36.9		1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-08 (A6C0180-09)			Matrix:	Sediment	Batch	: 603021	13		
% Solids	36.3		1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-09 (A6C0180-10)			Matrix:	Sediment	Batch	: 603021	13		
% Solids	34.2		1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-10 (A6C0180-11)			Matrix:	Sediment	Batch	: 603021	13		
% Solids	36.3		1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-11 (A6C0180-12)			Matrix:	Sediment	Batch	: 603021	13		
% Solids	30.4	9 7676 1	1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-12 (A6C0180-13)			Matrix:	Sediment	Batch	: 603021	13		
% Solids	32.7	(2002)	1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	
SIL-13 (A6C0180-14)				Sediment		: 603021			
% Solids	36.2		1.00	% by Weig	ht	1	03/09/16 09:12	EPA 8000C	9
SIL-14 (A6C0180-15)			Matrix:	Sediment	Batch	603021			
% Solids	31.5		Management of the same	% by Weig		V 1000/Artellia AV0011	W1	EPA 8000C	
SIL-15 (A6C0180-16)			Matrix:	Sediment	Batch:	: 603021	13		
% Solids	78.8	7222	1.00		-			EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

			Perc	ent Dry Weight	t				
			Reporti		,				
Analyte	Result	MDL	Limit	Units	Dilu	tion	Date Analyzed	Method	Notes
SIL-16 (A6C0180-17)		0	Matrix: \$	Sediment	Batch: 6	03021	13		
% Solids	30.8	12221	1.00	% by Weigh	ht	1	03/09/16 09:12	EPA 8000C	
SIL-17 (A6C0180-18)			Matrix: \$	Sediment	Batch: 6	03021	13	,	
% Solids	34.2		1.00	% by Weigh	ht	1	03/09/16 09:12	EPA 8000C	
SIL-18 (A6C0180-19)			Matrix: \$	Sediment	Batch: 6	03021	13		
% Solids	35.0	1000	1.00	% by Weigh	ht	1	03/09/16 09:12	EPA 8000C	
SIL-19 (A6C0180-20)			Matrix: \$	Sediment	Batch: 6	03021	13		
% Solids	34.2	(1000)	1.00	% by Weigh	ht .	1	03/09/16 09:12	EPA 8000C	
SIL-20 (A6C0180-21)			Matrix: \$	Sediment	Batch: 6	03021	13		
% Solids	34.6	(+++)	1.00	% by Weigh	ht	1	03/09/16 09:12	EPA 8000C	9
SIL-21 (A6C0180-22)			Matrix: \$	Sediment	Batch: 6	03021	13		
% Solids	35.8		1.00	% by Weigh	ht	1	03/09/16 09:12	EPA 8000C	
SIL-00-RSM (A6C0180-23)		(6)	Matrix: \$	Sediment	Batch: 6	03079	92		
% Solids	95.5		1.00	% by Weigl	ht	1	03/25/16 09:05	EPA 8000C	
SIL-01-RSM (A6C0180-24)			Matrix: \$	Sediment	Batch: 6	03079	92		
% Solids	95.6	(Hiells)	1.00	% by Weigl	ht	1	03/25/16 09:05	EPA 8000C	
SIL-02-RSM (A6C0180-25)			Matrix: \$	Sediment	Batch: 6	03079	92		
% Solids	96.0	/2207	1.00	% by Weigl	ht	1	03/25/16 09:05	EPA 8000C	
SIL-03-RSM (A6C0180-26)			Matrix: \$	Sediment	Batch: 6	03079	92		
% Solids	96.5	(###)	1.00	% by Weigl	ht	1	03/25/16 09:05	EPA 8000C	
SIL-04-RSM (A6C0180-27)			Matrix: S	Sediment	Batch: 6	03079	92		
% Solids	97.6	(5,55))	1.00	% by Weigh	ht	1	03/25/16 09:05	EPA 8000C	
SIL-05-RSM (A6C0180-28)			Matrix: \$	Sediment	Batch: 6	03079	92		
% Solids	94.7	(222)	1.00	% by Weigl	ht	1	03/25/16 09:05	EPA 8000C	
SIL-06-RSM (A6C0180-29)			Matrix: S	Sediment	Batch: 6	03079	92		
% Solids	94.7		1.00	% by Weigh	ht	1	03/25/16 09:05	EPA 8000C	(h)
SIL-07-RSM (A6C0180-30)			Matrix: S	Sediment	Batch: 6	03079	92	0	
% Solids	95.4		1.00	% by Weigl	ht	1	03/25/16 09:05	EPA 8000C	
SIL-08-RSM (A6C0180-31)			Matrix: \$	Sediment	Batch: 6	03079	92		
% Solids	94.9		1.00	% by Weigl	ht	1	03/25/16 09:05	EPA 8000C	
SIL-09-RSM (A6C0180-32)			Matrix: 5	Sediment	Batch: 6	03079	92		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awas Zmenyhini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

ANALYTICAL SAMPLE RESULTS

			Per	cent Dry Weight				
			Repor	ting		4:		
Analyte	Result	MDL	Lim	it Units	Dilution	Date Analyzed	Method	Notes
SIL-09-RSM (A6C0180-32)			Matrix:	Sediment	Batch: 603079	92		
% Solids	94.8		1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-10-RSM (A6C0180-33)			Matrix:	Sediment	Batch: 60307	92		
% Solids	94.7	()	1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-11-RSM (A6C0180-34)			Matrix:	Sediment	Batch: 603079	92		
% Solids	94.5		1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-12-RSM (A6C0180-35)			Matrix:	Sediment	Batch: 603079	92		
% Solids	95.0		1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-13-RSM (A6C0180-36)			Matrix:	Sediment	Batch: 603079	92		
% Solids	95.2	(See H)	1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-14-RSM (A6C0180-37)			Matrix:	Sediment	Batch: 603079	92		
% Solids	95.1		1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-15-RSM (A6C0180-38)			Matrix:	Sediment	Batch: 603079	92		
% Solids	98.6		1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-16-RSM (A6C0180-39)			Matrix:	Sediment	Batch: 603079	92		
% Solids	94.5		1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-17-RSM (A6C0180-40)			Matrix:	Sediment	Batch: 603079	92		
% Solids	94.8		1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-18-RSM (A6C0180-41)			Matrix:	Sediment	Batch: 603079	92		
% Solids	95.0		1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-19-RSM (A6C0180-42)			Matrix:	Sediment	Batch: 603079	92		
% Solids	94.7		1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-20-RSM (A6C0180-43)			Matrix:	Sediment	Batch: 603079	92		
% Solids	94.6	(222)	1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	
SIL-21-RSM (A6C0180-44)			Matrix:	Sediment	Batch: 60307	92		
% Solids	95.1	2000	1.00	% by Weigh	t 1	03/25/16 09:05	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Page 29 of 45

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Portland, OR 97204

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

08/12/16 11:59

QUALITY CONTROL (QC) SAMPLE RESULTS

			· Olyonic	rinated Bip		, , 50						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6030837 - EPA 3546							Sec	liment				
Blank (6030837-BLK1)				Prepa	ared: 03/2:	5/16 10:30	Analyzed:	03/28/16 16	:34			C-0
EPA 8082A												
Aroclor 1016	ND	0.648	1.29	ug/kg wet	1			lette			1.000	
Aroclor 1221	ND	0.648	1.29	10	n							
Aroclor 1232	ND	0.648	1.29		n							
Aroclor 1242	ND	0.648	1.29	n	n							
Aroclor 1248	ND	0.648	1.29		n	-		1994		-		
Aroclor 1254	ND	0.648	1.29	1.00	п			-	955	110000		
Aroclor 1260	ND	0.648	1.29	.00	п		992					
Aroclor 1262	ND	0.648	1.29	1.00	.11	8 222 4	17507					
Aroclor 1268	ND	0.648	1.29	n	11		1/1/2004	-			2000	
Surr: Decachlorobiphenyl (Surr)		Re	covery: 84 %	Limits: 44-1	20 %	Dili	ution: 1x					
LCS (6030837-BS1)				Prepa	ared: 03/2:	5/16 10:30	Analyzed:	03/28/16 16	:53			C-(
EPA 8082A												
Aroclor 1016	59.4	0.670	1.33	ug/kg wet	1	83.3	-222	71	47-134%	-		
Aroclor 1260	77.5	0.670	1.33	3.115	ar.	11		93	53-140%	19 -10-1 1	Si nder s	
Surr: Decachlorobiphenyl (Surr)		Re	covery: 90 %	Limits: 44-1	20 %	Dilt	ution: lx					
Duplicate (6030837-DUP1)				Prepa	ared: 03/2:	5/16 10:30	Analyzed:	03/28/16 18	:06			C-0
QC Source Sample: SIL-20-RSM (A) EPA 8082A	6C0180-43))#									
Aroclor 1016	ND	0.687	1.36	ug/kg dry	1		ND	577. 7	777	(0.000	30%	
Aroclor 1221	ND	0.687	1.36	î	н	12	ND			-	30%	
Aroclor 1232	ND	0.687	1.36	an E	ж.		ND				30%	
Aroclor 1242	ND	0.687	1.36	и			ND				30%	
Aroclor 1248	ND	0.687	1.36	эс	н	-	ND				30%	
Aroclor 1254	21.9	0.687	1.36	н	и	-	27.8			24	30%	P-10
Aroclor 1260	30.9	0.687	1.36	(n)	w	(38.1			21	30%	P-10
Aroclor 1262	ND	0.687	1.36	n	,,		ND	E-E			30%	
	ND	0.687	1.36	m	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grass Zmenghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

QUALITY CONTROL (QC) SAMPLE RESULTS

		V.	Polychic	rinated Bip	henyl	s EPA 80	82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6030897 - EPA 3546							Sec	liment				
Blank (6030897-BLK1)				Prep	ared: 03/	28/16 13:12	Analyzed:	03/29/16 17	7:30			C-07
EPA 8082A												37
Aroclor 1016	ND	0.648	1.29	ug/kg wet	1							
Aroclor 1221	ND	0.648	1.29	п	**						-202/	
Aroclor 1232	ND	0.648	1.29	п								
Aroclor 1242	ND	0.648	1.29	н	N .	-		864				
Aroclor 1248	ND	0.648	1.29		9							
Aroclor 1254	ND	0.648	1.29	.11	**	15650	555	1945	75.7	(5,00 7)		
Aroclor 1260	ND	0.648	1.29	п	ii.	-	222			()		
Aroclor 1262	ND	0.648	1.29		**	(155)					5-0-0-0	
Aroclor 1268	ND	0.648	1.29	п	11			222	222	12-00		
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 97 %	Limits: 44-1	20 %	Dilı	ution: lx					
LCS (6030897-BS1)				Prep	ared: 03/	28/16 13:12	Analyzed:	03/29/16 17	7:49			C-07
EPA 8082A												
Aroclor 1016	59.7	0.670	1.33	ug/kg wet	1	83.3		72	47-134%	122	(1000000)	
Aroclor 1260	83.0	0.670	1.33	ж		200		100	53-140%		1777	
Surr: Decachlorobiphenyl (Surr)		Reco	very: 104 %	Limits: 44-1	20 %	Dilı	ution: 1x					
LCS Dup (6030897-BSD1)				Prep	ared: 03/	28/16 13:12	Analyzed:	03/29/16 18	3:08			C-07, Q-19
EPA 8082A		100				,					10000000	
Aroclor 1016	58.7	0.670	1.33	ug/kg wet	1	83.3		70	47-134%	2	30%	
Aroclor 1260	83.9	0.670	1.33	п	20	u		101	53-140%	1	30%	
Surr: Decachlorobiphenyl (Surr)		Reco	very: 106 %	Limits: 44-1	20 %	Dilı	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

Portland, OR 97204

08/12/16 11:59

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychio	rinated Bip	henyl	s EPA 80	82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6030915 - EPA 3546							Sec	liment				
Blank (6030915-BLK1)				Prep	ared: 03/	29/16 09:23	Analyzed:	03/29/16 17	7:35			C-07
EPA 8082A											il.	
Aroclor 1016	ND	0.574	1.14	ug/kg wet	1						6505	
Aroclor 1221	ND	0.574	1.14	U	tt				202	1222		
Aroclor 1232	ND	0.574	1.14	U	w	(***)						
Aroclor 1242	ND	0.574	1.14		17							
Aroclor 1248	ND	0.574	1.14	U	0							
Aroclor 1254	ND	0.574	1.14	U	O							
Aroclor 1260	ND	0.574	1.14		0					-		
Aroclor 1262	ND	0.574	1.14	n	n	1 757 \\		555				
Aroclor 1268	ND	0.574	1.14		w	-					2 444	
Surr: Decachlorobiphenyl (Surr)		Rec	covery: 89 %	Limits: 44-1	20 %	Dilt	ution: 1x					
LCS (6030915-BS1)				Prep	ared: 03/	29/16 09:23	Analyzed:	03/29/16 17	7:53			C-07
EPA 8082A												
Aroclor 1016	50.5	0.670	1.33	ug/kg wet	1	83.3		61	47-134%	(1444)		
Aroclor 1260	72.8	0.670	1.33	ж	н	(n)	755	87	53-140%		(777)	
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 85 %	Limits: 44-1	20 %	Dila	ution: 1x					
LCS Dup (6030915-BSD1)				Prep	ared: 03/	29/16 09:56	Analyzed:	03/29/16 18	3:12			C-07, Q-19
EPA 8082A												
Aroclor 1016	48.7	0.670	1.33	ug/kg wet	1	83.3	2-	58	47-134%	4	30%	
Aroclor 1260	72.9	0.670	1.33	n	9			87	53-140%	0.04	30%	
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 93 %	Limits: 44-1	20 %	Dila	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Gwa A Zmeinghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

QUALITY CONTROL (QC) SAMPLE RESULTS

Conventional Chemistry Parameters												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6030253 - PSEP TO	С						Soi	<u> </u>				
Blank (6030253-BLK1)				Pre	pared: 03/	09/16 09:55	Analyzed:	03/17/16 1	7:20			
SM 5310B MOD Total Organic Carbon	ND	inen	200	mg/kg	1		1000	5955.	35 5 557 (iana	
LCS (6030253-BS1)				Pre	pared: 03/	09/16 09:55	Analyzed:	03/17/16 1	7:20			
SM 5310B MOD Total Organic Carbon	10000			mg/kg	1	10000	-	102	85-115%		1950	
Duplicate (6030253-DUP1)				Pre	pared: 03/	09/16 09:55	Analyzed:	03/17/16 1	7:20			
QC Source Sample: SIL-00 (A6C SM 5310B MOD	0180-01)		Ø.				8					
Total Organic Carbon	18000		200	mg/kg	1		18000		2 000 5	4	20%	
Duplicate (6030253-DUP2)				Pre	pared: 03/	09/16 09:55	Analyzed:	03/17/16 1	7:20			
QC Source Sample: SIL-10 (A6C SM 5310B MOD	0180-11)			0								
Total Organic Carbon	19000		200	mg/kg	1		19000			0.5	20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6030213 - Total Sol	ids (Dry W	eight)		7			Soil	Ĺ				
Duplicate (6030213-DUPA)				Prep	oared: 03/	08/16 14:37	Analyzed:	03/09/16 09	:12			
QC Source Sample: SIL-06 (A6CC)180-07)											
% Solids	35.5		1.00	% by Weight	1		33.9			4	10%	
Duplicate (6030213-DUPB)				Prep	oared: 03/	/08/16 14:37	Analyzed:	03/09/16 09	:12			
QC Source Sample: SIL-14 (A6C0 EPA 8000C)180-15)						2)					
% Solids	31.9		1.00	% by Weight	1		31.5	-	3	1	10%	
No Client related Batch QC	samples ana	lyzed for th	is batch. See n	otes page for	more inf	ormation.						
Batch 6030792 - Total Soli	ids (Dry W	eight)					Soil	Ĭ				

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

NWMAR152606 Page 34 of 45

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Portland, OR 97204

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

08/12/16 11:59

SAMPLE PREPARATION INFORMATION

		1	Polychlorinated Biphe	enyls EPA 8082A			
Prep: EPA 3546			=		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 6030837							
A6C0180-43	Sediment	EPA 8082A	03/04/16 00:00	03/25/16 10:30	30.58g/2mL	30g/2mL	0.98
A6C0180-44RE1	Sediment	EPA 8082A	03/04/16 00:00	03/25/16 10:30	30.86g/2mL	30g/2mL	0.97
Batch: 6030897							
A6C0180-23RE1	Sediment	EPA 8082A	03/04/16 11:35	03/28/16 13:12	27.21g/2mL	30g/2mL	1.10
A6C0180-24RE1	Sediment	EPA 8082A	03/04/16 11:48	03/28/16 13:12	29.21g/2mL	30g/2mL	1.03
A6C0180-25RE1	Sediment	EPA 8082A	03/04/16 11:20	03/28/16 13:12	30.11g/2mL	30g/2mL	1.00
A6C0180-26RE1	Sediment	EPA 8082A	03/04/16 11:14	03/28/16 13:12	30.74g/2mL	30g/2mL	0.98
A6C0180-27RE2	Sediment	EPA 8082A	03/04/16 11:03	03/28/16 13:12	30.88g/2mL	30g/2mL	0.97
A6C0180-28RE2	Sediment	EPA 8082A	03/04/16 10:51	03/28/16 13:12	30.53g/2mL	30g/2mL	0.98
A6C0180-29RE2	Sediment	EPA 8082A	03/04/16 11:55	03/28/16 13:12	29.34g/2mL	30g/2mL	1.02
A6C0180-30RE2	Sediment	EPA 8082A	03/04/16 10:40	03/28/16 13:12	30.22g/2mL	30g/2mL	0.99
A6C0180-31RE2	Sediment	EPA 8082A	03/04/16 10:25	03/28/16 13:12	30.27g/2mL	30g/2mL	0.99
A6C0180-32RE2	Sediment	EPA 8082A	03/04/16 10:21	03/28/16 13:12	30.14g/2mL	30g/2mL	1.00
Batch: 6030915							
A6C0180-33RE2	Sediment	EPA 8082A	03/04/16 10:11	03/29/16 09:23	30.49g/2mL	30g/2mL	0.98
A6C0180-34RE2	Sediment	EPA 8082A	03/04/16 10:02	03/29/16 09:23	19.99g/2mL	30g/2mL	1.50
A6C0180-35RE1	Sediment	EPA 8082A	03/04/16 09:54	03/29/16 09:23	30.56g/2mL	30g/2mL	0.98
A6C0180-36RE1	Sediment	EPA 8082A	03/04/16 09:45	03/29/16 09:23	30.55g/2mL	30g/2mL	0.98
A6C0180-37RE1	Sediment	EPA 8082A	03/04/16 09:36	03/29/16 09:23	29.74g/2mL	30g/2mL	1.01
A6C0180-38RE1	Sediment	EPA 8082A	03/04/16 09:25	03/29/16 09:23	34.57g/2mL	30g/2mL	0.87
A6C0180-39RE1	Sediment	EPA 8082A	03/04/16 09:05	03/29/16 09:23	30.82g/2mL	30g/2mL	0.97
A6C0180-40RE1	Sediment	EPA 8082A	03/04/16 08:54	03/29/16 09:23	29.37g/2mL	30g/2mL	1.02
A6C0180-41RE1	Sediment	EPA 8082A	03/04/16 08:15	03/29/16 09:23	30.13g/2mL	30g/2mL	1.00
A6C0180-42RE1	Sediment	EPA 8082A	03/04/16 08:36	03/29/16 09:23	20.78g/2mL	30g/2mL	1.44

			Conventional Chem	nistry Parameters			
Prep: PSEP TOC					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 6030253							
A6C0180-01	Sediment	SM 5310B MOD	03/04/16 11:35	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-02	Sediment	SM 5310B MOD	03/04/16 11:48	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-03	Sediment	SM 5310B MOD	03/04/16 11:20	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-04	Sediment	SM 5310B MOD	03/04/16 11:14	03/09/16 09:55	5g/5g	5g/5g	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Zmeinghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

SAMPLE PREPARATION INFORMATION

2.			Conventional Cher	nistry Parameters	Ť.		
Prep: PSEP TOC			100		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A6C0180-05	Sediment	SM 5310B MOD	03/04/16 11:03	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-06	Sediment	SM 5310B MOD	03/04/16 10:51	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-07	Sediment	SM 5310B MOD	03/04/16 11:55	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-08	Sediment	SM 5310B MOD	03/04/16 10:40	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-09	Sediment	SM 5310B MOD	03/04/16 10:25	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-10	Sediment	SM 5310B MOD	03/04/16 10:21	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-11	Sediment	SM 5310B MOD	03/04/16 10:11	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-12	Sediment	SM 5310B MOD	03/04/16 10:02	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-13	Sediment	SM 5310B MOD	03/04/16 09:54	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-14	Sediment	SM 5310B MOD	03/04/16 09:45	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-15	Sediment	SM 5310B MOD	03/04/16 09:36	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-16	Sediment	SM 5310B MOD	03/04/16 09:25	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-17	Sediment	SM 5310B MOD	03/04/16 09:05	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-18	Sediment	SM 5310B MOD	03/04/16 08:54	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-19	Sediment	SM 5310B MOD	03/04/16 08:15	03/09/16 09:55	5g/5g	5g/5g	NA
A6C0180-20	Sediment	SM 5310B MOD	03/04/16 08:36	03/09/16 09:55	5g/5g	5g/5g	NA

Grain Size by ASTM D 422m/PSET Parameters												
				Sample	Default	RL Prep						
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Sediment	ASTM D 422m	03/04/16 11:35	03/09/16 12:15	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 11:48	03/09/16 12:25	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 11:20	03/09/16 12:32	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 11:14	03/09/16 12:41	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 11:03	03/09/16 12:49	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 10:51	03/09/16 13:00	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 11:55	03/09/16 13:10	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 10:40	03/09/16 13:21	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 10:25	03/09/16 13:31	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 10:21	03/09/16 13:43	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 10:11	03/15/16 11:03	1N/A/1N/A	1N/A/1N/A	NA						
Sediment	ASTM D 422m	03/04/16 10:02	03/15/16 11:14	1N/A/1N/A	1N/A/1N/A	NA						
	Sediment	Matrix Method Sediment ASTM D 422m	Matrix Method Sampled Sediment ASTM D 422m 03/04/16 11:35 Sediment ASTM D 422m 03/04/16 11:48 Sediment ASTM D 422m 03/04/16 11:20 Sediment ASTM D 422m 03/04/16 11:14 Sediment ASTM D 422m 03/04/16 11:03 Sediment ASTM D 422m 03/04/16 10:51 Sediment ASTM D 422m 03/04/16 10:40 Sediment ASTM D 422m 03/04/16 10:25 Sediment ASTM D 422m 03/04/16 10:21 Sediment ASTM D 422m 03/04/16 10:21	Matrix Method Sampled Prepared Sediment ASTM D 422m 03/04/16 11:35 03/09/16 12:15 Sediment ASTM D 422m 03/04/16 11:48 03/09/16 12:25 Sediment ASTM D 422m 03/04/16 11:20 03/09/16 12:32 Sediment ASTM D 422m 03/04/16 11:14 03/09/16 12:41 Sediment ASTM D 422m 03/04/16 11:03 03/09/16 12:49 Sediment ASTM D 422m 03/04/16 10:51 03/09/16 13:00 Sediment ASTM D 422m 03/04/16 10:51 03/09/16 13:10 Sediment ASTM D 422m 03/04/16 10:40 03/09/16 13:21 Sediment ASTM D 422m 03/04/16 10:25 03/09/16 13:31 Sediment ASTM D 422m 03/04/16 10:21 03/09/16 13:43 Sediment ASTM D 422m 03/04/16 10:21 03/09/16 13:43	Matrix Method Sampled Prepared Sample Initial/Final Sediment ASTM D 422m 03/04/16 11:35 03/09/16 12:15 1N/A/1N/A Sediment ASTM D 422m 03/04/16 11:48 03/09/16 12:25 1N/A/1N/A Sediment ASTM D 422m 03/04/16 11:20 03/09/16 12:32 1N/A/1N/A Sediment ASTM D 422m 03/04/16 11:14 03/09/16 12:41 1N/A/1N/A Sediment ASTM D 422m 03/04/16 11:03 03/09/16 12:49 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:51 03/09/16 13:00 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:55 03/09/16 13:10 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:25 03/09/16 13:21 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:21 03/09/16 13:43 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:21 03/09/16 13:43 1N/A/1N/A	Matrix Method Sampled Prepared Sample Initial/Final Default Initial/Final Sediment ASTM D 422m 03/04/16 11:35 03/09/16 12:15 1N/A/1N/A 1N/A/1N/A Sediment ASTM D 422m 03/04/16 11:48 03/09/16 12:25 1N/A/1N/A 1N/A/1N/A Sediment ASTM D 422m 03/04/16 11:20 03/09/16 12:32 1N/A/1N/A 1N/A/1N/A Sediment ASTM D 422m 03/04/16 11:14 03/09/16 12:41 1N/A/1N/A 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:03 03/09/16 12:49 1N/A/1N/A 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:51 03/09/16 13:00 1N/A/1N/A 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:55 03/09/16 13:10 1N/A/1N/A 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:25 03/09/16 13:31 1N/A/1N/A 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:25 03/09/16 13:31 1N/A/1N/A 1N/A/1N/A Sediment ASTM D 422m 03/04/16 10:21 03/09/16 13:4						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Zmenghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

Portland, OR 97204

08/12/16 11:59

SAMPLE PREPARATION INFORMATION

		Grai	n Size by ASTM D 42	22m/PSET Parameters			
Prep: ASTM D 421 Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
A6C0180-13	Sediment	ASTM D 422m	03/04/16 09:54	03/15/16 11:26	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-14	Sediment	ASTM D 422m	03/04/16 09:45	03/15/16 11:36	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-15	Sediment	ASTM D 422m	03/04/16 09:36	03/15/16 11:44	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-16	Sediment	ASTM D 422m	03/04/16 09:25	03/15/16 11:57	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-17	Sediment	ASTM D 422m	03/04/16 09:05	03/15/16 12:08	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-18	Sediment	ASTM D 422m	03/04/16 08:54	03/15/16 12:17	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-19	Sediment	ASTM D 422m	03/04/16 08:15	03/15/16 12:28	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-20	Sediment	ASTM D 422m	03/04/16 08:36	03/15/16 12:42	1N/A/1N/A	1N/A/1N/A	NA

			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weight)	3	N 5		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 6030213	20.00						
A6C0180-01	Sediment	EPA 8000C	03/04/16 11:35	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-02	Sediment	EPA 8000C	03/04/16 11:48	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-03	Sediment	EPA 8000C	03/04/16 11:20	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-04	Sediment	EPA 8000C	03/04/16 11:14	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-05	Sediment	EPA 8000C	03/04/16 11:03	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-06	Sediment	EPA 8000C	03/04/16 10:51	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-07	Sediment	EPA 8000C	03/04/16 11:55	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-08	Sediment	EPA 8000C	03/04/16 10:40	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-09	Sediment	EPA 8000C	03/04/16 10:25	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-10	Sediment	EPA 8000C	03/04/16 10:21	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-11	Sediment	EPA 8000C	03/04/16 10:11	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-12	Sediment	EPA 8000C	03/04/16 10:02	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-13	Sediment	EPA 8000C	03/04/16 09:54	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-14	Sediment	EPA 8000C	03/04/16 09:45	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-15	Sediment	EPA 8000C	03/04/16 09:36	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-16	Sediment	EPA 8000C	03/04/16 09:25	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-17	Sediment	EPA 8000C	03/04/16 09:05	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-18	Sediment	EPA 8000C	03/04/16 08:54	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-19	Sediment	EPA 8000C	03/04/16 08:15	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-20	Sediment	EPA 8000C	03/04/16 08:36	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-21	Sediment	EPA 8000C	03/04/16 00:00	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmerighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Portland, OR 97204

Project Number: HPH100D

Reported:

08/12/16 11:59

Project Manager: Keith Kroeger

SAMPLE PREPARATION INFORMATION

			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A6C0180-22	Sediment	EPA 8000C	03/04/16 00:00	03/08/16 14:37	1N/A/1N/A	1N/A/1N/A	NA
Batch: 6030792							
A6C0180-23	Sediment	EPA 8000C	03/04/16 11:35	03/24/16 10:49	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-24	Sediment	EPA 8000C	03/04/16 11:48	03/24/16 10:49	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-25	Sediment	EPA 8000C	03/04/16 11:20	03/24/16 10:49	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-26	Sediment	EPA 8000C	03/04/16 11:14	03/24/16 10:49	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-27	Sediment	EPA 8000C	03/04/16 11:03	03/24/16 10:49	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-28	Sediment	EPA 8000C	03/04/16 10:51	03/24/16 10:49	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-29	Sediment	EPA 8000C	03/04/16 11:55	03/24/16 10:49	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-30	Sediment	EPA 8000C	03/04/16 10:40	03/24/16 10:49	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-31	Sediment	EPA 8000C	03/04/16 10:25	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-32	Sediment	EPA 8000C	03/04/16 10:21	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-33	Sediment	EPA 8000C	03/04/16 10:11	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-34	Sediment	EPA 8000C	03/04/16 10:02	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-35	Sediment	EPA 8000C	03/04/16 09:54	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-36	Sediment	EPA 8000C	03/04/16 09:45	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-37	Sediment	EPA 8000C	03/04/16 09:36	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-38	Sediment	EPA 8000C	03/04/16 09:25	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-39	Sediment	EPA 8000C	03/04/16 09:05	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-40	Sediment	EPA 8000C	03/04/16 08:54	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-41	Sediment	EPA 8000C	03/04/16 08:15	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-42	Sediment	EPA 8000C	03/04/16 08:36	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-43	Sediment	EPA 8000C	03/04/16 00:00	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA
A6C0180-44	Sediment	EPA 8000C	03/04/16 00:00	03/24/16 10:48	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quant Smerighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

Project: Portland Harbor Sediment

621 SW Morrison St, Suite 600

Project Number: HPH100D

Reported:

Portland, OR 97204

Project Manager: Keith Kroeger

08/12/16 11:59

Notes and Definitions

Qualifiers:

Q-19

C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.

GS-01 See detailed Particle Size Analysis results, accumulation curves, and Case Narratives at the end of this report.

P-10 Result estimated due to the presence of multiple PCB Aroclors and/or matrix interference.

Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jusa A Jamenyhini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

	APEX LABS					CHIA	S	CHAIN OF CUSTODY	6	ST	QC	>			1.00 Breco180	3	250			7 202	Ÿ	1º5
	12232 S.W. Garden Place. Tigard, OR 97223 Phr. 503-718-2323 Frax: 503-718-0333	97223 Phr	503-718	-2323 Fa	r: 503-7	18-033	50									1			Ą			
	Company (JEDSYN/TEC		Projec	Project Mar. LEITH LRIEGER Project Name POKT, AND HARBOR Project # HPH200D	HIZ	+	R.	120	X	Project	Nume	00	E	M	李	RBI	×	Projec	7	江	200	
	Address: (02) SIN MDRKISON	RISON	C	出	000	F.DR	TAN	Thoma:	出	H	4	*	8	12	H 588	4/ 150	를 기	1	Segre	3	ENS	TE (DOC PURTADENDE CH 2H WATER, OF 12H SEN) Emmi KY, DEPC OPE OF CA
	Sampled by:			-						S			ANSI	VSIS	AN LANS REQUEST	12						
	Site Location: OR WA	1 D #		XIST	: CONTAINERS	тын-пс	трн-Ст	RBDM AGC	втех	ZAOC	FCBs	OTT	(8) Mess A	(8) Metals (8)	h, As, Bn, De, CA, Tr, Co, Cu, Fe, Ph, Tg, Ma, Mo, Tl, V, Ne Tg, Ma, Tl, V, Ne	L DISS TCLP		azis mia	700			
C	_ 1		WLL.	AM.		-		-	-		-	-	всв		CH C		1500	119	1			
710	至	3/4	-	35 Seel	4			-			×					_		×	X			-
2	D / Bunda	3/4	SB-11/	Z	4	_				- 1	×					-		×	V	-		-
SIL	107 Maria	3/4		1:20 Sed	9						×							×	×	-		-
2	MR 103	3/4	H: II	11.14	9						×	Ļ				_	_	×	×	-		-
<u>ک</u>	40-0h	3/4		11.03 Sert	9						×							×	1	-		
7	20- mm -05	3/4	0:0	10:51 Sec	d						×							×	×			
12	WW -00	3/4	-	11:55/Pd	7		r K				X					-		×	×			-
×	104	314	_	D:WR.O	N						×					_	_	×	5	-		-
Σ	· 20 / 20 ·	3/4		ID: SERV	d					-	×					-	-	Ź		-		-
215		加	-	0:215cd	Ч	1				-	X							×		_		-
	Normal Turn Around Time (TAT) = 7-10 Business Days	vote Days			ON (0			SPEC	SPECIAL INSTRUCTIONS.	STRUC	TION	in.									
	TAT December of April 1	1 Day	2 Day)	3 Day				PC	PCBS	ł	N	\mathcal{D}	8	- EPH 8082A							
		4 DAY	5 DAY		Other:			7	F	SE	1	SF	m	12	- SIM 5310 B MOD	Ž	0					
		SAMPLES ARE HELD FOR 30 DAYS	FOR 30	DAYS	1				डे	Grain	5	3 136	1	ST	MSTM D YZZM	K	0	5	7	2		
	Special MICON	HE MA	RECEIVED BY	ED BY	1	. (a de	17/2	RELING	RELINQUISHED BY	EDDY			ě		REC	RECEIVED BY:	BV:			4	
	Printed Name ALISON CLEMENTS		3:00 Penned Name	The same	S.E.	uf	Time	12	Printed Name	Name.				Time	9	Printed N	Printed Name					
	COURSES PARCE		Company	-	120	./			Communic	5						Ę						
					-		10							l		- dustanis-		1				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Goad Jomenighini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported;

08/12/16 11:59

1722 CW Gaiden Diana Timmal (1887) 2 Bl. 603 119 115 115 115 115 115 115 115 115 115	ייאם כררבט מ		L	1					1									
Comment inter inguity	W 7/223 TH.	1	23 rax.	17-606	5000			1		1								
Company: (AC) SYN (BC) Project Mgr. CE/TH	7	Project Mpr. COCE 7805CER	12 j	直	3	2	ST F	d 17	minet N	Inme:	3年	7 6	るか	8	8	Project /	是	Project Nume: DETLAND APPRAINS Project # HAY 100 D
CONTROL OF THE STATE OF	TO NO	000	3			P.	one:	1	7	2	Fac	11/10	021120	37 E	notil:	17.00	1367	Phone: 441 671 570 Fax: 941 671 5054 Email: (C.COCACA CVVV) Proc. CR
Sampled by:			1		8		-					NAL	NALYSIS REQUEST	187	7			
Site Location: OD WA Other: StatMPLE ID	CAB ID #	TIME	XISTAM	H OF CONTAINERS	za-H4TWN	8760 VOC NWTPH-Gx	8500 RDDM AOC?	X3T8 0518	STAN SIM PAHS STAN SVOC	8093 PCBs	OT'T 000	RCRA biends (8)	TCLP Metala (A) 1, Sh., Az, Ba, Be, Cd., Cd., Ch., Cd., Fe, Pb., Ilia, Mg., Min. Mo., Mt. K., Sc. Ag., Na., Tl. V., Sn Sc. Ag., Na., Tl. V., Sn Sc. Ag., Na., Tl. V., Sn	777 PRO 177101	1700-COT'S	SEIZ MIMA	JOT	
1 Marke - 10	3/4	10:1	P. P.	2		-				X		1		-		X		
品放-	3/4	10:02 54		4						X				-	-	X		
SIC. 100 1015	4/6	3/4 9:54/20	50	0		-				X					-	2	5	
1000 - 13	3/1	3/4 9.45 Rd	ed .	E)			173			X				-	7	X	1	
71-2	3/4	3/4 9: 2052	-	G						X				-		X	2	
ないした	3/4	314 9:25/KA	-	7		1 2			-	X				-		X	Ţ.,	
10000000000000000000000000000000000000	3/1	3/4 7:05 PRA	-	C						X				-		X		
一一级	3/1	3/48:94:80	30	7						×		-		-	-	X		
2 - 18	3/1	3/48:15/20		9						X		-		-	-	X		
-	3/4%	H8:30 Rg		1						X					-	X		
Normal Turn Arbund Time (TAT) = 7.10 Business Days	drace: Days		VES)	NO				SPECIAL INSTRUCTIONS:	IT INS	TRUC	NOU		2					
TAT Requested (circle)	1 Day	2 Day	3.	3 Day				\$	多	1		<u>a</u>	KOBS - KPA SORJE	T.	2			
	4 DAY	5 DAY	ō	Other:				F	2	1	=	7,	2106	1	3			
	SAMPLES ARE HELD FOR 30 DAYS	FOR 30 D	100				T	Q	arin	5	P	1	Size ASTM DYZZM	4	7	177	1	
SERNOUSHED BY:	4Kmg	RECEIVED IV:	- P	The		1/2	17/2	RELINÇUISHED BY:	USHE	O BW;	. 1		1	RE	RECEIVED BY:	BY:		The state of the s
THEN NAME PHISON CLEMBOTH THE	Free Bou	BOD Presed Name	1	7	F	- 1	2	Printed Nam	ame		- 19	r I	IP	Prie	Printed Name	l u		Tone
クなどととなって			\leq	100	,													

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Lisa Domenighini, Client Services Manager

Goa A Smenighini

Page 41 of 45

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

	APEX LABS					J	HA	3	Š	J	CHAIN OF CUSTODY	Ō	M			Lab # ACCO180.	孝	3	2	-1		8 Jo 8 303	1,17	M
	12232 S.P. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fac: 503-718-0333	97223 Ph	-817-60	3323 F	ar: 50.	3-718	-0333																	
	Company: GEOSYNTEC		Project	Project Mgr. KEITH VROKOSER	£17	7	KOL	30	0		Proje	et Nan	Tic: P	DET	1.m	Project Nume: PORTLAND HAMBON	WB1	X	P. P.	rjeet #	Project # HPH LODD	102	0	
	Address (OL) SIW MIDKRIGAN ST SILLTE GOD PORTLAND OR	T. SULTE	000	POR	5	9	×	-	horse, 2	1	EL	3	10	ax:	1	Phores 971-271-901 For 971-271-584 Email: PLINDEGEN COGESSYATE.CO.	SELL E	mail:	1	000	2	gen	The	13
	Sampled by: AUSON CLEMENTS	MIT				II.			180					2	ALA	CHALLYSIS REQUEST	5							1
4	Site Location: OR WA Other: SAMPLE ID	# d! 8 A.J.	TIME	XISTAM	# OF CONTAINERS	AWTPH-HCID	MTPH-Dr	AWTPILGE	ISEN KUDW AOC	XILO DIEX	DOAS OLZ	SHA9 MIS 071	OBZ PCBs	OU TTO OU TTO	CLP Metals (8)	L Sb, As, Ba, Bc, Cd, L Cr, Co, Cu, Fe, Fb, L Ag, Ma, Ma, No, Mi W, J Ag, Ma, Tl, V, Na J Ag, Ma, Tl, V, Na		S700-COF2	Z-907					
78	以此第一20	3/8	H	Cod	d		-	-	-	-	8	-	1	-	-	H O V		-	1		1	+	+	1
	17 200	3/4	المح	B.	9																			
F R								-	-								-				-11			\rightarrow
e p				(\vdash			ē						-	-			+	++-	1	+
	Normal Turn Around Time (TAT) = 7:30 Business Days	ness Days	T	YES		NO		11		SPE	SPECIAL INSTRUCTIONS:	MSTR	UCTIC	SNS								-		1
	TAT Requested (circle) 4	(c) 1 Day 2 Day 4 DAY 5 DAY	2 Day 5 DAY		3 Day Other:		. 11.																	
	KELINQUISHED BY:	4/E mad	RECEIVED BY	70 av	1	17	1	1	3/6	RELING	RELINQUISHED BY:	нер в	ä			Does	E E	RECEIVED BY:	D BY:		l se			1
	PHISON CHARMENT TOWN 1300 THEN NAME.	130D	Printed No.	-	7	15	17	The same	177	Printed Name	Name					Tanc	nj.L	Printed Name	i i		Ţ			
	Company CACONVERS		Cotto		F	K	1			Cumpuny	Alla						Ü	Cimpani						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Lisa Domenighini, Client Services Manager

Page 42 of 45

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

08/12/16 11:59

APEX LABS					0	芸	Z	JF CU	CHAIN OF CUSTODY	460	ALCOISO REVISED	
12232 S.W. Garden Place, Tigard, OR 97223 Ph.: 503-718-2323 Fax: 503-718-0333	OR 97	223 Ph: 503	-718-2323	Fax: 5	03-71	8-033		200		Lab #		
Company: Geosyntec			Project Mgr. Keith Kroeger	Keith	roege				Project Name: Portland Harbor		Project # HPH100D	
Address: 621 SW Morrison St. Ste. 600 Portland, OR	0 Portlar	d, OR					Pho	Phone: (971)271-5901		384 Email: kkro	Fax: (971)271-5884 Email: kkroeder@oensynler.com	
Sampled by: AC, KK					6268					anal yais proviner		
					-	<u> </u>						
					TAINERS	***************************************						
SAMPLE ID	# OI 8∀7	DATE	ЭМIT	XIATAM	# OE COM	8082 PCBs Grain Siza	201					
SIL-00		3/4/2016	11:35	sed	2	×	×					-
SIL-01		3/4/2016 11:48		sed	2	×						
SIL-02		3/4/2016	11:20	sed	2	×	-					
SIL-03		3/4/2016	11:14	sed	2	×	×					
SIL-04		3/4/2016	11:03	pes	2	×	×					F
SIL-05		3/4/2016	10:51	sed	2	×	×					
SIL-06		3/4/2016	11:55	sed	2	×	×					F
SIL-07		3/4/2016	10:40	sed	2	×	×					Ţ
SIL-08		3/4/2016 10:25		sed	2	×	×					F
SIL-09		3/4/2016 10:21 sed	10:21	pes	2	×	×					
Normal Turn Around Time (TAT) = 6-10 Business Days	round	ime (TAT) = 8	-10 Busines	s Days		1		SPEC	SPECIAL INSTRUCTIONS:			T
TAT Requested (circle)	1 DAY		2 DAY	m	3 DAY							
	4 DAY		5 DAY	0	ther:	Other: Normal	lem	PCBs-E	PCBs - EPA 8082A; TOC - SM5310 B Mod; Grain size - ASTM D422M	irain siza - ASTM Dz	ZZW	
	PLES AF	RE HELD FOR	30 DAYS					Τ				
RELINQUISHED BY:	Data:	RECEIVED BY:	RECEIVED BY	e	ءَ ا	e de C		RELING	RELINQUISHED BY:		RECEIVED BY:	T
š	444				5	,		meubic		Date:	gnature: Date:	
Printed Name:	Time:		Printed Name:		T.	Time:		Printed Name:		Time:	Printed Name	I
Alson Clements	13:00	2									due.	
Company:			Company:					Company:	**	0	Company:	I
Geosyntec			100		1	ı	ı	_				-

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D

Project Manager: Keith Kroeger

Reported:

08/12/16 11:59

ACDISO revised Date: PCBs - EPA 80824; TOC - SMS310 B Mod; Grain size - ASTM D422M эк: (971)271-5884 CHAIN OF CUSTODY 12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333 # OF CONTAINERS SDAY RECEIVED 2 DAY 3/4/2016 4 DAY 1 DAY # GI BY APEX LABS

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gua & Smeinghini

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

GeoSyntec

621 SW Morrison St, Suite 600

Portland, OR 97204

Project: Portland Harbor Sediment

Project Number: HPH100D Project Manager: Keith Kroeger Reported:

08/12/16 11:59

ALCO 180 Revised

CHAIN OF CUSTODY

APEX LABS

Phone: (971)271-5901

2232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333 ress; 621 SW Morrison St. Ste. 600 Portland

82 PCBs SHEWATHORNERS XIATAM 3/4/2016 3TAQ # 01 8A

1 DAY 4 DAY SIL-20

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

3 DAY

2 DAY 5 DAY

Awa A Zomenighini

APPENDIX E Data Validation Report

Geosyntec consultants

10875 Rancho Bernardo Road, Suite 200 San Diego, CA 92127 PH 858.674.6559 www.geosyntec.com

Memorandum

Date:

8 April 2016

To:

Keith Kroeger

From:

Sherry Watts

Copy:

Julia Caprio

Subject:

Stage 2A Data Validation - Level II Data Deliverable

SITE: Portland Harbor Sediment

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of 20 sediment samples and two field duplicates, collected 4 March 2016, as part of the Portland Harbor Sediment sampling event. Apex Labs of Tigard, Oregon analyzed the samples. The samples were analyzed for the following analytical tests:

- EPA Method 8082A Polychlorinated Biphenyls (PCBs)
- Standard Method 5310 B MOD

 Total Organic Carbon

In addition to the analyses listed above the samples were also analyzed for total solids (%) by EPA Method 8000C and particle size by ASTM Method D 422m. No specific validation of these analyses were performed for the purposes of this report.

EXECUTIVE SUMMARY

Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below, the data as qualified are usable for meeting project objectives.

Due to the presence of multiple Aroclors in the samples, the results for Aroclors 1254 and 1260 were J qualified as estimated. See Section 1.1 below for details.

The samples were handled, prepared, and measured in the same manner under similar prescribed conditions.

The data were validated per the specification of the following documents (as applicable):

- USEPA Contract Laboratory Program National Functional Guidelines (NFG) for Superfund Organic Methods Data Review, June 2008 (USEPA-540-R-08-01);
- Quality Assurance Project Plan (QAPP), Portland Harbor, Portland, Oregon prepared by Kleinfelder, November 4, 2014;
- Sampling and Analysis Plan (SAP) Baseline Sediment Sampling, Swan Island Lagoon, Portland, Oregon prepared by Geosyntec Consultants January 12, 2016;
- Pertinent methods referenced by the data package; and
- Technical and professional judgment.

The following samples were analyzed in the data set:

Laboratory ID	Client ID	Laboratory ID	Client ID
A6C0180-1	SIL-00	A6C0180-12	SIL-11
A6C0180-2	SIL-01	A6C0180-13	SIL-12
A6C0180-3	SIL-02	A6C0180-14	SIL-13
A6C0180-4	SIL-03	A6C0180-15	SIL-14
A6C0180-5	SIL-04	A6C0180-16	SIL-15
A6C0180-6	SIL-05	A6C0180-17	SIL-16
A6C0180-7	SIL-06	A6C0180-18	SIL-17
A6C0180-8	SIL-07	A6C0180-19	SIL-18
A6C0180-9	SIL-08	A6C0180-20	SIL-19
A6C0180-10	SIL-09	A6C0180-21	SIL-20
A6C0180-11	SIL-10	A6C0180-22	SIL-21

The following observations were noted on the sample receiving documentation. Samples were received at 3.4°C/3.5°C within the criteria of 4°C +/- 2°C. Error corrections were observed on the chain of custody (COC) forms using the proper procedure of a single strike through and correction; however, the dates of the corrections were missing. The sample receiving information also indicated that SIL-00 was not labeled on 1 of 2-8 oz jars, and that sample SIL-10 and SIL-21 were not listed on the containers or COC. These COC observations did not result in qualification of the data.

The sample results were flagged by the laboratory with the following qualifiers: C-07 (indicating sample extract had undergone Sulfuric Acid Cleanup by EPA Method 3665A, Sulfur Cleanup by EPA Method 3660B, and Florisil Cleanup by EPA Method 3620B in order to

minimize matrix interference); and P-10 (indicating result is estimated due the presence of multiple PCB Aroclors and/or matrix interference.

1.0 POLYCHLORINATED BIPHENYLS (EPA METHOD 8082A)

Twenty sediment samples and two field duplicates were analyzed for PCBs per EPA Method 8082A. Samples for PCB analysis were air dried prior to extraction. PCB results are reported on a dry weight basis.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ⊗ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Surrogate
- ⊗ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Spike
- ✓ Laboratory Duplicate
- ⊗ Sensitivity
- ⊗ Field Duplicate

1.1 Overall Assessment

The PCB data reported in this package are considered to be usable for meeting project objectives. The results are considered to be valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for analysis, for the project is 100%.

The PCB sample IDs had "-RSM" appended to them by the laboratory indicating "representative sample method". This is a sample compositing method used by the laboratory prior to sample extraction to maximize sample representativeness prior to analysis.

It was noted in the laboratory report that due to the presence of multiple PCB aroclors in the samples the detected results should be considered estimated. Therefore, the detected results for Aroclor 1254 and Aroclor 1260 were "J" qualified as estimated as shown below.

Sample ID	Analytical Test	Laboratory Result	Validated Result	Reason
2	3	(μg/kg)	(μg/kg)	Code
SIL-00-RSM	Aroclor 1254	784 P-10	784 J	13
SIL-00-RSM	Aroclor 1260	180 P-10	180 J	13
SIL-01-RSM	Aroclor 1254	841 P-10	841 J	13
SIL-01-RSM	Aroclor 1260	155 P-10	155 J	13
SIL-02-RSM	Aroclor 1254	192 P-10	192 J	13
SIL-02-RSM	Aroclor 1260	98.4 P-10	98.4 J	13
SIL-03-RSM	Aroclor 1254	89.8 P-10	89.8 J	13
SIL-03-RSM	Aroclor 1260	39.3 P-10	39.3 J	13
SIL-04-RSM	Aroclor 1254	24.7 P-10	24.7 J	13
SIL-04-RSM	Aroclor 1260	8.91 P-10	8.91 J	13
SIL-05-RSM	Aroclor 1254	25.9 P-10	25.9 J	13
SIL-05-RSM	Aroclor 1260	22.4 P-10	22.4 J	13
SIL-06-RSM	Aroclor 1254	29.2 P-10	29.2 J	13
SIL-06-RSM	Aroclor 1260	22.7 P-10	22.7 J	13
SIL-07-RSM	Aroclor 1254	49.5 P-10	49.5 J	13
SIL-07-RSM	Aroclor 1260	31.6 P-10	31.6 J	13
SIL-08-RSM	Aroclor 1254	93.0 P-10	93.0 J	13
SIL-08-RSM	Aroclor 1260	62.7 P-10	62.7 J	13
SIL-09-RSM	Aroclor 1254	58.7 P-10	58.7 J	13
SIL-09-RSM	Aroclor 1260	44.7 P-10	44.7 J	13
SIL-10-RSM	Aroclor 1254	190 P-10	190 J	13
SIL-10-RSM	Aroclor 1260	111 P-10	111 J	13
SIL-11-RSM	Aroclor 1254	65.9 P-10	65.9 J	13
SIL-11-RSM	Aroclor 1260	165 P-10	165 J	13
SIL-12-RSM	Aroclor 1254	193 P-10	193 J	13
SIL-12-RSM	Aroclor 1260	230 P-10	230 J	13
SIL-13-RSM	Aroclor 1254	59.8 P-10	59.8 J	13
SIL-13-RSM	Aroclor 1260	85.5 P-10	85.5 J	13
SIL-14-RSM	Aroclor 1254	25.7 P-10	25.7 J	13
SIL-14-RSM	Aroclor 1260	46.6 P-10	46.6 J	13
SIL-15-RSM	Aroclor 1254	33.6 P-10	33.6 J	13
SIL-15-RSM	Aroclor 1260	32.8 P-10	32.8 J	13
SIL-16-RSM	Aroclor 1254	25.7 P-10	25.7 J	13
SIL-16-RSM	Aroclor 1260	44.1 P-10	44.1 J	13
SIL-17-RSM	Aroclor 1254	22.7 P-10	22.7 J	13
SIL-17-RSM	Aroclor 1260	39.5 P-10	39.5 J	13
SIL-18-RSM	Aroclor 1254	25.8 P-10	25.8 J	13
SIL-18-RSM	Aroclor 1260	38.3 P-10	38.3 J	13

Sample ID	Analytical Test	Laboratory Result (µg/kg)	Validated Result (μg/kg)	Reason Code
SIL-19-RSM	Aroclor 1254	18.0 P-10	18.0 J	13
SIL-19-RSM	Aroclor 1260	33.2 P-10	33.2 J	13
SIL-20-RSM	Aroclor 1254	27.8 P-10	27.8 J	13
SIL-20-RSM	Aroclor 1260	38.1 P-10	38.1 J	13
SIL-21-RSM	Aroclor 1254	61.2 P-10	61.2 J	13
SIL-21-RSM	Aroclor 1260	131 P-10	131 J	13

Laboratory Flags

P-10 – Result estimated due to the presence of multiple PCB Aroclors and/or matrix interference μg/kg – microgram per kilogram (dry weight basis)

1.2 Holding Times

The holding times listed in the SAP for the PCB analysis of a sediment sample are 14 days from collection to extraction and 40 days from extraction to analysis. The SAP-referenced holding time was not met for the sample analyses. However, based on professional and technical judgment and the information in SW-846 Chapter 4, which indicates that PCBs have no maximum recommended holding time, no qualifications were applied to the data.

1.3 Method Blanks

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three method blanks were reported with the data (batches 6030837, 6030897, and 6030915). PCBs were not detected in the method blanks above the method detection limits (MDLs). It was noted that the method blanks were reported on a wet weight basis resulting in a lower reporting limit (RL) and MDL than those reported for the samples.

1.4 Surrogate Recovery

Surrogate recoveries were within the laboratory acceptance criteria for all of the samples.

1.5 Matrix Spikes/Matrix Spike Duplicates

MS/MSD pairs were not reported with the data set due to the limited sample volume received. Precision and accuracy were evaluated based on the laboratory control sample (LCS) section below (Section 1.6).

1.6 Laboratory Control Spike (LCS)

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS and two LCS/LCS duplicate (LCSD) pairs were reported. The results for the LCS and LCS/LCSD pairs were within the laboratory specified acceptance criteria for recovery and relative percent difference (RPD). It was noted that the LCS and LCS/LCSD pairs were reported on a weight wet basis.

1.7 Laboratory Duplicate

One laboratory duplicate sample was reported, using sample SIL-20-RSM. The relative percent difference (RPD) results in the duplicate were within the laboratory specified criteria.

1.8 Sensitivity

The SAP project specified RL and MDL for aroclors (1.33 and 0.66 ug/kg respectively) were not met with the exception of samples SIL-15-RSM and SIL-04-RSM. Elevated RLs were reported due to sample dilutions due to the presence of high concentrations of aroclors and samples being analyzed and reported on a dry weight basis.

1.9 Field Duplicate

Two field duplicate samples, SIL-20 and SIL-21, were collected with the samples. Acceptable precision (RPD ≤40%) was demonstrated between the field duplicates and the original samples SIL-17/SIL-13, respectively, with the exception of Aroclor 1260 in the SIL-13/SIL-21 field duplicate pair. Due to the RPD exceedance the results were J qualified as estimated as shown below.

Sample ID	Compound	Laboratory Concentration (ug/kg dry)	RPD (%)	Validation Concentration (ug/kg dry)	Validation Qualifier*	Reason Code*
SIL-17	Aroclor 1254	22.7	40	NA	NA	NA
SIL-20	Arocioi 1234	27.8	1 40	NA	NA	NA
SIL-17	Aroclor 1260	39.5	4	NA	NA	NA
SIL-20	Alocioi 1200	38.1	1 7	NA	NA	NA
SIL-13	Aroclor 1254	59.8	2	NA	NA	NA
SIL-21	A10Cl01 1254	61.2	1 1	NA	NA	NA
SIL-13	Aroclor 1260	85.5	42	85.5	J	7
SIL-21	Alociol 1200	131	7 72	131	J	7

ug/kg-milligrams per kilogram (dry weight basis)

NA - Not Applicable

2.0 TOTAL ORGANIC CARBON (TOC)

Twenty sediment samples were analyzed for TOC per Standard Method 5310B MOD.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

The TOC results were reported on a wet weight basis.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Laboratory Control Spike
- ✓ Laboratory Duplicate
- ⊗ Sensitivity

2.1 Overall Assessment

The TOC data reported in this package are considered to be usable for meeting project objectives. The results are considered to be valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for analysis, for the project is 100%.

2.2 Holding Times

The holding time for TOC analysis of a sediment sample is 28 days from collection to analysis. The holding time was met for the sample analysis.

2.3 Method Blanks

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One method blank was reported with the data set (batch 6030253). TOC was not detected in the method blank above the RL.

2.4 Laboratory Control Spike

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS was reported in the data set. The results for the LCS were within the laboratory specified acceptance criteria for recovery.

2.5 Laboratory Duplicate

Two laboratory duplicate samples were reported, using sample SIL-00 and SIL-10. Duplicate RPD results were within the laboratory specified criteria.

2.6 Sensitivity

The project specified RL for TOC (100 mg/kg) referenced in the SAP was not met.

* * * * *

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated OC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits and RPD outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other

RPD-relative percent difference