

Portland Harbor RI/FS

ROUND 2 QUALITY ASSURANCE PROJECT PLAN ADDENDUM 3: GROUNDWATER PATHWAY ASSESSMENT PILOT STUDY

December 16, 2004

Prepared for: The Lower Willamette Group

Prepared by: Kennedy/Jenks Consultants Integral Consulting, Inc.

2.8

SECTION A: PROJECT MANAGEMENT

A1 TITLE AND APPROVAL SHEET

PORTLAND HARBOR RI/FS ROUND 2 GROUNDWATER PATHWAY ASSESSMENT PILOT STUDY

Quality Assurance Plan Approvals

U.S. EPA Project Manager:	Chip Humphrey	 Date:
U.S. EPA Project QA Manager	Ginna Grepo-Grove	 Date:
CERCLA Project Coordinator:	Keith Pine	 Date:
Integral Chemistry QA Manager:	Maja Tritt	 Date:
CAS Project Manager:	Abbie Spielman	 Date:
CAS Laboratory QA Manager:	Lee Wolf	 Date:

A2 TABLE OF CONTENTS

SECTIO	DN A: PROJECT MANAGEMENT i
A1	Title and Approval Sheet i
A2	Table of Contents ii
	A2.1 List of Tablesiii
	A2.2 List of Acronyms iv
	Distribution Listv
A4	Introduction and Project Organization1
	A4.1 Introduction 1
	A4.2 Project and Task Organization 1
	Problem Definition and Background
A6	Task Description
	A6.1 Field Tasks
	A6.2 Laboratory Analyses and Deliverables
	A6.3 Project Schedule
A7	Quality Objectives and Criteria for Measurement Data
	A7.1 The Data Quality Objective Process
• •	A7.2 Data Quality Indicators
Að	Special Training/Certification
	ON B: DATA GENERATION AND ACQUISITION7
B 1	Sampling Process Design7
B2	Sampling Methods
	B2.1 Transition-Zone Water and Shallow Groundwater Sample Collection 8
	B2.2 Vapor Sample Collection
	B2.3 Shallow Groundwater Sample Collection 10
	Sample Handling and Custody10
B4	Field And Laboratory Methods
	B4.1 Field Measurements
~ ~	B4.2 Laboratory Analyses
	Quality Control
	Instrument/Equipment Testing, Inspection, And Maintenance
B7	Instrument/Equipment Calibration and Frequency15
REFER	16 RENCES

A2.1 List of Tables

Table A4-1.	Project Team Contact Information.
Table A6-1.	Laboratory Methods for Water, Vapor, and Sediment Samples.
Table A6-2.	Analytes, Analytical Concentration Goals, and Method Reporting
	Limits for Groundwater and Transition-Zone Water Samples.
Table A6-3.	Method Reporting Limits for Volatile Organic Compounds in Vapor
	Samples.
Table A6-4.	Analytes, Analytical Concentration Goals, and Method Reporting
	Limits for Sediment Samples.
Table A7-1.	Laboratory Control Limits for Surrogate Samples.
Table A7-2.	Laboratory Control Limits for Accuracy and Precision.
Table B2-1.	Sample Containers and Preservation Requirements.
Table B3-1.	Summary of Minimum Sample Volume Requirements and
	Recommended Sample Volumes for Transition-Zone Water
	Samples.
Table B3-2.	Sample Device Quantity Requirements to Meet Sample Volume
	Requirements.
Table B5-1.	Summary of Transition-Zone Water, Groundwater, Bulk Sediment,
	and Field Quality Control Samples for the Pilot Study.

A2.2 List of Acronyms

ACG	Analytical concentration goals
CAS	Columbia Analytical Services
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
COI	chemicals of interest
CVAA	cold vapor atomic absorption spectrometry
DQO EPA	data quality objective
	U.S. Environmental Protection Agency
ERA	ecological risk assessment
FSP	field sampling plan
GC/ECD	gas chromatography/electron capture detector
GC/FPD	gas chromatography/flame photometric detection
GC/LRMS	gas chromatography/low resolution mass spectrometry
GC/MS	gas chromatography/mass spectrometry
HHRA	human health risk assessment
ICP	inductively coupled plasma
ICP-AES	Inductively coupled plasma – atomic emission spectrometry
ICP/MS	inductively coupled plasma/mass spectrometry
ISA	initial study area
LWG	Lower Willamette Group
LWR	lower Willamette River
μg/L	micrograms per liter
µg/kg	micrograms per kilogram
MDL	method detection limit
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MID	multiple ion detection
MRL	method reporting limit
MSD	matrix spike duplicate
PAH	polycyclic aromatic hydrocarbon
PARCC	precision, accuracy, representativeness, completeness, and comparability
PSFSP	pilot study field sampling plan
QA/QC	quality assurance/quality control
QAPP	quality assurance project plan
RI/FS	remedial investigation/feasibility study
RM	river mile
RPD	relative percent difference
SIM	selected ion monitoring
SOP	standard operating procedure
SVOC	semivolatile organic compound
TIC	tentatively identified compound
VOC	volatile organic compound

_ ___

-- --

Portland Harbor RI/FS Round 2 Quality Assurance Project Plan Addendum 3: Groundwater Pathway Assessment Pilot Study December 16, 2004

A2.1 List of Attachments

Attachment 1 Procedure for Extraction pf Interstitial / Porewater From Sediment

. . . .

Portland Harbor RI/FS Round 2 Quality Assurance Project Plan Addendum 3: Groundwater Pathway Assessment Pilot Study December 16, 2004

A3 DISTRIBUTION LIST

U.S. EPA Project Officer:	Chip Humphrey
U.S. EPA Oregon Operations Office:	Eric Blischke
U.S. EPA Project QA Manager:	Ginna Grepo-Grove
Oregon Department of Environmental Quality:	Jim Anderson
NOAA:	Helen Hillman
U.S. Fish & Wildlife Service:	Ted Buerger
Oregon Department of Human Services	Dave Stone
Oregon Department of Fish & Wildlife:	Rick Kepler
Columbia River Inter-Tribal Fish Commission:	Patti Howard
Yakama Nation:	Paul Ward
Confederated Tribes of the Warm Springs Reservation of Oregon:	Brian Cunninghame
Confederated Tribes of the Umatilla Indian Reservation:	Audie Huber
Confederated Tribes of the Siletz Indians:	Tom Downey
Nez Perce Tribe:	Rick Eichstaedt
Confederated Tribes of the Grand Ronde Community of Oregon:	Rod Thompson
Environment International:	Valerie Lee
Port of Portland:	Jim McKenna
Port of Portland:	David Ashton
Northwest Natural:	Bob Wyatt
Anchor Environmental LLC:	Susan Thompson
Integral Project Manager:	Keith Pine
Integral Field Sampling and Analysis Coordinator:	Gene Revelas
Integral Chemistry QA Manager:	Maja Tritt
CAS Project Manager:	Abbie Spielman
CAS Laboratory QA Manager:	Lee Wolf
URS:	Chris Moody

A4 INTRODUCTION AND PROJECT ORGANIZATION

A4.1 Introduction

This quality assurance project plan (QAPP) addendum describes procedures that will be used to complete the Transition Zone water sampling included in the groundwater pathway assessment pilot study for Round 2 of the remedial investigation and feasibility study (RI/FS) for the Portland Harbor Superfund Site (Site) in Portland, Oregon. The groundwater pathway assessment pilot study field sampling plan (PSFSP) (Integral 2004a) describes the objectives and sampling methods to be used in the pilot study. The Round 2 QAPP describes procedures and requirements for the generation of data of documented acceptable quality that will be used for the RI/FS, including the ecological and human health risk assessments. This addendum supplements the Round 2 QAPP (Integral and Windward 2004) and addresses procedures that will be used for the Transition Zone water pilot study sampling that are not described in the Round 2 QAPP.

Supplemental information to Sections A and B of the Round 2 QAPP is provided in this QAPP addendum. Documents and records are described in Section A9 of the Round 2 QAPP and are not addressed further in this QAPP addendum.

Procedures for project assessment and oversight will be completed as described in Section C of the Round 2 QAPP, with one exception: Additional routine technical systems audits of analytical laboratories will not be required because all of the laboratories selected for this work have been audited in connection with Round 1 fish tissue analyses and Round 2 sediment analyses. Laboratories will be audited only if serious problems are encountered, as described in the Round 2 QAPP.

Procedures for data validation will be completed as described in Section D of the Round 2 QAPP.

The section numbers in this QAPP addendum correspond to U.S. Environmental Protection Agency (EPA) guidance for QAPP preparation (EPA 2002a) and, in most cases, correspond to the Round 2 QAPP.

A4.2 Project and Task Organization

The organizational structure for activities associated with the Round 2 investigation is provided in Section A4.2 and Figure A4-1 of the Round 2 QAPP, with the following changes:

• The sampling and analysis coordinator for the pilot study will be Todd Martin of Integral.

- The field coordinator will be Nick Varnum of Integral.
- The Laboratory Project Manager will be Abbie Spielman of Columbia Analytical Services (CAS).

Contact information related to the Transition Zone water pilot study sampling is provided in Table A4-1 of this QAPP addendum.

A5 PROBLEM DEFINITION AND BACKGROUND

An overview of the Portland Harbor RI/FS is provided in Section A5.1 of the Round 2 QAPP. A primary objective of the groundwater assessment pilot study is to assess the feasibility and effectiveness of methods for the collection of sediment Transition Zone water samples within zones of active groundwater discharge to the Willamette River.

The scope and anticipated schedule of the pilot study sampling efforts are discussed in the PSFSP (Integral 2004a). In summary, the pilot study sampling will be conducted in November – December 2004 at two sites within the ISA – ARCO Bulk Terminal (ARCO) and Arkema Chemicals Inc. (Arkema; formerly ATOFINA Chemicals Inc.). Details regarding site selection and background are included in the PSFSP.

Available methods for sampling Transition Zone water in riverbed sediments and the rationale for selecting methods for the pilot study are described in the PSFSP (Section 3.2). The following sampling methods were selected for the pilot study (see PSFSP Table 3-2 for a summary of the advantages and disadvantages of available methods):

In-Situ Collection

Diffusion-Based

- Small-volume Peeper
- Large-volume Peeper
- Vapor Diffusion Sampler.

Direct Sampling

- Suction via Trident system
- UltraSeep (seepage meter)

Ex-Situ Collection

Sediment Sampling and Transition-Zone Water Extraction

• Grab Sampling and Centrifuge.

Except for the vapor diffusion sampler, each of these methods will be used to sample Transition Zone water within the upper 1 foot of the sediment column at each of the pilot study locations (one location at ARCO and two locations at Arkema). The vapor diffusion sampler will be used to collect vapor samples at the two locations where volatile organic compounds (VOCs) are documented in groundwater. Results of the sampling effort will be compared to identify the benefits and limitations of the technologies and will be used to facilitate scoping of the future groundwater pathway assessment. In addition to Transition Zone water sampling via these methods, samples of underlying shallow groundwater will be collected at the ARCO site using a barge-mounted, direct-push drill rig and screen-point sampler.

A6 TASK DESCRIPTION

The tasks to be completed for the pilot study include sample collection, field measurements, laboratory analyses, data quality evaluation, data management, and reporting. Summaries of field and laboratory tasks and references to detailed descriptions are provided in this section. Procedures for data quality evaluation, data management, and report preparation are described in the Round 2 QAPP.

A6.1 Field Tasks

Six methods will be used during the pilot study to collect Transition Zone water:

- Small-volume Peeper
- Large-volume Peeper
- Trident ProbeTM
- UltraSeep
- Grab Sampling and Centrifuge Extraction.

One method will be used to collect underlying shallow groundwater:

• Direct-push.

In addition to Transition Zone water and shallow groundwater, vapor samples will be collected using a vapor diffusion technique, and bulk sediment samples will be collected for analysis.

A6.2 Laboratory Analyses and Deliverables

Chemical analysis of Transition Zone water, shallow groundwater, vapor, and sediment samples will be completed by CAS (Kelso, WA). A summary of analyses for Transition Zone water, shallow groundwater, vapor and sediment samples is provided in Table A6-1. The analyte list for Transition Zone water and shallow groundwater, along with proposed pilot study analytical concentration goals (ACGs), method detection limits (MDLs), and method reporting limits (MRLs), is provided in Table A6-2. The analyte list for vapor samples and associated MRLs is provided in Table A6-3. Pilot study ACGs, MDLs, and MRLs for sediment analyses are included in Table A6-4.

Analyses will be completed using EPA methods and other established methods as indicated in Table A6-1. Laboratory data deliverables are described in the Round 2 QAPP.

A6.3 Project Schedule

The pilot study sampling (hereinafter meant to include all four media to be collected) will be initiated following EPA's approval of the PSFSP and this QAPP addendum. The pilot study schedule will be strongly influenced by weather conditions and seasonal variations in the river temperature and water level. The schedule considerations due to these factors and limitations due to equipment availability are described in Section 5.0 of the PSFSP. The general timeframe for pilot study sampling is November – December 2004. Schedules for delivery of data and reports are described in the Programmatic Work Plan (Integral et al. 2004).

A7 QUALITY OBJECTIVES AND CRITERIA FOR MEASUREMENT DATA

A7.1 The Data Quality Objective Process

Data quality objectives (DQOs) for the groundwater pathway assessment are described in the Round 2 QAPP. Final ACGs for the groundwater pathway assessment are under development in consultation with EPA and its partners. ACGs for the groundwater pilot study, however, have been proposed to identify analytical sensitivity levels that will be sufficient to evaluate risks to in-water ecological receptors that may be exposed to chemicals dissolved in groundwater flowing through the sediment transition zone. Although the pilot study ACGs can be met for many analytes, modifications to optimize laboratory MDLs and MRLs are not sufficient to meet the pilot study ACGs in all cases. (See Section B4.2 for additional discussion of method modifications.) MDLs, MRLs and ACGs for Transition Zone water and shallow groundwater in the pilot study are provided in Table A6-2.

A7.2 Data Quality Indicators

The overall quality objective for Round 2 is to develop and implement procedures that will ensure the collection of representative data of known and acceptable quality. An objective of the pilot study is to evaluate which sampling methods yield data of acceptable quality for evaluation of the groundwater pathway. Some of the methods may not yield the optimum volume of Transition Zone water for analysis, which may result in elevated detection limits, reduction in the number of chemical analyses that can be completed, and/or fewer quality control samples analyzed. Additional detail on estimated sample volumes for the various sampling methods is provided in Section B3 of this QAPP addendum. The implications of the limited sample volumes on data quality and completeness will be a component of the overall evaluation of the pilot study methods. The QA procedures and measurements that will be used for this project are based on EPA guidance (EPA 1983, 1996b, 2004) and on established laboratory methods from other sources (APHA 1997).

QC samples and procedures are specified in each method protocol that will be used for this project. Methods are summarized in Table A6-1. All QC requirements will be completed by each laboratory as described in the protocols and in the Round 2 QAPP, unless limited by sample volume. Laboratory control limits for QC samples and procedures are provided in Tables A7-1 and A7-2 and in the laboratory QA manual (Appendix C of the Round 2 QAPP). Data validation criteria and procedures are described in Sections D1 and D2 of the Round 2 QAPP. During data validation, low recoveries will be evaluated for analytes with wide laboratory control limits to evaluate potential bias of the data. Data will be qualified on this basis if a bias is identified. PARCC parameters (i.e., precision, accuracy or bias, representativeness, completeness, comparability) are described in the Round 2 QAPP.

Target MRLs for this study are summarized in Tables A6-2 through A6-4. Laboratory methods are described in Section B4. MDLs will be determined by each laboratory for each analyte, as described in the Round 2 QAPP. MDLs are provided in Tables A6-2 through A6-4. The MDLs and MRLs are based on standard preparation and extraction volumes. If limited sample volumes are available from some of the water sampling methods, analyses will be prioritized and/or the volume available for laboratory QC samples will be reduced. Additional discussion on limited sample volumes and possible adjustments is provided in Section B3 below.

Analyte concentrations for pilot study samples will be reported to the MDL, as described in the Round 2 QAPP, except for vapor samples. Vapor sample results will be reported to the MRL, and detections below the MRL will be qualified as estimated values.

A8 SPECIAL TRAINING/CERTIFICATION

In addition to requirements for experience and training provided in Section A8 of the Round 2 QAPP, training and certification requirements for the in-water pilot study field work include appropriate SCUBA certifications for divers and experience with Trident and UltraSeep equipment for operators of these devices. Trident and UltraSeep equipment will be operated by personnel from Coastal Monitoring. Christopher Smith, Jim Groves, and Ron Paulson, the team from Coastal Monitoring, are the inventors of the ultrasonic groundwater seepage meter. They have extensive experience deploying the Trident and UltraSeep equipment at various projects around the world. Further, they have over 70 years of combined experience working in the field of aquatic science, and all are certified scuba divers, including training by the U.S. Navy in dive operations.

SECTION B: DATA GENERATION AND ACQUISITION

Section B of this Round 2 QAPP addendum includes the following supplemental sections:

- B1 Sampling Process Design
- B2 Sampling Methods
- B3 Sample Handling and Custody
- B4 Field and Laboratory Methods
- B5 Quality Control.

Procedures related only to the instrumentation that will be used for field measurements of water quality conditions are additionally addressed in the following sections, while laboratory instrumentation is discussed in the Round 2 QAPP:

- B6 Instrument/Equipment Testing, Inspection, and Maintenance
- B7 Instrument/Equipment Calibration and Frequency.

The following information is provided in the Round 2 QAPP and is not addressed further in this QAPP addendum:

- B8 Inspection/Acceptance of Supplies and Consumables
- B9 Non-direct Measurements
- B10 Data Management.

Details regarding field documentation for Transition Zone water, vapor, sediment and shallow groundwater sampling are provided in the PSFSP and in SOP H: Field Documentation, which will be submitted under separate cover.

B1 SAMPLING PROCESS DESIGN

During the pilot study sampling, samples will be collected from three anticipated groundwater plume discharge locations in the Willamette River [one at ARCO and two at Arkema]. Details on the pilot study sampling design are provided in the PSFSP (Integral 2004a).

B2 SAMPLING METHODS

Sample collection methods, equipment, and sample analysis requirements are summarized in the following sections. Additional details not provided here are included in the PSFSP (Integral 2004a) and in SOPs submitted separately to EPA and its partners. Sample containers, sample size requirements, preservation, and holding times for water, vapor and sediment samples and equipment rinse blanks are summarized in Table B2-1. Corrective actions are addressed in Sections B2.3 and C1 of the Round 2 QAPP.

B2.1 Transition-Zone Water and Shallow Groundwater Sample Collection

Transition Zone water and/or shallow groundwater samples will be collected at each location by five methods, each briefly described below.

Trident Probe[™]

The Trident is a simple, direct-push system equipped with temperature and water sampling probes. The water sampling probe is used to collect in-situ water samples for Transition Zone water characterization. Transition Zone water is collected by syringe or vacuum pump extraction through a small-diameter, Teflon®-coated, stainless-steel probe (see FSP Figure 4-5). On the side of the tube near the tip, there is a sample port consisting of a slot covered by a small mesh (241- μ m), stainless-steel screen. The Trident system can be deployed by hand near the surface, by push pole to depths of 30 to 40 feet, and by diver at greater depths. All Transition Zone water samples will be pumped into pre-preserved sample containers, which will be stored at 4°C until analysis. Detailed procedures are included in SOP B: Trident Probe Groundwater Discharge Mapping and Transition Zone Water Sampling.

UltraSeep

The UltraSeep system is a seepage meter that incorporates continuous flow measurement with automated sample collection. The meter relies on a Teflon®-coated, stainless-steel, open-bottomed chamber, measuring 48×46 cm, to funnel the seepage water to the flow sensor. The flow sensor is connected to the high point of the funnel via 12-mm Teflon® tubing, allowing free flow of water between the funnel and the outside environment. Based on the measured flow conditions, the water sampling system is activated to pump water to up to six sequential Teflon® sampling bags mounted around the perimeter of the meter. The UltraSeep systems will be diver-deployed and programmed to collect continuous flow record and multiple samples over the course of 1 to 4 days. At the end of the deployment period, divers will retrieve the UltraSeep systems and associated samples. All operational activities relating to the UltraSeep will be performed by Coastal Monitoring Associates, with oversight by Integral personnel. All samples will be pumped into appropriate prepreserved sample bottles, which will be stored at 4°C until analysis. Detailed procedures are included in SOP C: UltraSeep Groundwater Discharge Flow

Measurement and Transition Zone Water Sampling, which will be submitted under separate cover.

Small- and Large-Volume Peepers

The small-volume peeper is capable of collecting approximately 200 mL of water over a 38-cm sediment depth. The large-volume peepers will be specially constructed and can collect approximately 1,000 mL of water. Prior to deployment, both the small- and large-volume peepers will be filled with anoxic DI water spiked to roughly the equivalent salinity of the site Transition Zone water. Both peeper types will be deployed by divers. The small-volume peepers will be driven directly into the sediments to a total depth of approximately 1 foot. The large-volume peepers will be deployed by placing the peeper in a 7- to 8-inch deep hole excavated in the sediment and backfilling the hole with sediment. More than one of each type of peeper may be deployed at each location, if necessary, to achieve sufficient sample volume by compositing. All of the peepers will be left in place to equilibrate for a 3-week period. After this equilibration period, the peepers will be retrieved and brought to surface. Water will be extracted from each of the sample chambers of the smallvolume peepers by inserting a needle through the membrane and extracting with a syringe. Each sample bottle will be filled with water from sample chambers distributed across the entire peeper to ensure that the sample is vertically representative of the entire 1-foot depth of sediment. Water will be transferred from the large-volume peepers by inserting a needle through the membrane, extracting the water with a syringe, and discharging the syringe into the appropriate, pre-preserved sample bottles. Once filled, the sample bottles will be stored at 4°C until analysis. Detailed procedures are included in SOP D: Diffusion-Based Transition Zone Water Sampling.

Bulk Sediment Sampling and Centrifugation

Bulk sediment samples will be collected using a power grab sampler from the upper 30 cm of sediment at each of the sampling locations. The grab sampler will be brought to the surface, and sub-cores will be collected using butyrate tubing, also known as cellulose acetate butyrate (CAB) tubing. The subsamples will be shipped overnight to the analytical laboratory where the subsamples will be handled in an oxygen-free atmosphere. At the laboratory, some of the subsamples will be sectioned and centrifuged for Transition Zone water extraction. The remaining subsamples will be used for analysis of bulk sediment COI concentrations. Detailed procedures are included in SOP E: Bulk Sediment and Ex-Situ Transition Zone Water Extraction. The CAS procedure for extraction of Transition Zone water from bulk sediment is included as Attachment 1 to this QAPP Addendum. The remaining subsamples may be used for analysis of bulk sediment chemical of interest (COI) concentrations, as described below.

The sediment remaining in the grab sampler following subsample collection will be inspected, and the following physical characteristics of the sediment will be recorded on field logs or sample description forms: sediment texture; sediment color; presence, type, and strength of odors; core penetration depth (nearest cm); degree of leakage or sediment surface disturbance; and any obvious abnormalities such as wood/shell fragments or large organisms.

B2.2 Vapor Sample Collection

Vapor samples will be collected by the vapor diffusion method. The vapor diffusion samplers, consisting of three uncapped, 40-mL VOA vials sealed inside two layers of zip-seal bags, will be deployed at the same time as the peeper samplers. Each vapor diffusion sampler will be pushed into the sediment to an approximate depth of 6 inches and allowed to equilibrate for a 3-week period prior to retrieval. Upon return of the samplers to the surface, the outer zip-seal bag will be removed and a septum cap will be crimp-sealed over the bottle with the inner bag still in place. Detailed procedures are included in SOP D: Diffusion-Based Transition Zone Water Sampling.

B2.3 Shallow Groundwater Sample Collection

In addition to Transition Zone water and vapor diffusion samples, shallow underlying groundwater will be collected using the direct-push method. Direct-push borehole pairs will be installed at each of the three transition-zone water sampling stations identified for the ARCO site. An initial borehole will be advanced to a minimum depth of 15 feet and maximum depth of 40 feet to collect continuous sediment core samples for visual inspection and logging. Logging results will be used to identify potential groundwater discharge zones and define target depths for shallow groundwater sampling. The target depths will be selected such that the two intervals sample physically distinct groundwater intervals, if possible. Following termination of the first borehole, a second borehole will then be advanced nearby (1-2 feet away) to collect discrete groundwater samples from the target sampling depths. Samples will be pumped to the surface using a peristaltic pump. Three pore volumes of the screen point sampler and tubing will be purged using a peristaltic pump prior to collection of the samples. All samples will be pumped into appropriate pre-preserved sample bottles, which will be stored at 4°C until analysis. Detailed procedures are included in SOP F: Geoprobe® direct-push sampling.

Sampling will follow the guidelines in EPA Method 1669, Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels (EPA 1996a), and in the Field Sampling Manual for the Regional Monitoring Program for Trace Substances (David et al. 2001).

B3 SAMPLE HANDLING AND CUSTODY

Sample custody procedures are described in Section B3 of the Round 2 QAPP (Integral and Windward 2004). Sample preservation and storage requirements and

holding times for the water, vapor, and sediment samples are provided in Table B2-1 of this QAPP addendum. SOP I: Sample Labeling, Custody, and Handling, describes these procedures and will be submitted under separate cover.

Some of the Transition Zone water sampling methods will collect a limited volume of water that may not provide enough to meet the standard volumes submitted for analysis. Table B3-1 provides information on prioritization of analyses and target volumes that will allow analyses to be conducted for COIs with method modifications, such as reduction of sample size and final extract volume, or with elimination of laboratory QC samples (such as duplicates and matrix spikes) and/or volume for reanalysis. Based on the target volumes shown in Table B3-1 and information from Table 4-1 of the PSFSP, the number of samples per sampling method and analytical method for each of the pilot study locations is shown in Table B3-2.

B4 FIELD AND LABORATORY METHODS

B4.1 Field Measurements

Measurements of temperature, conductivity, and pH will be taken at Trident Probe and UltraSeep sampling stations. Measurements of conductivity, pH, temperature, dissolved oxygen, and oxidation-reduction potential will be taken at Geoprobe® direct-push sampling locations using a YSI Multi Probe and flow-through cell. Details regarding the operation of these instruments, including calibration, measurement, quality control procedures, and decontamination, are provided in the PSFSP SOPs.

B4.2 Laboratory Analyses

Laboratory methods to be used for Round 2 are consistent with requirements provided in EPA method protocols (EPA 1983, 1996b, 2004). Analytes, MDLs, MRLs, and ACGs for water and sediment samples are provided in Tables A6-2 and A6-4, respectively. Analytes and MRLs for vapor samples are provided in Table A6-3. MRLs and ACGs for analytes to be analyzed in the pilot study sediment samples are provided with MRLs and ACGs for all Round 2 sediment analytes in the Round 2 QAPP (Integral and Windward 2004). ACGs will not be reached for some analytes due to technical limitations. MRLs may be elevated for additional analytes for some sampling methods if sample volumes are limited. Modifications will be made to these methods, as necessary and technically feasible, to improve MRLs. Method modifications will not be sufficient to reduce MRLs to the level of the ACGs for several analytes, and ACGs will not be attained in these cases. MRLs achievable for the various sampling methods will be one factor considered in the evaluation of pilot study results. Analytical methods and modifications for pilot study water and vapor samples are described below. Methods and modifications for sediment samples are described in the Round 2 QAPP (Integral and Windward 2004).

Water samples will be analyzed for a subset of the following analytes, depending on the location and sampling method:

- Metals (arsenic, chromium, copper, lead, manganese, and zinc)
- Cations (calcium, magnesium, potassium and sodium)
- Conventionals (chloride, sulfate, alkalinity and pH)
- Perchlorate
- Organochlorine pesticides (DDT, DDD, DDE)
- Polycyclic aromatic hydrocarbons (PAHs)
- Total petroleum hydrocarbons (TPH) [diesel-range organics (TPH-diesel) and gasoline-range organics (TPH-gas)]
- VOCs [analyte list as provided in Integral and Windward (2004), plus 1,2dichlorobenzene, 1,3-dichlorobenzene, 1,2,4-trichlorobenzene, and hexachlorobutadiene].

Vapor samples will be analyzed for VOCs only (benzene, toluene, ethylbenzene, xylenes at ARCO; chlorobenzene at Arkema).

Bulk sediment samples will be analyzed for a subset of the following analytes, depending on the location:

- Metals (arsenic, chromium, copper, lead and zinc)
- Perchlorate
- Organochlorine pesticides (DDT, DDD, DDE)
- PAHs
- TPH [diesel-range organics (TPH-diesel) and gasoline-range organics (TPH-gas)]
- VOCs [analyte list as provided in Integral and Windward (2004), plus 1,2dichlorobenzene, 1,3-dichlorobenzene, 1,2,4-trichlorobenzene, and hexachlorobutadiene].

The total number of samples and the analyses that will be conducted on each sample are indicated in Table B3-2. The laboratory methods for sample preparation and analysis are summarized in Table A6-1.

B4.2.1 Metals and Cations in Transition Zone Water and Shallow Groundwater

The methods that will be used to prepare and analyze Transition Zone water and shallow groundwater samples for metals and cations are shown in Table A6-1. Digestion with nitric and hydrochloric acids will be used to prepare samples for analysis of metals. Analysis for these metals will be completed by inductively coupled plasma/mass spectrometry (ICP/MS).

B4.2.2 Conventional Analyses in Transition Zone Water and Shallow Groundwater

Conventional analyses of surface water samples will include chloride, sulfate, alkalinity as CaCO₃, and pH. Perchlorate will also be analyzed on samples from the Arkema Chlorate Plant area. EPA methods will be used as shown in Table A6-1.

Alkalinity as CaCO₃ will be measured using titration according to EPA Method 310.1, and pH will be measured electrometrically according to EPA Method 150.1.

Chloride and sulfate will be analyzed according to EPA Method 300.0. Perchlorate will be analyzed according to EPA Method 314.0. Samples will be filtered at the laboratory as specified in the method and analyzed by ion chromatography.

B4.2.3 Organic Compounds in Transition Zone Water and Shallow Groundwater

Organochlorine pesticides will be extracted from samples using continuous liquidliquid extraction procedures. Samples will be analyzed by gas chromatography/electron capture detector (GC/ECD). Florisil® column clean-up will be performed on the sample extracts.

Sample extractions for PAHs will be completed using continuous liquid-liquid extraction. Analyses for PAHs will be completed by gas chromatography/mass spectrometry (GC/MS) with a large-volume injector. Selected ion monitoring (SIM) will be used to enhance sensitivity.

VOC analyses will be conducted according to EPA Method 8260B, purge-and-trap followed by GC/MS analysis.

B4.2.3 VOCs in Vapor Samples

Vapor samples will be analyzed by EPA Method TO-15. The samples will be preconcentrated using cold traps in a two-step cryofocusing procedure. Analysis will be completed using GC/MS.

B5 QUALITY CONTROL

QC samples will be prepared in the field and at the laboratories to monitor the bias and precision of the sample collection and analysis procedures.

Field QC samples for this study will include field replicates, equipment rinse blanks, decon blanks, and temperature blanks. A summary of field QC samples that will be collected for each sampling method at each location is provided in Table B5-1.

Field replicates, equipment rinse blanks, and temperature blanks are described in the Round 2 QAPP. Prior to the start of sample collection activities for each sampling event, a decon blank will be generated by the laboratory that conducts decontamination of the peristaltic pump sampling equipment, as described in Appendix B of the Round 2 QAPP. The decon blank will be analyzed for metals and organic parameters.

Field QC samples to be collected at each location for each sampling method and analysis are summarized in Table B5-1. Replicate samples will be collected for appropriate analytical methods at each pilot study location for all sampling methods except the UltraSeep method. Equipment rinsate blanks will be collected at each pilot study location for applicable analytical methods (excluding conventionals and cations) for equipment that is decontaminated and reused for sample collection. These methods include the Trident Probe and UltraSeep for Transition Zone water collection, direct-push for shallow groundwater collection, and the bowl and spoon used to composite bulk sediment samples. An equipment blank will not be required for the power grab sampler because the sediment that contacts the sampler will not be collected. Prior to the start of fieldwork for each sampling event, decon blanks will be analyzed to ensure that the decontamination procedure used for pre-cleaned sampling equipment (peepers, butyrate tubing for collecting sediment subsamples from the grab sampler, discharge tubing, etc.) is adequate. The procedures for decon blanks are described in the PSFSP SOPs.

Laboratory QC samples and procedures will be completed as described in the Round 2 QAPP and the various method protocols (Table A6-1).

B6 INSTRUMENT/EQUIPMENT TESTING, INSPECTION, AND MAINTENANCE

Maintenance of the instruments that will be used for field measurements will be completed as described in the manufacturer's instructions.

Testing, inspection, maintenance, setup, and calibration of laboratory instruments are described in the Round 2 QAPP.

B7 INSTRUMENT/EQUIPMENT CALIBRATION AND FREQUENCY

Calibration checks on instruments to be used for field measurements (i.e., conductivity, pH, temperature, dissolved oxygen, and oxidation reduction potential) will be performed prior to use each day that measurements will be made, as described in the PSFSP SOPs and in the manufacturer's instructions. Calibration checks will be completed twice daily at a minimum. The instruments will be checked for calibration before each daily sampling begins and again at the end of the day. If measurements are made at more than 10 stations in a single day, calibration checks will be made after every 10 stations are measured and at the end of the day. Calibration information will be recorded in the field logbook.

Calibration procedures for laboratory instruments are described in the Round 2 QAPP.

REFERENCES

APHA. 1997. Standard Methods for the Examination of Water and Wastewater. 17th Edition. American Public Health Association, American Water Works Association, and Water Environmental Federation, Washington, DC.

David, N., D. Bell, and J. Gold. 2001. Field Sampling Manual for the Regional Monitoring Program for Trace Substances. San Francisco Estuarine Institute, San Francisco, CA. (February 2001).

EPA. 1983. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH.

EPA. 1996a. Method 1669. Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels. U.S. Environmental Protection Agency, Office of Water Engineering and Analysis Division (4303), Washington, DC.

EPA. 1996b. Guidance on the Documentation and Evaluation of Trace Metals Data Collected for Clean Water Act Compliance Monitoring. U.S. Environmental Protection Agency, Office of Water Engineering and Analysis Division (4303), Washington, DC.

EPA. 2002a. Guidance for Quality Assurance Project Plans. EPA QA/G-5. EPA/240/R-02/009. U. S. Environmental Protection Agency, Office of Environmental Information, Washington, DC.

EPA. 2002b. National Recommended Water Quality Criteria: 2002. EPA 822-R-02-047. U.S. Environmental Protection Agency, Office of Water, Washington DC.

EPA. 2004. SW-846 On-line, Test Methods for Evaluating Solid Waste - Physical/Chemical Methods. U.S. Environmental Protection Agency.

http://www.epa.gov/epaoswer/hazwaste/test/main.htm. (Accessed March 23, 2004).

Integral 2004a. Portland Harbor RI/FS Field Sampling Plan, Groundwater Pathway Assessment Pilot Study. Prepared for the Lower Willamette Group, Portland, OR. Integral Consulting, Inc., Mercer Island, WA.

Integral 2004b. Portland Harbor RI/FS Round 2 Quality Assurance Project Plan, Addendum 1: Surface Water. Prepared for the Lower Willamette Group, Portland, OR. Integral Consulting, Inc., Mercer Island, WA.

Integral and Windward Environmental. 2004. Portland Harbor RI/FS Round 2 Quality Assurance Project Plan. Prepared for the Lower Willamette Group, Portland, OR. Integral Consulting, Inc., Mercer Island, WA.

Integral, Windward Environmental, Kennedy/Jenks Consultants, Anchor Environmental, and Groundwater Solutions. 2004. Portland Harbor RI/FS Programmatic Work Plan. Prepared for the Lower Willamette Group, Portland, OR. Integral Consulting, Inc., Mercer Island, WA.

Suter, G.W. II, and C.L. Tsao. 1996. Toxicological Benchmarks for Screening of Potential Contaminants of Concern for Effects on Aquatic Biota on Oak Ridge Reservation: 1996 Revision. Oak Ridge National Laboratory, Oak Ridge, TN. 104 pp. ES/ER/TM-96/R2.

TABLES

Portland Harbor RI/FS Round 2 QAPP Addendum 3: Groundwater Pilot Study December 16, 2004

Table A4-1. Project Team Contact Information.

Name	Project Role	Phone	Fax	Email
EPA Region 10		- <u></u>		
Chip Humphrey	Project Manager	503-326-2678	503-326-3399	<u>humphrey.chip@epa.gov</u>
Eric Blischke	Project Manager	503-326-4006	503-326-3399	<u>blischke.eric@epamail.epa.gov</u>
Dana Davoli	Human health risk assessment	206-553-2135	206 553-0119	<u>davoli.dana@epa.gov</u>
Joe Goulet	Ecological risk assessment	206-553-6692	206 553-0119	<u>goulet.joe@epa.gov</u>
Rene Fuentes	Hydrogeologist	206-553-1599	206-783-4126	fuentes.rene@epa.gov
Ginna Grepo-Grove	Quality Assurance Manager	206-553-1632	206-553-8210	Grepo-Grove.Gina@epamail.epa.gov
Lower Willamette Group				
Jim McKenna (Port of Portland)	Co-Chairman	503-944-7325	503-944-7353	mckenj@portptld.com
Bob Wyatt (Northwest Natural)	Co-Chairman	503-226-4211 x5425	503-273-4815	rjw@nwnatural.com
LWG Common Consultants				
Keith Pine (Integral)	CERCLA Coordinator	206-230-9600 x26	206-230-9601	kpine@integral-corp.com
Laura Kennedy (KJC)	Human Health Risk Assessment Coordinator	415-243-2405	415-896-0999	laurakennedy@kennedyjenks.com
Lisa Saban (Windward)	Ecological Risk Assessment Coordinator	206-577-1288	206-217-0089	lisas@windwardenv.com
Carl Stivers (Anchor)	Feasibility Study Coordinator	206-287-9130	206-287-9131	cstivers@anchorenv.com
Todd Martin (Integral)	Sampling and Analysis Coordinator	360-705-3534	360-705-3669	tmartin@integral-corp.com
Nick Varnum (Integral)	Field Coordinator	503-285-5545	503-284-5755	<u>nvarnum@integral-corp.com</u>
Maja Tritt (Integral)	Chemistry QA Manager	206-230-9600 x21	206-230-9601	mtritt@integral-corp.com
Tom Schulz (Integral)	Database Administrator	360-705-3534	360-705-3669	tschulz@integral-corp.com
Chemical Laboratories				
Abbie Spielman (CAS)	Laboratory Project Manager	360-577-7222	360-636-1068	aspielman@kelso.caslab.com
Lee Wolf (CAS)	Laboratory QA Manager	360-577-7222	360-636-1068	lwolf@kelso.caslab.com

Analytes	Laboratory	S	ample Preparation	Quanti	tative Analysis
		Protocol	Procedure	Protocol	Procedure
Water samples	CAS Kelso				
Conventional Analyses					
рН		None		150.1	Electrometric
Chloride		300.0	Filtration, 0.45 um filter, if needed	300.0	Ion chromatograph
Sulfate		300.0	Filtration, 0.45 um filter, if needed	300.0	Ion chromatograph
Alkalinity as CaCO ₃		None		310.1	Titration
Perchlorate		EPA 314.0 Filtration, 0.45 um filter, if needed		EPA 314.0	lon chromatograph
Metals					
Arsenic, copper, chromium, lead, zinc		EPA 3005	Acid digestion	EPA 200.8	ICP/MS
Calcium, magnesium, manganese, potassium, sodium			Acid digestion	EPA 6010B	ICP/OES
Volatile Organic Compounds					
Full project list		EPA 5035	Purge and trap	EPA 8260B	GC/MS
BTEX		EPA 5035	Purge and trap	EPA 8260B	GC/MS
Total Petroleum Hydrocarbons					
TPH-gas		NWTPH-Gx	Purge and trap	NWTPH-Gx	GC/FID
TPH-diesel		NWTPH-Dx	Extraction	NWTPH-Dx	GC/FID
Organochlorine Pesticides					
DDT, DDE, DDD		EPA 3520C EPA 3630C	Continuous líquid-liquid extraction Florisil [®] cleanup	EPA 8081A	GC/ECD
Semivolatile Organic Compounds					
PAHs		EPA 3520C	Continuous liquid-liquid extraction	EPA 8270C	GC/MS-SIM
apor Samples (CAS Simi Valley				
Volatile Organic Compounds	-				
Full project list		EPA TO-15	Cold traps	EPA TO-15	GC/MS
BTEX		ÉPA TO-15	Cold traps	EPA TO-15	GC/MS

Table A6-1. Laboratory Methods for Water, Vapor, and Sediment Samples.

Analytes	Laboratory	Sa	mple Preparation	Quantitative Analysis		
		Protocol	Procedure	Protocol	Procedure	
Sediment Samples	CAS Kelso		···	<u> </u>		
Conventional Analyses						
Total solids		NA		PSEP 1986	Balance	
Perchlorate		Laboratory SOP	Deionized water leach	EPA 314.0	Ion chromatograph	
Metals						
Arsenic, lead		EPA 3050	Strong acid digestion	EPA 6020	ICP/MS	
Chromium, copper, zinc, calcium,		EPA 3050	Strong acid digestion	EPA 6010B	ICP-OES	
magnesium, manganese, potassium, sodium						
Organochlorine Pesticides						
DDT, DDE, DDD		EPA 3540	Soxhlet extraction	EPA 8081A	GC/ECD	
		EPA 3620B	Florisil [®] cleanup			
		EPA 3660B	Sulfur cleanup			
			Sunar treamap			
Volatile Organic Compounds						
Full project list		EPA 5035	Purge and trap	EPA 8260B	GC/MS	
BTEX		EPA 5035	Purge and trap	EPA 8260B	GC/MS	
Total Petroleum Hydrocarbons						
TPH-gas		NWTPH-Gx	Methanol extraction; Purge and trap	NWTPH-Gx	GC/FID	
TPH-diesel		NWTPH-Dx	Sonication extraction; Silica Gel Cleanup (as needed)	NWTPH-Dx	GC/FID	
Semivolatile Organic Compounds						
Polycyclic Aromatic Hydrocarbons		EPA 3550B	Sonication extraction	EPA 8270C	GC/MS - SIM	
		EPA 3640A	Gel permeation chromatography			
		EPA 3630C	Silica gel cleanup			

Table A6-1. Laboratory Methods for Water, Vapor, and Sediment Samples.

Table A6-2. Analytes, Analytical Concentration Goals, and Method Reporting and Detection Limits for Groundwater and Transition-Zone Water Samples.

Analyte	MRL	MDL	NRWQC ¹	ORNL ²	ACG ³	Ratio of MRL to AGC	Ratio of MDL to ACG
Conventional Analyses, µg/L (ppb)							
Chloride	200	40	230000		230000	0.0009	0.0002
Sulfate	200	40			NE	NA	NA
Alkalinity as CaCO ₃	2000	1000	20000		20000	0.1000	0.0500
Perchlorate	2	0.5			NE	NA	NA
Metals/Inorganics, mg/L (ppm)							
Arsenic	0.005	0.002	0.150	0.914	0.150	0.0333	0.0133
Calcuim	0.05	0.03		116	116	0.0004	0.0003
Chromium ⁴	0.0002	0.00006	0.011	0.002	0.002	0.1000	0.0300
Copper ⁵	0.0001	0.00004	0.0027	0.00023	0.00023	0.4348	0.1739
Lead ⁵	0.00002	0.00001	0.0005	0.01226	0.0005	0.0370	0.0185
Magnesium	0.02	0.02		82	82	0.0002	0.0002
Manganese	0.05	0.01		<1.1	NE	NA	NA
Potassium	2.00	0.7		53	53	0.0377	0.0132
Sodium	0.10	0.07		680	680	0.0001	0.0001
Zinc ⁵	0.0005	0.0002	0.0365	0.03	0.03	0.0167	0.0067
Organochlorine Pesticides, µg/L (ppb)							
4,4'-DDE	0.01	0.003			NE	NA	NA
4,4'-DDD ⁶	0.01	0.004		1.69	1.69	0.00592	0.00237
4,4'-DDT	0.01	0.005	0.001	0.3	0.001	10.000	5.000
Total Petroleum Hydrocarbons							
TPH-gas	250	12			NE	NA	NA
TPH-diesel (DRO)	250	36			NE	NA	NA
Volatile Organic Compounds, µg/L (ppb)							
Acetone	20	1.8		507640	507640	0.0000	0.0000
Acrolein	TBD	TBD			NE	NA	NA
Acrylonitrile	TBD	TBD			NE	NA	NA

LWG Lower Willamette Group

Portland Harbor RI/FS Round 2 QAPP Addendum 3: Groundwater Pilot Study December 16, 2004

 Table A6-2. Analytes, Analytical Concentration Goals, and Method Reporting and Detection Limits for Groundwater and Transition-Zone Water

 Samples.

Analyte	MRL	MDL	NRWQC ¹	ORNL ²	ACG ³	Ratio of MRL to AGC	Ratio of MDL to ACG
Benzene	0.5	0.11		525000	525000	0.0000	0.0000
Bromochloromethane	0.5	0.12			NE	NA	NA
Bromodichloromethane	0.5	0.08			NE	NA	NA
Bromoform	0.5	0.09			NE	NA	NA
Bromomethane	0.5	0.17			NE	NA	NA
2-Butanone	20	1.6		282170	282170	0.0001	0.0000
Carbon Disulfide	0.5	0.12		244	244	0.0020	0.0005
Carbon Tetrachloride	0.5	0.14		1970	1970	0.0003	0.0001
Chlorobenzene	0.5	0.09		1203	1203	0.0004	0.0001
Chlorodibromomethane	TBD	TBD			NE	NA	NA
Chloroethane	0.5	0.2			NE	NA	NA
2-Chloroethyl Vinyl Ether	TBD	TBD			NE	NA	NA
Chloroform	0.5	0.1		1240	1240	0.0004	0.0001
Chloromethane	0.5	0.14			NE	NA	NA
trans-1,4-Dichloro-2-butene	TBD	TBD			NE	NA	NA
1,2-Dibromoethane	2	0.1			NE	NA	NA
Dibromomethane	0.5	0.09			NE	NA	NA
1,2-Dichlorobenzene	0.5	0.09			NE	NA	NA
1,3-Dichlorobenzene	0.5	0.11			NE	NA	NA
1,4-Dichlorobenzene	0.5	0.09			NE	NA	NA
1,1-Dichloroethane	0.5	0.1		14680	14680	0.0000	0.0000
1,2-Dichloroethane	0.5	0.09		15200	15200	0.0000	0.0000
1,1-Dichloroethene	0.5	0.14		>2800	>2800	0.0002	0.0001
trans-1,2-Dichloroethene	0.5	0.1		9538	9538	0.0001	0.0000
1,2-Dichloropropane	0.5	0.1			NE	NA	NA
cis-1,3-Dichloropropene ⁷	0.5	0.08		244	244	0.0020	0.0003
trans-1,3-Dichloropropene ⁷	0.5	0.07		244	244	0.0020	0.0003
Dichlorodifluoromethane	0.5	0.12			NE	NA	NA
Ethylbenzene	0.5	0.12		>440	>440	0.0011	0.0003
Hexachlorobutadiene	2	0.28			NE	NA	NA
2-Hexanone	20	2.1		32783	32783	0.0006	0.0001
Iodomethane	TBD	TBD			NE	NA	NA

.

LWG Lower Willamette Group

 Table A6-2. Analytes, Analytical Concentration Goals, and Method Reporting and Detection Limits for Groundwater and Transition-Zone Water

 Samples.

Analyte	MRL	MDL	NRWQC ¹	ORNL ²	ACG ³	Ratio of MRL to AGC	Ratio of MDL to ACG
Isopropylbenzene	2	0.12			NE	NA	NA
4-Methyl-2-Pentanone	20	2.6		77400	77400	0.0003	0.0000
Methylene chloride	2	0.1		42667	42667	0.0000	0.0000
Methyl tert-butyl ether	0.5	0.09			NE	NA	NA
Naphthalene	2	0.14		620	620	0.0032	0.0002
Styrene	0.5	0.1			NE	NA	NA
1,1,1,2-Tetrachloroethane	0.5	0.1			NE	NA	NA
1,1,2,2-Tetrachloroethane	0.5	0.13		2400	2400	0.0002	0.0001
Tetrachloroethene	0.5	0.11		750	750	0.0007	0.0001
Toluene	0.5	0.1		1269	1269	0.0004	0.0001
1,2,4-Trichlorobenzene	2	0.09			NE	NA	NA
1,1,1-Trichloroethane	0.5	0.14		3493	3493	0.0001	0.0000
1,1,2-Trichloroethane	0.5	0.08		9400	9400	0.0001	0.0000
Trichloroethene	0.5	0.11		7257	7257	0.0001	0.0000
Trichlorofluoromethane	0.5	0.13			NE	NA	NA
1,2,3-Trichloropropane	0.5	0.28			NE	NA	NA
Vinyl Acetate	TBD	TBD		810	810	NA	NA
Vinyl Chloride	0.5	0.11			NE	NA	NA
m&p-Xylene	0.5	0.24		62308	62308	0.0000	0.0000
o-Xylene	0.5	0.1		62308	62308	0.0000	0.0000
Polycyclic Aromatic Hydrocarbons, µg/L (ppb)						
Acenaphthene	0.02	0.002		74	74	0.0003	0.0000
Acenaphthylene	0.02	0.002			NE	NA	NA
Anthracene	0.02	0.002		0.09	0.09	0.2222	0.0222
Benzo(a)anthracene	0.02	0.003		0.65	0.65	0.0308	0.0046
Benzo(b)fluoranthene	0.02	0.002			NE	NA	NA
Benzo(k)fluoranthene	0.02	0.002			NE	NA	NA
Benzo(g,h,i)perylene	0.02	0.004			NE	NA	NA
Benzo(a)pyrene	0.02	0.002		0.3	0.3	0.0667	0.0067
Chrysene	0.02	0.002			NE	NA	NA
Dibenz(a,h)anthracene	0.02	0.002			NE	NA	NA

Table A6-2. Analytes, Analytical Concentration Goals, and Method Reporting and Detection Limits for Groundwater and Transition-Zone Water Samples.

Analyte	MRL	MDL	NRWQC ¹	ORNL ²	ACG ³	Ratio of MRL to AGC	Ratio of MDL to ACG
Fluoranthene	0.02	0.003		15	15	0.0013	0.0002
Fluorene	0.02	0.003			NE	NA	NA
Indeno(1,2,3-cd)pyrene	0.02	0.003			NE	NA	NA
2-Methylnaphthalene	0.02	0.003			NE	NA	NA
Naphthalene	0.02	0.004		620	620	0.0000	0.0000
Phenanthrene	0.02	0.004		200	200	0.0001	0.0000
Pyrene	0.02	0.003			NE	NA	NA

Notes:

¹ NRWQC freshwater aquatic life criteria (EPA 2002b).

² ORNL values are lowest chronic value for all organisms in Table 1 of Suter and Tsao (1996).

³ACGs are the lower of the NRWQC freshwater aquatic life criteria (EPA 2002b) and ORNL values (Suter and Tsao 1996).

⁴Analysis is for total chromium. ACGs are based on hexavalent chromium.

⁵Parameters for calculating freshwater dissolved metals that are hardness-dependent are from NRWQC (EPA 2002b).

Hardness-dependent criteria based on average hardness of 25 mg/L (CaCO₃) (USGS database from 1974 to 1990).

⁶ ACG is based on ORNL value (Suter and Tsao 1996) for p-p'-DDD.

⁷ ACG is based on ORNL value (Suter and Tsao 1996) for nonspecific 1,3-Dichloropropene.

MRL = minimum reporting limit

MDL = minimum detection limit

NA = not applicable

NE = not established

NRWQC = National Recommended Water Quality Criteria

ORNL = Oak Ridge National Laboratory

TBD = to be determined

Portland Harbor RI/FS Round 2 QAPP Addendum 3: Groundwater Pilot Study December 16, 2004

	MRL	MRL	
Analyte	(ug/m ³)	(ppbv)	
1,1,1,2-Tetrachloroethane	NA	NA	
1,1,1-Trichloroethane	220	39.6	
1,1,2,2-Tetrachloroethane	220	33	
1,1,2-Trichloroethane	220	39.6	
1,1-Dichloroethane	220	55	
1,1-Dichloroethene	220	55	
1,2,3-Trichloropropane	NA	NA	
1,2,4-Trichlorobenzene	NA	NA	
1,2-Dibromoethane	220	28.6	
1,2-Dichlorobenzene	220	37.4	
1,2-Dichloroethane	220	55	
	220		
1,2-Dichloropropane 1,3-Dichlorobenzene	220	48.4 37.4	
•	220		
1,4-Dichlorobenzene		37.4	
2,2'-oxybis (1-chloropropane)	NA 220	NA 74 º	
2-Butanone (MEK)	220 NA	74.8	
2-Chloroethyl Vinyl Ether	NA	NA	
2-Chloronaphthalene	NA	NA 52 s	
2-Hexanone	220	52.8	
3,3'-Dichlorbenzidine	NA	NA	
4-bromophenyl-phenyl ether	NA	NA	
4-Chloroaniline	NA	NA	
4-Chlorophenyl-phenyl ether	NA	NA	
4-Methyl-2-pentanone	220	52.8	
Acetone	1100	462	
Acrolein	NA	NA	
Acrylonitrile	NA	NA	
Benzene	220	68.2	
Bis-(2-chloroethoxy) methane	NA	NA	
Bis-(2-chloroethyl) ether	NA	NA	
Bromochloromethane	NA	NA	
Bromodichloromethane	220	33	
Bromoform	220	21.34	
Bromomethane	220	57.2	
Carbon Disulfide	220	70.4	
Carbon Tetrachloride	220	35.2	
Chlorobenzene	220	48.4	
Chlorodibromomethane	220	26.4	
Chloroethane	220	83.6	
Chloroform	220	44	
Chloromethane	220	105.6	
cis-1,3-Dichloropropene	220	48.4	
Dibromomethane	NA	NA	
Dichlorodifluoromethane	NA	NA	
Ethylbenzene	220	50.6	

Table A6-3.	Method Re	eporting Li	mits for Vo	latile Organic	Compounds in	Vapor Samples.

	MRL	MRL (ppbv)	
Analyte	(ug/m ³)		
Hexachlorobenzene	NA	NA	
Hexachlorobutadiene	NA	NA	
Hexachlorocyclopentadiene	NA	NA	
Hexachloroethane	NA	NA	
Iodomethane	NA	NA	
Isopropylbenzene	NA	NA	
m&p-Xylene	220	50.6	
Methyl tert-butyl ether	220	61.6	
Methylene chloride	220	63.8	
Naphthalene	NA	NA	
o-Xylene	220	50.6	
Styrene	220	50.6	
Tetrachloroethene	220	33	
Toluene	220	59.4	
trans-1,2-Dichloroethene	220	55	
trans-1,3-Dichloropropene	220	48.4	
trans-1,4-Dichloro-2-butene	NA	NA	
Trichloroethene	220	41.8	
Trichlorofluoromethane	220	39.6	
Vinyl Acetate	220	61.6	
Vinyl Chloride	220	85.8	

Table A6-3. Method Reporting Limits for Volatile Organic Compounds in Vapor Samples.

Notes:

MRL = method reporting limit NA = No analysis. This VOC will not be analyzed. ug/m3 = micrograms per cubic meter ppbv = parts per billion by volume

Analyte	CAS number	ACG ¹	MDL ²	MRL ³
Conventional Analyses				
Total solids (percent of whole weight)		*	0.01	0.01
Perchlorate (µg/kg)	14797-73-0	*	NA	20
Metals			mg/kg dry wt	
Aluminum	7429-90-5	*	2.0	2.0
Antimony	7440-36-0	*	0.02	0.05
Arsenic	7440-38-2	*	0.05	0.1
Cadmium	7440-43-9	*	0.006	0.02
Chromium	7440-47-3	*	0.04	0.2
Copper	7440-50-8	*	0.07	0.1
Lead	7439-92-1	*	0.02	0.05
Mercury	7439-97-6	*	0.01	0.02
Nickel	7440-02-0	*	0.03	0.2
Selenium	7782-49-2	*	0.05	0.1
Silver	7440-22-4	*	0.02	0.02
Zinc	7440-66-6	*	0.1	0.5
Calcium	7440-70-2	*	3	10
Magnesium	7439-95-4	*	2	4
Manganese	7439-96-5	*	2	5
Potassium	7440-09-7	*	100	400
Sodium	7440-23-5	*	20	20
				20
Organochlorine Pesticides			µg/kg dry wt	
4,4'-DDD	72-54-8	0.083	0.093	1
4,4'-DDE	72-55-9	0.0588	0.076	1
4,4'-DDT	50-29-3	0.0588	0.17	1
Total Petroleum Hydrocarbons			mg/kg dry wt	
TPH-gas	NA	*	3.2	10
TPH-diesel	NA	*	7.1	25
Volatile Organic Compounds			μg/kg dry wt	
1,1,1,2-Tetrachlorethane	630-20-6	*	0.031	· 1
I,I,I-Trichloroethane (TCA)	71-55-6	*	0.059	1
1,1,2,2-Tetrachloroethane	79-34-5	*	0.096	1
1,1,2-Trichloroethane	79-00-5	*	0.059	1
1,1-Dichloroethane	75-34-3	*	0.057	1
1,2,3-Trichloropropane	96-18-4	*	0.11	1
1,2-Dichloroethane (EDC)	107-06-2	*	0.031	1
1,2-Dichloropropane	78-87-5	*	0.035	1
1,4-Dichlorobenzene	106-46-7	*	0.12	1
1,2-Dibromoethane (EDB)	106-93-4	*	0.051	1
I,2-Dichlorobenzene	95-50-1	*	0.075	1
1,3-Dichlorobenzene	541-73-1	*	0.11	1
1,2,4-Trichlorobenzene	120-82-1	*	0.36	1
2-Butanone (MEK)	78-93-3	*	1.1	4
2-Chloroethyl Vinyl Ether	110-75-8	*	0.15	2
2-Hexanone	591-78-6	*	0.64	2
4-Methyl-2-Pentanone (MIBK)	108-10-1	*	0.24	2

Table A6-4. Analytes, Analytical Concentration Goals, and Method Reporting Limits for Sediment Samples.

Portland Harbor RI/FS Round 2 QAPP Addendum 3: Groundwater Pilot Study December 16, 2004

Analyte	CAS number	ACG ¹	MDL ²	MRL ³
Acetone	67-64-1	*	1.6	10
Acrolein	107-02-8	*	0.51	2.5
Acrylonitrile	107-13-1	*	0.23	2
Bromochloromethane	74-97-5	*	0.06	1
Bromodichloromethane	75-27-4	*	0.068	1
Bromoform	75-25-2	*	0.046	1
Bromomethane	74-83-9	*	0.37	1
Carbon Disulfide	75-15-0	*	0.13	1
Carbon Tetrachloride	56-23-5	*	0.099	t
Chlorobenzene	108-90-7	*	0.07	1
Chlorodibromomethane	124-48-1	*	0.068	1
Chloroethane	75-00-3	*	0.28	I
Chloroform	67-66-3	*	0.056	1
Chloromethane	74-87-3	*	0.19	1
cis-1,3-Dichloropropene	10061-01-5	*	0.031	1
Dibromomethane	74-95-3	*	0.082	1
Dichlorodifluoromethane	75-71-8	*	0.11	1
Hexachlorobutadiene	87-68-3	*	0.17	2
Iodomethane (Methyl Iodide)	74-88-4	*	0.67	2
Isopropylbenzene	98-82-8	*	0.044	1
Methylene Chloride	75-09-2	*	0.29	5
Naphthalene	91-20-3	*	0.35	1
Styrene	100-42-5	*	0.074	1
trans-1,4-Dichloro-2-butene	110-57-6	*	0.51	. 2
Trichlorofluoromethane	75-69-4	*	0.081	2
Vinyl Acetate	108-05-4	*	0.36	1
1,1-Dichloroethene	75-35-4	*	0.082	1
Benzene	71-43-2	*	0.039	1
Ethyl Benzene	100-41-4	*	0.039	1
<i>m,p</i> -Xylene	136777-61-2	*	0.13	1
Methyl tert-butyl ether	1634-04-4	*	0.039	1
o-Xylene	95-47-6	*	0.039	1
Tetrachloroethene (PCE)	127-18-4	*	0.073	1
Toluene	108-88-3	*	0.15	1
trans-1,2-Dichloroethene	156-60-5	*	0.19	1
trans-1,3-Dichloropropene	10061-02-6	*	0.044	1
Trichloroethene (TCE)	79-01-6	*	0.044	1
Vinył Chloride	75-01-4	*	0.085	1
Chlorobenzene	108-90-7	*	0.085	E I
	200 / 0 /			•
Semivolatile Organic Compounds			µg/kg dry wt	
Polycyclic Aromatic Hydrocarbons	01 00 0	2.4	0.24	F
Naphthalene	91-20-3	24	0.34	5
2-Methylnaphthalene	91-57-6	*	0.34	5
Acenaphthylene	208-96-8		0.22	5
Acenaphthene	83-32-9	72	0.16	5
Fluorene	86-73-7	48	0.19	5
Phenanthrene	85-01-8	*	0.33	5
Anthracene	120-12-7	360	0.22	5
Fluoranthene	206-44-0	48	0.34	5
Pyrene	129-00-0	36	0.36	5

Table A6-4. Analytes, Analytical Concentration Goals, and Method Reporting Limits for Sediment Samples.

Portland Harbor RI/FS Round 2 QAPP Addendum 3: Groundwater Pilot Study December 16, 2004

Analyte	CAS number	ACG ¹	MDL ²	MRL ³
Benz(a)anthracene	56-55-3	0.038	0.16	5
Chrysene	218-01-9	3.8	0.41	5
Benzo(b)fluoranthene	205-99-2	0.038	0.48	5
Benzo(k)fluoranthene	207-08-9	0.38	0.33	5
Benzo(a)pyrene	50-32-8	0.0038	0.22	5
Indeno(1,2,3-cd)pyrene	193-39-5	0.038	0.24	5
Dibenz(a,h)anthracene	53-70-3	0.0038	0.26	5
Benzo(g,h,i)perylene	191-24-2	*	0.23	5

Table A6-4. Analytes, Analytical Concentration Goals, and Method Reporting Limits for Sediment Samples.

Notes:

¹ ACG values are as provided in the Round 2 QAPP.

 2 The laboratory's current MDL is provided. MDLs are updated periodically by the laboratory.

³ The MRL is provided on a dry-weight basis and assumes 50% moisture in the samples.

The MRL for project samples will vary with moisture content in the samples.

The MRL represents the level of lowest calibration standard (i.e., the practical quantitation limit).

ACG = analytical concentration goals; established by EPA during *ad hoc* meeting with LWG May 10, 2002

MDL = method detection limit

MRL = method reporting limit

NA = not applicable

* = A risk-based ACG has not been established.

	Sur	rogate recovery (per	cent)
Surrogate compound	Water samples	Vapor samples	Sediment samples
Organochlorine Pesticides			
Tetrachloro- <i>meta</i> -xylene	17-128		39-129
Decachlorobiphenyl	10-136		29-141
Semivolatile Organic Compounds (SIM)			
Fluoranthene-d10	18-137		34-122
Fluorene-d10	37-107		27-110
Terphenyl-d14	18-153		50-132
Volatile Organic Compounds			
Toluene-d8	77-131	70-140	77-131
4-Bromofluorobenzene	74-116	70-140	74-116
Dibromofluoromethane	81-120	NA	81-120
1,2-Dichloroethane-d4	80-118	70-140	80-118
Peteroleum Hydrocarbons			
4-Bromofluorobenzene	50-150		50-150
n-Triacontane	50-150		50-150
o-Terphenyl	50-150		50-150

Table A7-1. Laboratory Control Limits for Surrogate Compounds.

Notes:

Control limits are updated periodically by the laboratories. Control limits that are in effect at the laboratory at the time of analysis will be used for sample analysis and data validation. These may differ slightly from the control limits shown in this table.

NA = not applicable

SIM = selected ion monitoring

Analuta	Matrix Spike Recovery (percent)	Laboratory Control Sample Recovery (percent)	Type of Duplicate	Control Limi (RPD)	
Analyte		Recovery (percent)	Dupitcate		
Vater Samples					
Conventional Analyses					
рН	NA	NA	LD	20	
Chloride	80-120	90-110	LD	20	
Sulfate	80-120	90-110	LD	20	
Alkalinity as CaCO ₃	NA	NA	LD	20	
Perchlorate	80-120	85-115	LD	20	
Metals					
Arsenic	70-130	85-115 ²	LD	20	
Copper	70-130	85-115 ²	LD	20	
Chromium,total	70-130	85-115 ²	LD	20	
Lead	70-130	85-115 ²	LD	20	
Zinc	70-130	85-115 ²	LD	20	
Calcium	NA	85-115 ²	LD	20	
Magnesium	NA	85-115 ²	LD	20	
Manganese	NA	85-115 ²	LD	20	
Potassium	NA	85-115 ²	LD	20	
Sodium	NA	85-115 ²	LD	20	
Organochlorine Pesticides					
4,4'-DDD	20-178	47-151	MSD	30	
4,4'-DDE	35-142	66-122	MSD	30	
4,4'-DDT	17-183	47-157	MSD	30	
Semivolatile Organic Compound	s (PAHs)				
Naphthalene	10-125	27-116	MSD	30	
2-Methylnaphthalene	10-121	22-106	MSD	30	
Acenaphthylene	18-135	33-131	MSD	30	
Acenaphthene	10-139	31-122	MSD	30	
Fluorene	10-147	33-120	MSD	30	
Phenanthrene	15-146	35-120	MSD	30	
Anthracene	15-137	34-126	MSD	30 30	
Fluoranthene	35-125	36-132	MSD	30	
Pyrene	15-146	38-129	MSD	30 30	
Benz(a)anthracene	23-134	39-128	MSD	30	
Chrysene	34-122				
Benzo(b)fluoranthene	34-122 31-125	40-128	MSD MSD	30	
Benzo(k)fluoranthene	31-125 36-121	36-135		30	
Benzo(a)pyrene		38-133	MSD MSD	30	
	29-118	35-129	MSD	30	
Indeno(1,2,3-cd)pyrene	31-126	37-133	MSD	30	
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	30-133 20-141	38-135 39-133	MSD MSD	30 30	
		-			
Total Petroleum Hydrocarbons	65 100	(5.100		20	
TPH-gas	65-133	65-133		30	
TPH-diesel	71-146	71-146		30	

Table A7-2. Laboratory Control Limits for Accuracy and Precision.

Table A7-2.	Laboratory Con	trol Limits for A	ccuracy and Precision.
-------------	----------------	-------------------	------------------------

Analyta	Matrix Spike Recovery (percent)	Laboratory Control Sample Recovery (percent)	Type of Duplicate	Control Lim (RPD)	
Analyte /olatile Organic Compounds		Recovery (percent)	Duplicate		
	17 120	76-122	MOD	40	
1,1,1,2-Tetrachloroethane	17-138	68-126	MSD	40	
1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane	41-127		MSD	40	
	15-132	69-120	MSD	40	
1,1,2-Trichloroethane	31-135	77-118	MSD	40	
1,1-Dichloroethane	45-122	66-120	MSD MSD	40	
1,2,3-Trichloropropane	20-144	73-120	+	40	
1,2-Dichloroethane (EDC)	34-134	63-129	MSD	40	
1,2-Dichloropropane	36-129	69-123	MSD	40	
1,4-Dichlorobenzene	10-129	71-127	MSD	40	
1,2-Dibromoethane (EDB)	22-132	76-120	MSD	40	
1,2-Dichlorobenzene	10-127	73-123	MSD	40	
1,3-Dichlorobenzene	10-128	69-129	MSD	40	
1,2,4-Trichlorobenzene	10-128	63-139	MSD	40	
2-Butanone (MEK)	10-143	37-137	MSD	40	
2-Chloroethyl Vinyl Ether	70-130	34-149	MSD	40	
2-Hexanone	22-126	60-124	MSD	40	
4-Methyl-2-Pentanone (MIBK)	29-137	55-136	MSD	40	
Acetone	20-127	43-119	MSD	40	
Acrolein	70-130	18-148	MSD	40	
Acrylonitrile	70-130	10-197	MSD	40	
Bromochloromethane	41-134	75-126	MSD	40	
Bromodichloromethane	19-138	67-129	MSD	40	
Bromoform	10-136	72-121	MSD	40	
Bromomethane	15-140	37-145	MSD	40	
Carbon Disulfide	19-139	63-139	MSD	40	
Carbon Tetrachloride	25-131	69-128	MSD	40	
Chlorobenzene	17-130	76-119	MSD	40	
Chlorodibromomethane	19-138	67-129	MSD	40	
Chloroethane	28-149	44-143	MSD	40	
Chloroform	37-132	70-123	MSD	40	
Chloromethane	36-148	51-147	MSD	40	
cis-1,3-Dichloropropene	11-135	73-127	MSD	40	
Dibromomethane	34-137	74-124	MSD	40	
Dichlorodifluoromethane	34-154	43-163	MSD	40	
Hexachlorobutadiene	10-117	58-132	MSD	40	
Iodomethane (Methyl Iodide)	70-130	70-130	MSD	40	
Isopropylbenzene	10-129	62-125	MSD	40	
Methylenechloride	41-131	70-127	MSD	40	
Naphthalene	10-131	69-134	MSD	40	
Styrene	10-138	75-127	MSD	40	
trans-1,4-Dichloro-2-butene	70-130	70-130	MSD	40	
Trichlorofluoromethane	37-135	55-134	MSD	40	
Vinyl Acetate	70-130	10-144	MSD	40	
I, I-Dichloroethene	46-128	71-127	MSD	40	
Benzene	45-129	78-124	MSD	40	
EthylBenzene	15-138	75-126	MSD	40	
m,p-Xylene	15-138	76-131	MSD	40	
Methyltert-butyl ether	37-132	59-124	MSD	40	
o-Xylene	12-143	76-128	MSD	40	

Table A7-2. Lat	boratory Control	Limits for	Accuracy and	1 Precision.
-----------------	------------------	------------	--------------	--------------

Analyte	Matrix Spike Recovery (percent)	Laboratory Control Sample Recovery (percent)	Type of Duplicate	Control Lim (RPD)
Tetrachloroethene (PCE)	10-139	70-124	MSD	40
Toluene	31-136	75-128	MSD	40
trans-1,2-Dichloroethene	33-128	68-122	MSD	40
trans-1,3-Dichloropropene	10-131	68-114	MSD	40
Trichloroethene (TCE)	18-153	69-128	MSD	40
Vinyl Chloride	34-165	55-155	MSD	40
apor samples				
Volatile Organic Compounds				
1,1-Dichloroethene	NA	70-130	LCSD	30
Benzene	NA	70-130	LCSD	30
Trichloroethene (TCE)	NA	70-130	LCSD	30
Toluene	NA	70-130	LCSD	30
Chlorobenzene	NA	70-130	LCSD	30
1,2-Dichlorobenzene	NA	70-130	LCSD	30
Naphthalene	NA	70-130	LCSD	30
ediment samples				
Conventional Analyses				
Total solids	NA	NA	LD	20
Perchlorate	75-125	75-125	LD	20
Metals	70-130	Note-2	LD	30
Organochlorine Pesticides				
4,4'-DDD	32-166	67-139	MSD	40
4,4'-DDE	48-146	67-133	MSD	40
4,4'-DDT	47-157	68-144	MSD	40
Total Petroleum Hydrocarbons				
TPH-gas	42-125	78-128	LD	40
TPH-diesel	66-146	74-150	LD	40
Volatile Organic Compounds				
1,1,1,2-Tetrachloroethane	17-138	76-122	MSD	40
1,1,1-Trichloroethane(TCA)	41-127	68-126	MSD	40
1,1,2,2-Tetrachloroethane	15-132	69-120	MSD	40
1,1,2-Trichloroethane	31-135	77-118	MSD	40
1,1-Dichloroethane	45-122	66-120	MSD	40
1,2,3-Trichloropropane	20-144	73-120	MSD	40
1,2-Dichloroethane(EDC)	34-134	63-129	MSD	40
1,2-Dichloropropane	36-129	69-123	MSD	40
1,4-Dichlorobenzene	10-129	71-127	MSD	40
1,2-Dibromoethane(EDB)	22-132	76-120	MSD	40
1,2-Dichlorobenzene	10-127	73-123	MSD	40
1,3-Dichlorobenzene	10-128	69-129	MSD	40
1,2,4-Trichlorobenzene	10-128	63-139	MSD	40
2-Butanone (MEK)	10-143	37-137	MSD	40
2-Chloroethyl Vinyl Ether	70-130	34-149	MSD	40
2-Hexanone	22-126	60-124	MSD	40
4-Methyl-2-Pentanone (MIBK)	29-137	55-136	MSD	40

Analyte	Matrix Spike Recovery (percent)	Laboratory Control Sample Recovery (percent)	Type of Duplicate	Control Limi (RPD)
Acetone	20-127	43-119	MSD	40
Acrolein	70-130	18-148	MSD	40
Acrylonitrile	70-130	10-197	MSD	40
Bromochloromethane	41-134	75-126	MSD	40
Bromodichloromethane	19-138	67-129	MSD	40
Bromoform	10-136	72-121	MSD	40
Bromomethane	15-140	37-145	MSD	40
Carbon Disulfide	19-139	63-139	MSD	40
Carbon Tetrachloride	25-131	69-128	MSD	40
Chlorobenzene	17-130	76-119	MSD	40
Chlorodibromomethane	10-137	74-119	MSD	40
Chloroethane	28-149	44-143	MSD	40
Chloroform	37-132	70-123	MSD	40
Chloromethane	36-148	51-147	MSD	40
cis-1,3-Dichloropropene	11-135	73-127	MSD	40
Dibromomethane	34-137	74-124	MSD	40
Dichlorodifluoromethane	34-154	43-163	MSD	40
Hexachlorobutadiene	10-117	58-132	MSD	40
Iodomethane (Methyl Iodide)	70-130	70-130	MSD	40
Isopropylbenzene	10-129	62-125	MSD	40
Methylenechloride	41-131	70-127	MSD	40
Naphthalene	10-131	69-134	MSD	40
Styrene	10-138	75-127	MSD	40
trans-1,4-Dichloro-2-butene	70-130	70-130	MSD	40
Trichlorofluoromethane	37-135	55-134	MSD	40
Vinyl Acetate	70-130	10-144	MSD	40
1,1-Dichloroethene	46-128	71-127	MSD	40
Benzene	45-129	78-124	MSD	40
Ethyl Benzene	15-138	75-126	MSD	40
m,p-Xylene	15-138	76-131	MSD	40
Methyl tert-butyl ether	37-132	59-124	MSD	40
o-Xylene	12-143	76-128	MSD	40
Tetrachloroethene(PCE)	10-139	70-120	MSD	40
Toluene	31-136	75-128	MSD	40
trans-1,2-Dichloroethene	33-128	68-122	MSD	40
trans-1,3-Dichloropropene	10-131	68-114	MSD	40
Trichloroethene (TCE)	18-153	69-128	MSD	40
Vinyl Chloride	34-165	55-155	MSD	40
Semivolatile Organic Compounds				
Naphthalene	22-101	43-102	MSD	40
2-Methylnaphthalene	27-106	44-105	MSD	40
Acenaphthylene	36-113	51-107	MSD	· 40
Acenaphthene	32-114	50-105	MSD	40
Fluorene	39-118	54-108	MSD	40
Phenanthrene	29-130	58-106	MSD	40
Anthracene	38-133	61-113	MSD	40
Fluoranthene	30-143	63-117	MSD	40
Pyrene	28-143	59-121	MSD	40
Benz(a)anthracene	24-149	57-120	MSD	40
Chrysene	38-133	64-116	MSD	40

Table A7-2. Laboratory Control Limits for Accuracy and Precision.

Table A7-2. I	Laboratory Control	ol Limits for Accura	cy and Precision.
---------------	--------------------	----------------------	-------------------

Analyte	Matrix Spike Recovery (percent)	Laboratory Control Sample Recovery (percent)	Type of Duplicate	Control Limit (RPD)
Benzo(b)fluoranthene	26-144	58-126	MSD	40
Benzo(k)fluoranthene	29-136	61-122	MSD	40
Benzo(a)pyrene	30-146	58-128	MSD	40
Indeno(1,2,3-cd)pyrene	24-147	46-133	MSD	40
Dibenz(a,h)anthracene	33-136	50-128	MSD	40
Benzo(g,h,i)perylene	23-142	52-125	MSD	40

Notes:

_

Note 1 - Control limits are updated periodically by the laboratories. Control limits that are in effect at the laboratory at the time of analysis will be used for sample analysis and data validation. These may differ slightly from the control limits shown in this table.

Note 2 - Percent recovery control limits are not applicable. Laboratory control limits are established based on the manufacturer's established range of acceptable concentrations.

In-house limits

² Method specified control limits

Page 5 of 5

	Con	tainer	Additional	 D	Holding Time	Laboratory
	Туре	Size	for Lab QC ¹	Preservation	Holding Time	Sample Size
Water samples	<u> </u>					
Conventionals	HDPE	250 ml	none	4±2°C	14 days ²	100 ml
Conventionals + Perchlorate	HDPE	250 ml	none	4±2°C	14 days ²	100 ml
Metals	HDPE	500 mL	l liter	5 ml of 1:1& HNO ₃ ; 4±2°C	6 months	300 ml
Chlorinated pesticides	AG	l liter	2 liters	4±2°C	7/40 days ³	1 liter
Semivolatile organic compounds (PAH)	AG	1 liter	2 liters	4±2°C	$7/40 \text{ days}^3$	l liter
Volatile organic compounds	VOA	3x40 mL	2x40 mL	HCl; 4±2°C; no headspace	14 days	5 ml
TPH-gas	VOA	3x40 mL	2x40 mL	HCl; 4±2°C; no headspace	14 days	5 ml
TPH-diesel	AG	1 liter	2 liters	HCl; 4±2℃	14 days	400 ml
Vapor samples						
Volatile organic compounds	VOA-V	40 mL	2x40 mL	4±2°C	14 days	5ml
Sediment samples						
Aetals, total solids	WMG	2.		4.000	6 months	10 g
Perchlorate	WMG	2 oz	none	4±2°C	14 days	2.5 g
olatile organic compounds	WMG	2 oz	none	No headspace; 4±2°C (do not freeze)	14 days	5 g
Semivolatile organic compounds (PAH)	WMG	8 oz	none	Deep Frozen (-20°C)	1 year	50 g
Chlorinated pesticides	WMG	6 UZ	none	Deep Prozen (-20 C)	l year	25 g
TPH-gas	WMG	2 oz	none	No headspace; 4±2°C	14 days	5 g
TPH-diesel	WMG	8 oz	none	No headspace; 4±2°C	14 days	20 g

Table B2-1. Standard Sample Containers and Preservation Requirements.

Notes:

¹Sample container sizes may be modified to meet laboratory requirements.

²Extra sample volume will be collected at a frequency of 5% of samples to accommodate requirements for laboratory QC samples .

³The holding time is 7 days from collection to extraction and 40 days from extraction to analysis.

HDPE = high density polyethylene bottle

AG = amber glass bottle with TeflonTM -lined lid

VOA = 40-ml glass vial with Teflon[™] septum cap

VOA-V = 40-ml glass vial with crimp top for vapor samples

WMG = wide-mouth glass jar with TeflonTM -lined lid

			imum Sample						
			Requirement		Recommended Target Volume if Sample Volume is Limited				
		-	Without QC ²	Volume					
Study Area	Analysis	<u>(mL)</u>	<u>(mL)</u>	<u>(mL)</u>	Notes				
ARCO									
	Metals (As, Cu. Pb, Zn, Ca. Na, K, Mg, Mn)	250	100	100	ACGs for metals will be met with 50% sample volume reduction.				
	VOCs (BTEX)	120	80	80	If sample volume is limited, only 2 VOA vials will be filled.				
	PAHs	1000	500	300	ACGs can be met with 66% reduction in sample volume and smaller final extract volume.				
	TPH-gas	120	80	80	If sample volume is limited, only 2 VOA vials will be filled.				
	TPH-diesel	1000	500	500	May collected in same sample container as PAH sample.				
	Conventionals (Cl, SO4, pH, alkalinity)	250	150	75	Conventionals are not COIs and thus are low priority analytes. Elevated MRLs will not have a substantial impact on the pilot study objectives.				
Tai	rget Total Sample Volume	2740	1410	1135					
Arkema Ac	id Plant		·······						
	VOCs (full project list)	120	80	80	If sample volume is limited, only 1 or 2 VOA vials will be filled.				
	DDT, DDE, DDD	1000	500	500	ACGs for DDT, DDD, and DDE cannot be met with full sample volumes.				
	Metals (Ca, K, Mg, Mn, Na)	250	100	50	Major cations are not COIs and thus are low priority analytes. Elevated MRLs will not have a substantial impact on the pilot study objectives.				
	Conventionals (Cl, SO4, pH, alkalinity)	250	150	75	Conventionals are not COIs and thus are low priority analytes. Elevated MRLs will not have a substantial impact on the pilot study objectives.				
Tai	rget Total Sample Volume	1620	830	705					
Arkema Ch	lorate Plant								
	Metals (Cr, Ca, K, Mg, Mn, Na)	250	100	100	ACGs for metals can be met with this level of dilution.				
	Perchlorate and Conventionals (Cl, SO4, pH, alkalinity)	250	150	150	No ACG established for perchlorate; default is the standard MRL/MDL. Perchlorate is the priority for this sample; sample volume for conventionals may be reduced if needed.				
Tar	rget Total Sample Volume	500	250	250					

Notes:

¹CAS-provided minimum sample volumes to meet standard MRLs/MDLs and standard laboratory QC.

²CAS-provided minimum sample volumes to meet standard MRLs/MDLs, but with limited laboratory QC.

³Approximate amount of dilution of minimum sample volume allowable to meet ACGs.

Table B3-2. Sample Device Quantity Requirements to Meet Sample Volume Requirements.

Study Area		Sample Device Type														
	Ideal Minimum Sample Volume Requirement (mL)	Small Volume Peeper	Large Volume Peeper	Vapor Diffusion	Trident Probe	UltraScep	Push-Point	Power Grab & Centrifug Extraction								
ARCO		Target Volume (mL)	Target Volume (ml.)	Target Volume (mL)	Target Volume (mL)	Target Volume (ml.)	Target Volume (ml.)	Target Volume (mL)								
Meials																
Unfiltered (As. Cu, Mn, Pb, Zn)	250ª	100	250	NS	250	250	250	250								
Filtered (As. Cu. Pb. Zn. Ca. Na, K. Mg, Mn)	250*	NS	NS	NS	250	250	250	250								
VOCs (BTEX)																
Unfiltered	120 ^b	80	120	120	120	120	120	0								
ТРН-G																
Unfiltered	120 ^b	80 ^r	120	NS	NS	NS	120	NS								
PAHs, TPH-D																
Unfiltered	1000°	500 ¹	1000	NS	1000	1000	1000	1000								
Filtered	1000°	NS	NS	NS	1000	1000	1000	1000								
Cl, SO4, pH, alkalinity																
Unfiltered	250 ^d	4() ^g	250	NS	NS	NS	NS	NS								
Filtered	250 ^d	NS	NS	NS	250	250	250	125								
	Total Target Volume (mL)	800 ^r	1740	120	2870	2870	2990	2625								
	Volume per Sampler (mL)	200 ^f	1000	40	NA	NA	NA	2500								
	No. Samplers per Location	4 ¹	2	3	NA	NA	NA	2								
Arkema Acid Plant Area		Target Volume (mL)	Target Volume (ml.)	Target Volume (mL)	Target Volume (mL)	Target Volume (ml.)	Target Volume (mL)	Target Volume (mL)								
VOCs (full project list)																
Unfiltered	120 ^b	80	120	120	120	120	NS	NS								
DDT, DDE, DDD																
Unfiltered	1000°	NS	600	NS	1000	1000	NS	1000								
Filtered	1000 ^c	500	NS	NS	1000	1000	NS	1000								
Ca, K. Mg. Mn. Na																
Unlittered	250°	NS ^h	125	NS	250	250	NS	125								
Filtered	250°	NS ^h	NS	NS	250	250	NS	125								
Cl, SO4, pH, alkalinity																
Unfiltered	250 ^d	NS ^h	125	NS	NS	NS	NS	NS								
Filtered	250 ^d	NS ^b	NS	NS	250	250	NS	125								
	Total Target Volume (mL)	580	970	120	2870	2870	0	2375								
	Volume per Sampler (mL)	200	1000	40	NA	NA	NA	2500								
	No. Samplers per Location	3	I	3	NA	NΛ	0	I								

Round 2 QAPP Addendum 3: Groundwater Pilot Study December 16, 2004

Table B3-2. Sample Device Quantity Requirements to Meet Sample Volume Requirements.

Study Area		Sample Device Type													
	Ideal Minimum Sample Volume Requirement (ml.)	Small Volume Peeper	Large Volume Peeper	Vapor Diffusion	Trident Probe	UltraScep	Push-Point	Power Grab & Centrifuge Extraction							
Arkema Chlorate Plant Area		Target Volume (mL)	Target Volume (ml_)	Target Volume (mL)	Target Volume (ml.)	Target Volume (ml.)	Target Volume (ml.)	Target Volume (mL)							
Metals															
Unfiltered (Cr)	250ª	100	250	NS	250	250	NS	250							
Filtered (Cr. Ca. K, Mg. Mn. Na)	250*	NS	NS	NS	250	250	NS	250							
Perchlorate, Cl, SO4, pH, alkalinity		•													
Unfiltered (Perchlorate)	250 ^d	100	250	NS	250	250	NS	250							
Filtered (Perchlorate, Cl, SO4, pH, alkalinity)	250 ^d	NS	SN	NS	250	250	NS	250							
	Total Target Volume (mL)	200	500	0	1000	1000	0	1000							
	Volume per Sampler (mL)	200	1000	40	NA	NA	NA	2500							
	No. Samplers per Location	1	1	0	NA	NA	0	I							

Notes:

NS = No sample collected for analysis of subject constituent.

NA = Not Applicable.

Notes

*Can reduce to 100 mL if QC level reduced.

^bCan reduce to 2x40mL vials if QC level reduced.

"Target volume for peepers is 1/2 the minimum sample volume. CAS will reduce the final extract volume to maintain MRLs and MDLs.

^dMinimum volume of 150 mL without QC. 250 mL required for QC and analysis of perchlorate.

"Minimum volume of 100 mL without QC.

¹Due to limited number of available small volume peeper devices. One location will not include analysis of TPH-G and TPH-D, and only 300 mL will be collected for PAH analysis. The replicate sample will be collected from this location and will have the same constraints.

*It is anticipated that there will be limited sample volume available for analysis of Cl, SO4, pH, alkalinity. Analysis of these constituents will be included only if sufficient volume is available after other sample volume requirements are met.

^bInsufficient sample volume will be available for analysis of these parameters.

Table B5-1. Summary of Transition Zone Water, Groundwater, Bulk Sediment, and Field Quality Control Samples for the Pilot Study.

	In-Situ Diffusion Samplers									In-Situ Direct Samplers										Ex-Situ Extraction						
	Small Volume Peeper			Large Volume Peeper			Vapor Diffusion			Trident Probe			UltraSeep			Push-Point ^b			Power Grab & Centrifuge Extraction			Power Grab Bulk Sediment Samples				
	Nat	Rep*	FQC	Nat	Rep	FQC	Nat	Rep*	FQC	Nat	Rep	FQC	Nat	Rep*	FQC	Nat	Rep	FQC	Nat	Rep*		Nat	Rep	FQC		
ARCO				-											_	······										
Metals																										
Unfiltered (As, Cu, Mn, Pb, Zn)	3	1	ID	3	1	ID	0	0	0	3	1	1E	1	0	IE	6	1	1E	3	1	1D	3	1	0		
Filtered (As, Cu, Pb, Zn, Ca, Na, K, Mg, Mn)	0	0	0	0	0	0	0	0	0	3	i	ΙE	1	0	0	6	1	IE	3	1	1D	0	0	0		
VOCs (BTEX)										-																
Unfiltered	3	1	0	3	1	0	3	1	0	3	1	1E	1	0	IE	6	1	1E	0	0	0	3	1	0		
TPH-gas	_		-	-	-	-	-		-	-	-		-	-		-		_	-	-	-					
Unfiltered	3	L	0	3	I	0	0	0	0	0	0	0	0	0	0	6	1	IE	0	0	0	3	1	0		
TPH-diesel	-		-	-		-		-	•	•	-	•	•	-	-	-	-		-	-	-	-	-			
Unfiltered	3	1	ID	3	1	1D	0	0	0	0	0	0	0	0	0	6	1	1E	3	1	ID	3	1	0		
Filtered	Ő	0	0	0	0	0	0 0	0	õ	õ	0	õ	õ	0 0	õ	6	ł	1E	3	1	ID	0	0	0		
PAHs	u u		-	Ū	•	Ū	U	•	Ū.	v	•	•	0	-	•	5	-		U	-		-	•	-		
Unfiltered	3	1	ID	3	1	ID	0	0	0	3	1	1E	1	0	1E	6	1	ΙE	3	1	ID	3	1	0		
Filtered	õ	0	0	0	0	0	Ő	õ	õ	3	i	JE	1	õ	0	6	i.	IE	3	1	ID	0	0	Ő		
Cl. SO4, pH, alkalinity	•	-	•		•		Ū	•	· ·	5			•		•	Ũ	•		0	-		·	•	-		
Unfiltered	3	1	0	3 .	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Filtered	0	0	0	0	0	Ő	0 0	õ	0	3	1	õ	Ĩ	0	ů 0	6	1	ů 0	3	1	õ	0	0	0		
				•		Ū	÷	•		U		-			Ť	•		•			Ū	•	Ū			
Arkema Acid Plant Area																										
VOCs (full project list)																										
Unfiltered	3	1	0	3	1	0	3	1	0	3	1	1E	1	0	1E	0	0	0	0	0	0	3	1	0		
DDT, DDE, DDD																										
Unfiltered	3	1	ID	3	1	ID	0	0	0	3	1	IE	1	0	1E	0	0	0	3	1	ID	3	I	0		
Filtered	0	0	0	0	0	0	0	0	0	3	1	1E	1	0	0	0	0	0	3	1	1D	0	0	0		
Ca, K, Mg, Mn, Na																										
Unfiltered	3	1	0	3	1	0	0	0	0	3	1	0	1	0	0	0	0	0	3	I	0	0	0	0		
Cl, SO4, pH, alkalinity																										
Unfiltered	3	I	0	3	ł	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Filtered	0	0	0	0	0	0	0	0	0	3	I	0	1	0	0	0	0	0	3	1	0	0	0	0		

Table B5-1. Summary of Transition Zone Water, Groundwater, Bulk Sediment, and Field Quality Control Samples for the Pilot Study.

	In-Situ Diffusion Samplers										In-Situ Direct Samplers									Ex-Situ Extraction					
	Small Volume Peeper			Large Volume Peeper			Vapor Diffusion			Trident Probe			UltraSeep			Push-Point ^b			Power Grab & Centrifuge Extraction			Power Grab Bulk Sediment Samples			
	Nat	Rep*	FQC	Nat	Rep*	FQC	Nat	Rep*	FQC	Nat	Rep	FQC	Nat	Rep*	FQC	Nat	Rep	FQC	Nat	Rep	FQC	Nat	Rep	FQC	
Arkema Chlorate Plant Area															_										
Metals																									
Unfiltered (Cr)	3	1	1D	3	1	1D	0	0	0	3	i	1E	1	0	1E	0	0	0	3	I	ID	0	0	0	
Filtered (Cr, Ca, K, Mg, Mn, Na)	0	0	0	0	0	0	0	0	0	3	1	IE	1	0	0	0	0	0	3	1	1D	0	0	0	
Perchlorate, Cl. SO4. pH, alkalinity																									
Unfiltered (Perchlorate)	3	1	ID	3	1	1D	0	0	0	3	1	1E	1	0	1E	0	0	0	3	1	ID	3	1	0	
Filtered (Perchlorate, Cl, SO4, pH, alkalinity)	0	0	0	0	0	0	0	0	0	3_	I	0	1	0	0	0	0	0	3	1	0	0	0	0	

Notes:

*A replicate sample will be collected by each method (except the UltraSeep) at a single location associated with the ARCO and two Arkema study areas.

^bPush-point sampling will target collection of deep transition zone water and groundwater.

NAT = natural sample

Rep = replicate sample

D = decon blank

E = equipment rinsate blank (will include filtered and unfiltered, as appropriate)

FQC = field quality control sample

ATTACHMENT 1

Portland Harbor RI/FS Round 2 Quality Assurance Project Plan Addendum 3: Groundwater Pathway Assessment Pilot Study December 16, 2004

ATTACHMENT 1

COLUMBIA ANALYTICAL SERVICES

PROCEDURE FOR EXTRACTION OF INTERSTITIAL / PORE WATER FROM SEDIMENT

PROCEDURE FOR EXTRACTION OF INTERSTITIAL / PORE WATER FROM SEDIMENT

1. LABWARE RINSING: Polycarbonate glassware must not be allowed to come into contact with acetone or methylene chloride! All labware used for extraction must be rinsed with dilute HCI followed by DI water. All labware must be dried prior to further rinsing (air drying works best for polycarbonate labware; methanol may also be used if time is limited. Acetone may be used for all non-polycarbonate labware). All polycarbonate labware must then be rinsed with 0.1% w/v tropolone in hexane, followed by hexane; all other labware must be rinsed with 0.1% w/v tropolone in hexane or methylene chloride. Inspect all centrifuge bottles to be employed; if any appear to be in danger of breakage, they must be discarded.

2. All transferring of samples must be carried out in an isolated environment under at least 2 atmospheres positive N₂ pressure. Sample centrifugation must be carried out at or below 10° Celsius.

3. Note and record the nature of the samples.

4. Transfer sediment with all standing water to centrifuge bottles.

5. If the client requested a method blank, use 1000 mL reagent water and polycarbonate labware previously employed in an interstitial water from sediment extraction. If the client requested matrix spikes, use 1000 mL reagent water spiked with analytes at the same concentration as in the routine organotins in water extraction; do not add surrogates.

6. Balance bottles to be spun opposite each other to within 1 gram and centrifuge for 30 minutes at 1000 - 3000 G (1100 - 3250 RPM for a 10 inch rotor radius).

7. Very sandy sediments often do not yield sufficient volumes of water. For these samples, it will be necessary to employ at least two water-from-sand recovery apparatuses; make a note of this on the benchsheet as these samples will be exposed to the atmosphere during their interstitial water extraction.

8. Decant water into (a) clean polycarbonate centrifuge bottle(s) and balance as above. It is expected that some sediment will be transferred in this step. If necessary, balance the bottles with centrifuge bottles filled with water.

9. Centrifuge a second time at 3000 G.

10. If the client requested that the samples be filtered, use 0.4 µm polycarbonate filters, polycarbonate Erlenmeyer flasks and porcelain Büchner funnels.

11. Very carefully decant water from the centrifuge bottles (if the water was not filtered) or Erlenmeyer flasks (if the water was was filtered) into polycarbonate sample bottles. If sediment is resuspended during decantation, the samples must be recentrifuged before any more water is decanted.

12. Add 0.5-1 mL concentrated HCI to each sample bottle to preserve (i.e., prevent growth of algae or other life) and store at or below 4° Celsius.

13. Record any difficulties, oddities or deviations from procedure.

5-9.00 Tan 🖓 🗹 1 N Coor in Sa