

July 02, 2019

Vista Work Order No. 1901248

Ms. Cindy Fields Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

Dear Ms. Fields,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on May 30, 2019 under your Project Name 'Port of Portland T4 PDI'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 1901248 Case Narrative

Sample Condition on Receipt:

Four sediment samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1613B

These samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-5MS GC column.

The result for 2,3,7,8-TCDF is reported from the confirmation analyzed on July 01, 2019 at 14:42 using a DB-225 GC column. Due to a LIMS limitation, the DB-225 GC column is not reflected on the datasheet.

Holding Times

These samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

As requested, a duplicate was performed on sample "T4-PDI2019-SC29-190524-05-07". The RPDs were out of the acceptance criteria for 1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD, OCDD and OCDF.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	14
Certifications	15
Sample Receipt	18
Extraction Information	20
Sample Data - EPA Method 1613	28
Confirmation	252
Continuing Calibration	257
Initial Calibration	334

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1901248-01	FD-201905241641	24-May-19 00:00	30-May-19 10:09	Amber Glass, 120 mL
1901248-02	T4-PDI2019-SC29-190524-01-03	24-May-19 16:41	30-May-19 10:09	Amber Glass, 120 mL
1901248-03	T4-PDI2019-SC29-190524-03-05	24-May-19 16:41	30-May-19 10:09	Amber Glass, 120 mL
1901248-04	T4-PDI2019-SC29-190524-05-07	DUP24-May-19 16:41	30-May-19 10:09	Amber Glass, 120 mL
				Amber Glass, 120 mL

ANALYTICAL RESULTS

Sample ID: Metho	od Blank						EPA Me	thod 1613B
Matrix: Soli Sample Size: 5.00		QC Batch: B9F0172 Date Extracted: 18-Jun-2019 8	3:48		ab Sample: B9F0172-BLK1 Pate Analyzed : 25-Jun-19 17:28	8 Column: ZB-5	MS	
Analyte Conc	c. (ng/Kg)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.518		IS	13C-2,3,7,8-TCDD	47.0	25 - 164	
1,2,3,7,8-PeCDD	ND	0.496			13C-1,2,3,7,8-PeCDD	49.6	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.470			13C-1,2,3,4,7,8-HxCDD	53.3	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.487			13C-1,2,3,6,7,8-HxCDD	57.0	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.499			13C-1,2,3,7,8,9-HxCDD	62.7	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.496			13C-1,2,3,4,6,7,8-HpCDD	65.2	23 - 140	
OCDD	ND	0.524			13C-OCDD	68.8	17 - 157	
2,3,7,8-TCDF	ND	0.481			13C-2,3,7,8-TCDF	38.9	24 - 169	
1,2,3,7,8-PeCDF	ND	0.611			13C-1,2,3,7,8-PeCDF	35.3	24 - 185	
2,3,4,7,8-PeCDF	ND	0.603			13C-2,3,4,7,8-PeCDF	33.5	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.257			13C-1,2,3,4,7,8-HxCDF	59.8	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.235			13C-1,2,3,6,7,8-HxCDF	65.1	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.245			13C-2,3,4,6,7,8-HxCDF	67.1	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.451			13C-1,2,3,7,8,9-HxCDF	57.9	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.296			13C-1,2,3,4,6,7,8-HpCDF	45.2	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.333			13C-1,2,3,4,7,8,9-HpCDF	47.0	26 - 138	
OCDF	ND	0.496			13C-OCDF	65.3	17 - 157	
				CRS	37Cl-2,3,7,8-TCDD	49.9	35 - 197	
					Toxic Equivalent Quotient (T	EQ) Data (pg/g	dry wt)	
					TEQMinWHO2005Dioxin	0.00		
TOTALS								
Total TCDD	ND	0.518						
Total PeCDD	ND	0.496						
Total HxCDD	ND	0.486						
Total HpCDD	ND	0.496						
Total TCDF	ND	0.481						
Total PeCDF	ND	0.607						
Total HxCDF	ND	0.288						
Total HpCDF	ND	0.315						

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: OPR								EPA Method 1613B
Matrix:SolidSample Size:5.00 g			B9F0172 18-Jun-2019	8:48		Lab Sample:B9F0172-BS1Date Analyzed:25-Jun-19 15:53	Column: ZB-5MS	
Analyte	Amt Found (ng/Kg)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	57.0	40.0	143	67 - 158	IS	13C-2,3,7,8-TCDD	70.2	20 - 175
1,2,3,7,8-PeCDD	223	200	112	70 - 142		13C-1,2,3,7,8-PeCDD	84.0	21 - 227
1,2,3,4,7,8-HxCDD	209	200	105	70 - 164		13C-1,2,3,4,7,8-HxCDD	88.5	21 - 193
1,2,3,6,7,8-HxCDD	215	200	107	76 - 134		13C-1,2,3,6,7,8-HxCDD	87.3	25 - 163
1,2,3,7,8,9-HxCDD	206	200	103	64 - 162		13C-1,2,3,7,8,9-HxCDD	90.0	21 - 193
1,2,3,4,6,7,8-HpCDD	193	200	96.6	70 - 140		13C-1,2,3,4,6,7,8-HpCDD	82.9	26 - 166
OCDD	397	400	99.2	78 - 144		13C-OCDD	88.5	13 - 199
2,3,7,8-TCDF	40.0	40.0	100	75 - 158		13C-2,3,7,8-TCDF	56.8	22 - 152
1,2,3,7,8-PeCDF	184	200	91.8	80 - 134		13C-1,2,3,7,8-PeCDF	60.8	21 - 192
2,3,4,7,8-PeCDF	185	200	92.6	68 - 160		13C-2,3,4,7,8-PeCDF	62.3	13 - 328
1,2,3,4,7,8-HxCDF	211	200	105	72 - 134		13C-1,2,3,4,7,8-HxCDF	83.1	19 - 202
1,2,3,6,7,8-HxCDF	218	200	109	84 - 130		13C-1,2,3,6,7,8-HxCDF	83.3	21 - 159
2,3,4,6,7,8-HxCDF	215	200	107	70 - 156		13C-2,3,4,6,7,8-HxCDF	87.5	22 - 176
1,2,3,7,8,9-HxCDF	219	200	110	78 - 130		13C-1,2,3,7,8,9-HxCDF	89.0	17 - 205
1,2,3,4,6,7,8-HpCDF	187	200	93.3	82 - 122		13C-1,2,3,4,6,7,8-HpCDF	71.1	21 - 158
1,2,3,4,7,8,9-HpCDF	184	200	92.2	78 - 138		13C-1,2,3,4,7,8,9-HpCDF	77.4	20 - 186
OCDF	417	400	104	63 - 170		13C-OCDF	84.8	13 - 199
					CRS	37Cl-2,3,7,8-TCDD	77.1	31 - 191

LCL-UCL - Lower control limit - upper control limit

Sample ID: FD-201	905241641							EPA Me	thod 1613B
Project: Port o	or QEA, LLC f Portland T4 PDI ay-2019 0:00	Sample Matrix Sample % Solid	Size: 9.45 g		La QC	boratory Data b Sample: 1901248-01 C Batch: B9F0172 ite Analyzed : 01-Jul-19 22:03	Date Recei Date Extra 3 Column: ZB-	cted: 18-Jun-2019	
Analyte Conc.	(ng/Kg)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.215			IS	13C-2,3,7,8-TCDD	34.3	25 - 164	
1,2,3,7,8-PeCDD	ND	0.176				13C-1,2,3,7,8-PeCDD	56.7	25 - 181	
1,2,3,4,7,8-HxCDD	0.354			J		13C-1,2,3,4,7,8-HxCDD	79.9	32 - 141	
1,2,3,6,7,8-HxCDD	1.65			J		13C-1,2,3,6,7,8-HxCDD	72.2	28 - 130	
1,2,3,7,8,9-HxCDD	0.527			J		13C-1,2,3,7,8,9-HxCDD	82.1	32 - 141	
1,2,3,4,6,7,8-HpCDD	44.2					13C-1,2,3,4,6,7,8-HpCDD	87.2	23 - 140	
OCDD	352					13C-OCDD	84.4	17 - 157	
2,3,7,8-TCDF	ND	0.181				13C-2,3,7,8-TCDF	27.8	24 - 169	
1,2,3,7,8-PeCDF	ND	0.192				13C-1,2,3,7,8-PeCDF	47.8	24 - 185	
2,3,4,7,8-PeCDF	0.341			J		13C-2,3,4,7,8-PeCDF	43.6	21 - 178	
1,2,3,4,7,8-HxCDF	0.775			J		13C-1,2,3,4,7,8-HxCDF	78.8	26 - 152	
1,2,3,6,7,8-HxCDF	0.303			J		13C-1,2,3,6,7,8-HxCDF	75.7	26 - 123	
2,3,4,6,7,8-HxCDF	ND		0.243			13C-2,3,4,6,7,8-HxCDF	79.9	28 - 136	
1,2,3,7,8,9-HxCDF	0.183			J		13C-1,2,3,7,8,9-HxCDF	79.9	29 - 147	
1,2,3,4,6,7,8-HpCDF	4.04			J		13C-1,2,3,4,6,7,8-HpCDF	80.1	28 - 143	
1,2,3,4,7,8,9-HpCDF	0.365			J		13C-1,2,3,4,7,8,9-HpCDF	87.4	26 - 138	
OCDF	11.7					13C-OCDF	83.9	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	35.9	35 - 197	
						Toxic Equivalent Quotient (TE	Q) Data (pg/g	dry wt)	
						TEQMinWHO2005Dioxin	1.08		
TOTALS									
Total TCDD	ND	0.215							
Total PeCDD	ND	0.176							
Total HxCDD	13.6								
Total HpCDD	116								
Total TCDF	ND	0.181							
Total PeCDF	2.47								
Total HxCDF	7.51		7.89						
Total HpCDF	15.0								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: T4-PDI	2019-SC29-190524-01-	03					EPA Me	thod 1613B
	or QEA, LLC f Portland T4 PDI ay-2019 16:41	Sample DataMatrix:SedimentSample Size:9.61 g% Solids:52.3		Lat QC	boratory Data o Sample: 1901248-02 c Batch: B9F0172 te Analyzed : 25-Jun-19 19:0	Date Reco Date Extr 4 Column: ZB	acted: 18-Jun-2019	
Analyte Conc.	(ng/Kg)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.841		IS	13C-2,3,7,8-TCDD	37.7	25 - 164	
1,2,3,7,8-PeCDD	ND	0.955			13C-1,2,3,7,8-PeCDD	51.6	25 - 181	
1,2,3,4,7,8-HxCDD	ND	1.12			13C-1,2,3,4,7,8-HxCDD	56.7	32 - 141	
1,2,3,6,7,8-HxCDD	4.80		J		13C-1,2,3,6,7,8-HxCDD	60.7	28 - 130	
1,2,3,7,8,9-HxCDD	2.22		J		13C-1,2,3,7,8,9-HxCDD	62.7	32 - 141	
1,2,3,4,6,7,8-HpCDD	126				13C-1,2,3,4,6,7,8-HpCDD	57.9	23 - 140	
OCDD	1360				13C-OCDD	69.4	17 - 157	
2,3,7,8-TCDF	ND	0.711			13C-2,3,7,8-TCDF	29.2	24 - 169	
1,2,3,7,8-PeCDF	ND	0.810			13C-1,2,3,7,8-PeCDF	34.8	24 - 185	
2,3,4,7,8-PeCDF	1.30		J		13C-2,3,4,7,8-PeCDF	32.8	21 - 178	
1,2,3,4,7,8-HxCDF	3.07		J		13C-1,2,3,4,7,8-HxCDF	63.6	26 - 152	
1,2,3,6,7,8-HxCDF	1.38		J		13C-1,2,3,6,7,8-HxCDF	68.7	26 - 123	
2,3,4,6,7,8-HxCDF	1.26		J		13C-2,3,4,6,7,8-HxCDF	70.3	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.494			13C-1,2,3,7,8,9-HxCDF	68.8	29 - 147	
1,2,3,4,6,7,8-HpCDF	12.9				13C-1,2,3,4,6,7,8-HpCDF	45.0	28 - 143	
1,2,3,4,7,8,9-HpCDF	2.04		J		13C-1,2,3,4,7,8,9-HpCDF	49.6	26 - 138	
OCDF	54.9				13C-OCDF	69.9	17 - 157	
				CRS	37Cl-2,3,7,8-TCDD	52.4	35 - 197	
					Toxic Equivalent Quotient (TE	Q) Data (pg/g	dry wt)	
					TEQMinWHO2005Dioxin	3.50		
TOTALS								
Total TCDD	2.32							
Total PeCDD	1.47							
Total HxCDD	41.4	44.4						
Total HpCDD	313							
Total TCDF	ND	0.711						
Total PeCDF	7.41							
Total HxCDF	16.5	26.4						
Total HpCDF	14.9	44.9						

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: T4-PD	[2019-SC29-190524-(03-05						EPA Me	thod 1613B
Project: Port of	or QEA, LLC of Portland T4 PDI Jay-2019 16:41	Sample Matrix Sampl % Soli	: Sediment e Size: 9.87 g		Lal QC	boratory Data b Sample: 1901248-03 c Batch: B9F0172 te Analyzed : 28-Jun-19 00:5	Date Rece Date Extra 4 Column: ZB	acted: 18-Jun-2019	
Analyte Conc.	. (ng/Kg)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.150			IS	13C-2,3,7,8-TCDD	77.1	25 - 164	
1,2,3,7,8-PeCDD	ND	0.218				13C-1,2,3,7,8-PeCDD	74.4	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.205				13C-1,2,3,4,7,8-HxCDD	84.2	32 - 141	
1,2,3,6,7,8-HxCDD	1.85			J		13C-1,2,3,6,7,8-HxCDD	79.9	28 - 130	
1,2,3,7,8,9-HxCDD	0.759			J		13C-1,2,3,7,8,9-HxCDD	82.5	32 - 141	
1,2,3,4,6,7,8-HpCDD	37.4					13C-1,2,3,4,6,7,8-HpCDD	98.9	23 - 140	
OCDD	573					13C-OCDD	89.6	17 - 157	
2,3,7,8-TCDF	0.376			J		13C-2,3,7,8-TCDF	68.0	24 - 169	
1,2,3,7,8-PeCDF	ND	0.239				13C-1,2,3,7,8-PeCDF	72.2	24 - 185	
2,3,4,7,8-PeCDF	ND		0.409			13C-2,3,4,7,8-PeCDF	69.1	21 - 178	
1,2,3,4,7,8-HxCDF	1.26			J		13C-1,2,3,4,7,8-HxCDF	87.7	26 - 152	
1,2,3,6,7,8-HxCDF	0.425			J		13C-1,2,3,6,7,8-HxCDF	87.7	26 - 123	
2,3,4,6,7,8-HxCDF	0.322			J		13C-2,3,4,6,7,8-HxCDF	90.9	28 - 136	
1,2,3,7,8,9-HxCDF	0.355			J		13C-1,2,3,7,8,9-HxCDF	91.2	29 - 147	
1,2,3,4,6,7,8-HpCDF	4.07			J		13C-1,2,3,4,6,7,8-HpCDF	93.9	28 - 143	
1,2,3,4,7,8,9-HpCDF	0.341			J		13C-1,2,3,4,7,8,9-HpCDF	105	26 - 138	
OCDF	8.54			J		13C-OCDF	89.8	17 - 157	
					CRS	37C1-2,3,7,8-TCDD	73.3	35 - 197	
						Toxic Equivalent Quotient (TE	CQ) Data (pg/g	dry wt)	
						TEQMinWHO2005Dioxin	1.13		
TOTALS									
Total TCDD	ND	0.150							
Total PeCDD	0.499		0.884						
Total HxCDD	11.6								
Total HpCDD	83.7								
Total TCDF	1.06								
Total PeCDF	2.36		2.77						
Total HxCDF	8.45		9.26						
Total HpCDF	13.7								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: T4-PDI	2019-SC29-190524-05-	07						EPA Me	thod 1613B
	or QEA, LLC f Portland T4 PDI ay-2019 16:41	Sample D Matrix: Sample % Solid	Sediment Size: 9.09 g		Lat QC	boratory Data o Sample: 1901248-04 Batch: B9F0172 te Analyzed : 25-Jun-19 20:35	Date Rece Date Extra O Column: ZB	acted: 18-Jun-2019	
Analyte Conc.	(ng/Kg)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.544			IS	13C-2,3,7,8-TCDD	42.3	25 - 164	
1,2,3,7,8-PeCDD	ND	0.547				13C-1,2,3,7,8-PeCDD	55.8	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.923				13C-1,2,3,4,7,8-HxCDD	55.9	32 - 141	
1,2,3,6,7,8-HxCDD	1.65			J		13C-1,2,3,6,7,8-HxCDD	61.1	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.978				13C-1,2,3,7,8,9-HxCDD	62.3	32 - 141	
1,2,3,4,6,7,8-HpCDD	36.8					13C-1,2,3,4,6,7,8-HpCDD	64.5	23 - 140	
OCDD	362					13C-OCDD	67.1	17 - 157	
2,3,7,8-TCDF	ND	0.372				13C-2,3,7,8-TCDF	37.1	24 - 169	
1,2,3,7,8-PeCDF	ND		0.449			13C-1,2,3,7,8-PeCDF	40.8	24 - 185	
2,3,4,7,8-PeCDF	ND	0.526				13C-2,3,4,7,8-PeCDF	36.6	21 - 178	
1,2,3,4,7,8-HxCDF	ND		0.892			13C-1,2,3,4,7,8-HxCDF	66.6	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.299				13C-1,2,3,6,7,8-HxCDF	69.6	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.316				13C-2,3,4,6,7,8-HxCDF	71.9	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.531				13C-1,2,3,7,8,9-HxCDF	66.4	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND		3.00			13C-1,2,3,4,6,7,8-HpCDF	43.3	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.437				13C-1,2,3,4,7,8,9-HpCDF	50.5	26 - 138	
OCDF	10.4					13C-OCDF	69.5	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	56.4	35 - 197	
						Toxic Equivalent Quotient (TE	Q) Data (pg/g	dry wt)	
						TEQMinWHO2005Dioxin	0.645		
TOTALS									
Total TCDD	ND	0.544							
Total PeCDD	ND	0.547							
Total HxCDD	15.5								
Total HpCDD	78.7								
Total TCDF	ND	0.372							
Total PeCDF	1.25		1.70						
Total HxCDF	5.55		6.98						
Total HpCDF	ND		9.84						

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: Du	plicate							EPA Met	nod 1613B
Source Client ID: Source LabNumber: Matrix: Sample Size:	T4-PDI2019-SC29-190524-05-07 1901248-04 Solid 8.87 g		QC Batch: Date Extracted:	B9F0172 18-Jun-2019 8:48	Lab Sar Date Ar	-			
Analyte	Conc. (ng/Kg)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	1.36				IS	13C-2,3,7,8-TCDD	65.4	25 - 164	
1,2,3,7,8-PeCDD	ND		3.00			13C-1,2,3,7,8-PeCDD	78.4	25 - 181	
1,2,3,4,7,8-HxCDD	6.63					13C-1,2,3,4,7,8-HxCDD	70.8	32 - 141	
1,2,3,6,7,8-HxCDD	47.3					13C-1,2,3,6,7,8-HxCDD	75.4	28 - 130	
1,2,3,7,8,9-HxCDD	16.7					13C-1,2,3,7,8,9-HxCDD	74.4	32 - 141	
1,2,3,4,6,7,8-HpCDD	663					13C-1,2,3,4,6,7,8-HpCDD	82.0	23 - 140	
OCDD	8990					13C-OCDD	89.9	17 - 157	
2,3,7,8-TCDF	11.9					13C-2,3,7,8-TCDF	54.2	24 - 169	
1,2,3,7,8-PeCDF	31.7					13C-1,2,3,7,8-PeCDF	55.4	24 - 185	
2,3,4,7,8-PeCDF	13.3					13C-2,3,4,7,8-PeCDF	49.3	21 - 178	
1,2,3,4,7,8-HxCDF	50.2					13C-1,2,3,4,7,8-HxCDF	86.0	26 - 152	
1,2,3,6,7,8-HxCDF	17.8					13C-1,2,3,6,7,8-HxCDF	89.1	26 - 123	
2,3,4,6,7,8-HxCDF	9.42					13C-2,3,4,6,7,8-HxCDF	88.2	28 - 136	
1,2,3,7,8,9-HxCDF	8.14					13C-1,2,3,7,8,9-HxCDF	83.2	29 - 147	
1,2,3,4,6,7,8-HpCDF	84.7					13C-1,2,3,4,6,7,8-HpCDF	59.3	28 - 143	
1,2,3,4,7,8,9-HpCDF	8.48					13C-1,2,3,4,7,8,9-HpCDF	66.4	26 - 138	
OCDF	229					13C-OCDF	91.2	17 - 157	
					CRS	37C1-2,3,7,8-TCDD	69.2	35 - 197	
						Toxic Equivalent Quotient (TE	Q) Data (pg/g dr	'y wt)	
						TEQMinWHO2005Dioxin	33.4		
TOTALS									
Total TCDD	9.64		12.7						
Total PeCDD	22.6		32.7						
Total HxCDD	297								
Total HpCDD	1390								
Total TCDF	46.1		54.3						
Total PeCDF	95.0		134						
Total HxCDF	266								
Total HpCDF	266								

EMPC - Estimated maximum possible concentration

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet

-	plicate				-			EPA Me	ethod 1613B
Source Client ID:	T4-PDI2019-SC29-190524-0	05-07			Duplicate Lab Sample: B9F0172-DUP3				
Source LabNumber:	1901248-04								
Matrix:	Solid								
Analyte	Dup Conc. (ng/Kg)	Source Conc.	RPD	RPD Limits		Labeled Standard	Dup %R	Source %R	LCL-UCL
2,3,7,8-TCDD	1.36	ND	#	25	IS	13C-2,3,7,8-TCDD	65.4	42.3	25 - 164
1,2,3,7,8-PeCDD	ND	ND	NA	25		13C-1,2,3,7,8-PeCDD	78.4	55.8	25 - 181
1,2,3,4,7,8-HxCDD	6.63	ND	#	25		13C-1,2,3,4,7,8-HxCDD	70.8	55.9	32 - 141
1,2,3,6,7,8-HxCDD	47.3	1.65	187	25		13C-1,2,3,6,7,8-HxCDD	75.4	61.1	28 - 130
1,2,3,7,8,9-HxCDD	16.7	ND	#	25		13C-1,2,3,7,8,9-HxCDD	74.4	62.3	32 - 141
1,2,3,4,6,7,8-HpCDD	663	36.8	179	25		13C-1,2,3,4,6,7,8-HpCDD	82.0	64.5	23 - 140
OCDD	8990	362	185	25		13C-OCDD	89.9	67.1	17 - 157
2,3,7,8-TCDF	11.9	ND	#	25		13C-2,3,7,8-TCDF	54.2	37.1	24 - 169
1,2,3,7,8-PeCDF	31.7	ND	#	25		13C-1,2,3,7,8-PeCDF	55.4	40.8	24 - 185
2,3,4,7,8-PeCDF	13.3	ND	#	25		13C-2,3,4,7,8-PeCDF	49.3	36.6	21 - 178
1,2,3,4,7,8-HxCDF	50.2	ND	#	25		13C-1,2,3,4,7,8-HxCDF	86.0	66.6	26 - 152
1,2,3,6,7,8-HxCDF	17.8	ND	#	25		13C-1,2,3,6,7,8-HxCDF	89.1	69.6	26 - 123
2,3,4,6,7,8-HxCDF	9.42	ND	#	25		13C-2,3,4,6,7,8-HxCDF	88.2	71.9	28 - 136
1,2,3,7,8,9-HxCDF	8.14	ND	#	25		13C-1,2,3,7,8,9-HxCDF	83.2	66.4	29 - 147
1,2,3,4,6,7,8-HpCDF	84.7	ND	#	25		13C-1,2,3,4,6,7,8-HpCDF	59.3	43.3	28 - 143
1,2,3,4,7,8,9-HpCDF	8.48	ND	#	25		13C-1,2,3,4,7,8,9-HpCDF	66.4	50.5	26 - 138
OCDF	229	10.4	183	25		13C-OCDF	91.2	69.5	17 - 157
					CRS	37Cl-2,3,7,8-TCDD	69.2	56.4	35 - 197

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
D	Dilution
DL	Detection limit
Е	The associated compound concentration exceeded the calibration range of the instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limits of Detection
LOQ	Limits of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
Р	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-20
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	180001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	015
Texas Commission on Environmental Quality	T104704189-19-10
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Vista Analytical Laboratory Certifications

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue									
Description of Test	Method								
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B								
Dilution GC/HRMS									
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A								
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C								
by GC/HRMS									
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699								
HRGC/HRMS									
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537								
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B								
GC/HRMS									
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA								
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A								

MATRIX: Drinking Water										
Description of Test	Method									
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA									
	1613/1613B									
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522									
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537									
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009									

MATRIX: Non-Potable Water									
Description of Test	Method								
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B								
Dilution GC/HRMS									
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A								
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C								
by GC/HRMS									
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699								
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537								
Dioxin by GC/HRMS	EPA 613								
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B								
Dibenzofurans by GC/HRMS									
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA								
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A								

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

K	ANCHOR DEA	VIR	ONME	ENTAL SA	MPLE	CH	AIN	OF CUSTODY	COC	D:	VISTA	-2019052	24-175731
POC:	Cindy Fields ((206)-903-3394) 1201 3rd Avenue, Suite 2600, Sea	Project: 1 Client:	Port o		land T Portla	10010	Samp 1.3° Lab:	CO Vista Analytical Laboratory					
COC Sample Number	Field Sample ID	Sample Type	Matrix	Collecte Date	ed Time	# Containers	Lab QC*	Test Request		Method]]	TAT**	Preservative
001	FD-201905241641	FD	SE	05/24/2019	Э	1							
								Dioxins and Furans	Dioxins and Furans E1613B				0 – 6 °C
002	T4-PDI2019-SC29-190524-01-03	N	SE	05/24/2019	16:41	1							
								Dioxins and Furans	Dioxins and Furans E1613B				0 - 6 °C
003	T4-PDI2019-SC29-190524-03-05	N	SE	05/24/2019	16:41	1							
Annonio anno anno anno anno anno anno ann								Dioxins and Furans E1613B				30	0-6°C
004	T4-PDI2019-SC29-190524-05-07	N	SE	05/24/2019	16:41	2	X						
Lange Database and the second			and see a second second				Dioxins and Furans	E1613B	3	30	0 – 6 °C		

Comment:					
Relinguished By:	Received By:	Relinquished By:	Received By:	Relinquished By:	Received By:
Signature Cerry Jorne	Signature . Muimas	Signature	Signature	Signature	Signatura
	Print Name	Print Name Tanna Godby	Print Name Ashley Mason	Print Name	Print Name
Company Archar QEA	Company	Company	Company Vista	Company	Company
Date/Time 05/25/19 0645	Date/Time 95/25/19 0645	Date/Time 5-29-19 12:25	Date/Time 05/30/19 009	Date/Time	Date/Time

* Lab QC Requested for sample when box is checked ** TAT = Turn Around Time in DAYS # POC = Project Point of Contact

Page 1 of 1 Page 18 of 534

Sample Log-In Checklist

		110	1- 18			Page # of					
Vista Work Orde	r #:	190	1248)		Std					
Samples	Date/Tin	ne	r.	Initials:		Location: WR-Z					
Arrival:	05/30	0/19	1009	ag	2	Shelf/Rack:_N/A					
Logged In:	Date/Tin	ne		Initials:		Location: $N/R - \lambda$					
	05/30	19 1-	706 1	MAB		Shelf/Rack: <u>G4</u>					
Delivered By:	FedEx	UPS	On Tra	c GSO	DHI	-	Hand Delivered	Other			
Preservation:	Preservation: Ice					Dry Ice None					
Temp °C: 1.3	(uncorr		Dreheur			7.0 0					
Temp °C: 1.3	(correc	ted)	Probe used: Y				Thermometer ID: $\underline{14-3}$				

	YES	NO	NA								
Adequate Sample Volume Received?	V.										
Holding Time Acceptable?	/										
Shipping Container(s) Intact?	~										
Shipping Custody Seals Intact?											
Shipping Documentation Present?											
Airbill (12 Trk# 7753 3804 0790	/										
Sample Container Intact?	V										
Sample Custody Seals Intact?			V								
Chain of Custody / Sample Documentation Present?	~										
COC Anomaly/Sample Acceptance Form completed?		V									
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			V								
Preservation Documented: Na ₂ S ₂ O ₃ Trizma None Other	Yes	No	NÀ								
Shipping Container Vista Client Retain Return											
Comments: FD-201905241641											

 $\frac{T4 - PDI 2019 - SC 29 - 190524 - 01 - 03}{\sqrt{23 - 05}}$

ID .: LR - SLC.

EXTRACTION INFORMATION

Process Sheet Workorder: 1901248

			Work	order Due:20-Jun-19 00:00					
	Anchor QEA, LLC			TAT: 21					
		Prep	p Batch:	BAFOIT2					
		Prep Data Entered: 00 06/21//9							
		Initial Sec	quence:	S9F0057					
LabSampleID	Recon ClientSampleID	Date Received	Location	Comments					
1901248-01	FD-201905241641 ·	30-May-19 10:09	WR-2 G-4						
1901248-02	T4-PDI2019-SC29-190524-01-03 '	30-May-19 10:09	WR-2 G-4						
1901248-03	T4-PDI2019-SC29-190524-03-05	30-May-19 10:09	WR-2 G-4						
1901248-04	T4-PDI2019-SC29-190524-05-07	30-May-19 10:09	WR-2 G-4	DUP					

+ 1901384. Batch w/ 1901247, 1901249. (Ju 06/03/19 WO Comments: PREP: Requires one dup and ene SPM per batch of 20 samples.

Extract 1g of SRM 1944 - see sample control for SRM sample.

Pre-Prep Check Out: ____

1

Prep Check Out:

Pre-Prep Check In:

Prep Check In:

Prep Reconciled Initals/Date: BNB 001151A Spike Reconciled Initals/Date: DF 06/18119 VialBoxID: Chicken Nucycets

Page 1 of 1

Work Order 1901248

Page 21 of 534

PREPARATION BENCH SHEET

Matrix: Solid

B9F0172

Chemist: $\underline{\mathcal{A}}$

Method: 1613 Full List

Prepared using: HRMS - Soxhlet

Prep Date/Time: 18-Jun-19 08:48

с	VISTA Sample ID	G Eqv	Sample Amt. (g)	Cł	IS/NS IEM/WIT DATE	CHE	RS M/WIT ATE	A CHI DA	EM/	AB CHI DA		AA CHEM/ DATE		Florisil CHEM/ DATE		RS CHEM/ DAT	WIT
	B9F0172-BLK1	NA	[5.00)	20 1	D= 18/A	se mo	- ouladin	ada ya		BL 06/20/19		BL copolig		n	6/20/19	ao mA	06/21/19
	B9F0172-BS1	Ţ	(5.00)		Г <i>Т</i>	- 1				T	- 1-1	1	,	T	_/ '	-7	
	B9F0172-DUP1 1901247-02	9.50	9.68						_								
	B9F0172-DUP2	9.29	9.53														
	B9F0172-DUP3	8.87	8.87														
	B9F0172-DUP4 1901384-04	6.42	6.83														
	1901247-01	8.74	8.95														
Ľ	1901247-02	9.50	9.97		1												
	1901247-03	9.87	10.05														
	1901247-04	9.61	9.75														
	1901247-05	7.29	7.49														
	1901247-06 🕐	8.52	8.75														
-	1901247-07 🙆	9.11	9.18														
-	1901247-08		9.71														
	1901247-09	9.29	9.47		L		7		4		÷		4		+		J.
	Vame 3	NS Name	1	$\sqrt{\delta}$	CRS Name	B	RS Name			Cycle T				SDS	Check Chemis	Dut: t/Date:	0/0/18/1
PCI	DD/F 19(1902, 104	PCDD/F	18F1913,1	tom	PCDD/F	001, 10ML	PCDD/F	1821002	,10pl	Start Da	nte/Time	SOLV:)/		Check	n:	an int
PCE	3	PCB			PCB		PCB					Other <u>NA</u>			Check In: Chemist/Date: 20		00/18
PAI	H	PAH			PAH		PAH			Stop Da	te/Time	Final Volume(s) <u>C14</u>			Balance ID: HRMS-8		
								<u> </u> 1 4/f	9 530		10	ul					

Comments:

1 = Sample approached dryness on rotovap

2 = Sample bumped on rotovap; lost < 5%

3 = Sample poured through Na2SO4 to remove water 4 = Precipitate present at Final Volume Work Order 1901248

5 = Sample homogenized in secondary container

6 = Sample clogged during extaction; pipetted and used Nitrogen to assist

@ Commont 3. BLOG/20/19

PREPARATION BENCH SHEET

Matrix: Solid

B9F0172

 $O(\mathbf{C})$

Chemist:

Method: 1613 Full List

Prepared using: HRMS - Soxhlet

Prep Date/Time: 18-Jun-19 08:48

с	VISTA Sample ID	G Eqv	Sample Amt. (g)	IS/NS CHEM/WIT DATE		CRS CHEM/WIT DATE		AP CHEM/ DATE		ABSG CHEM/ DATE		AA CHEM/ DATE		Florisil CHEM/ DATE		RS CHEM/WIT DATE	
	1901247-10	7.4Z	7.85	00 į	xF 00/18/19	BL MIL	<i>col 20/19</i>	12	£.	BL 06/20/17		BL 06 2019		BL 06/20/19		8 MA 05/21	
	1901248-01	9.35	9.87A	ΡT	•	T	1 1			7		T	_ ' '	_			
	1901248-02	9.55	9.61					*									
	1901248-03	9.30	9.87														
	1901248-04	8.87	9.09														
	1901249-02	9.97	9.98														
	1901305-02	6.46	6.70														
	1901305-06	6.64	6.81														
	1901305-07	6.21	0.34						-								
	1901384-04	6.42	6.00		4	4			4	-			4		μ	\	<u>y</u>

A 9.45 as 06/18/19

			\sim		\sim	
IS Name (V)	NS Name	CRS Name	RS Name	Cycle Time	APP: SEFUN SOX SDS	Check Out: Chemist/Date: (10 06/11/6
PCDD/F 1907,10	CDD/F (81=1913, 10.01)	PCDD/F 1851001,104L	PCDD/F 1871002, 10pl	Start Date/Time	SOLV: Toluce	
РСВ	PCB	РСВ	РСВ	·	Other NIA	Chemist/Date:
РАН	PAH	РАН	РАН	Stop Date/Time	Final Volume(s) <u>C</u> 14	Balance ID: HKMS-8
					20m	

Comments:

1 = Sample approached dryness on rotovap

2 = Sample bumped on rotovap; lost < 5%

3 = Sample poured through Na2SO4 to remove water

4 = PrecipitateoptesEntcheFih90V24&e

5 = Sample homogenized in secondary container

6 = Sample clogged during extaction; pipetted and used Nitrogen to assist

Solids estimate

Batch: B9F0131

Lab ID	Analysis	% Solids	Entered	Target weight	Weigh this much
1901247-01	Percent Solids	57.22		5.00	8.74
1901247-02	Percent Solids	52.60		5.00	9.50
1901247-03	Percent Solids	50.64		5.00	9.87
1901247-04	Percent Solids	52.04		5.00	9.61
1901247-05	Percent Solids	68.63		5.00	7.29
1901247-06	Percent Solids	58.70		5.00	8.52
1901247-07	Percent Solids	54.90		5.00	9.11
1901247-08	Percent Solids	55.04		5.00	9.08
1901247-09	Percent Solids	53.80		5.00	9.29
1901247-10	Percent Solids	67.43		5.00	7.42
1901248-01	Percent Solids	53.49		5.00	9.35
1901248-02	Percent Solids	52.34		5.00	9.55
1901248-03	Percent Solids	53.78		5.00	9.30
1901248-04	Percent Solids	56.37		5.00	8.87
1901249-02	Percent Solids	50.15		5.00	9.97

D2216-90 BATCH ID B9F0131

Percent Moisture/ Percent Solids

1. A.

Analyst: BNB Test Code: %Moist/%Solids Data Entry Verified by: (Initial and Date) <u>AC</u> Olo Analyte: Units: % 19 Dried at 110°C+/-5°C Oven ID: (0) 02

nst	HRMS-8			Date/Time OUT 06/17/19 1248	1									
	В	С	D	E	F	G G	terrenter en la caracteriste		K	L	M	N	0	P
Particle Size	SampiD		SameTuna	Intial and Date: Pan	BNB 06/13/19 Wet Pan and Sample	AO 06/17/19 Dry Pan and Sample	Dry Sample	%Solids	BNB 06/13/19 Visual	9 CI-	pH	рH	Acid	BNB 06/13/19 Sample
Failucie Size	Sampio		SampType	Tare Wt. (gms)		Weight (g)	Weight (g)	RawVal	Inspection		Before			
	1901247-01		Sample	1.2800 /	6.8200 <	4.4500 /	3.1700	57.22	MUD	NA	NA	NA	NA	x
	1901247-02		Sample	1.2800 -	9.1500 /	5.4200 -	4.1400	52.60	MUD	NA	NA	NA	NA	х
	1901247-03		Sample	1.2800 -	6.7500 -	4.0500 /	2.7700	50.64	MUD	NA	NA	NA	NA	х
	1901247-04		Sample	1.2700	8.6100 -	5.0900 /	3.8200	52.04	MUD	NA	NA	NA	NA	x
	1901247-05		Sample	1.2900	9.2600	6.7600	5.4700	68.63	MUD	NA	NA	NA	NA	x
	1901247-06		Sample	1.2700 -	5.4100 -	3.7000 -	2.4300	58.70	MUD	NA	NA	NA	NA	х
	1901247-07		Sample	1.2700 -	9.9400 /	6.0300 /	4.7600	54.90	MUD	NA	NA	NA	NA	х
	1901247-08		Sample	1.2700 -	9.6100 -	5.8600 /	4.5900	55.04	MUD	NA	NA	NA	NA	X
	1901247-09		Sample	1.2700	12.7200 /	7.4300 /	6.1600	53.80	MUD	NA	NA	NA	NA	X
	1901247-10		Sample	1.2800 /	10.0300 /	7.1800 /	5.9000	67.43	MUD	NA	NA	NA	NA	X
	1901248-01		Sample	1.2800 -	14.0300 -	8.1000 /	6.8200	53.49	MUD	NA	NA	NA	NA	х
	1901248-02		Sample	1.2700 -	8.9700 /	5.3000 /	4.0300	52.34	MUD	NA	NA	NA	NA	X
	1901248-03		Sample	1.2700	11.0700 /	6.5400 /	5.2700	53.78	MUD	NA	NA	NA	NA	x
	1901248-04		Sample	1.2700 -	7.7800 /	4.9400 /	3.6700	56.37	MUD	NA	NA	NA	NA	x
	1901249-02		Sample	1.2800	11.1700 /	6.2400 /	4.9600	50.15	MUD	NA	NA	NA	NA	х
													,	

*Sample homogenized in sample container unless otherwise noted.

D2216-90 BATCH ID B9F0131 Analyst: BAR Analyte: Units: % Dried at 110°C+/-5°C Units: % Oven ID: 101

Percent Moisture/ Percent Solids

Inst HRMS-8

C. Chi

	Date/Time OUT
06/15/19 1140	W/H/M 1248

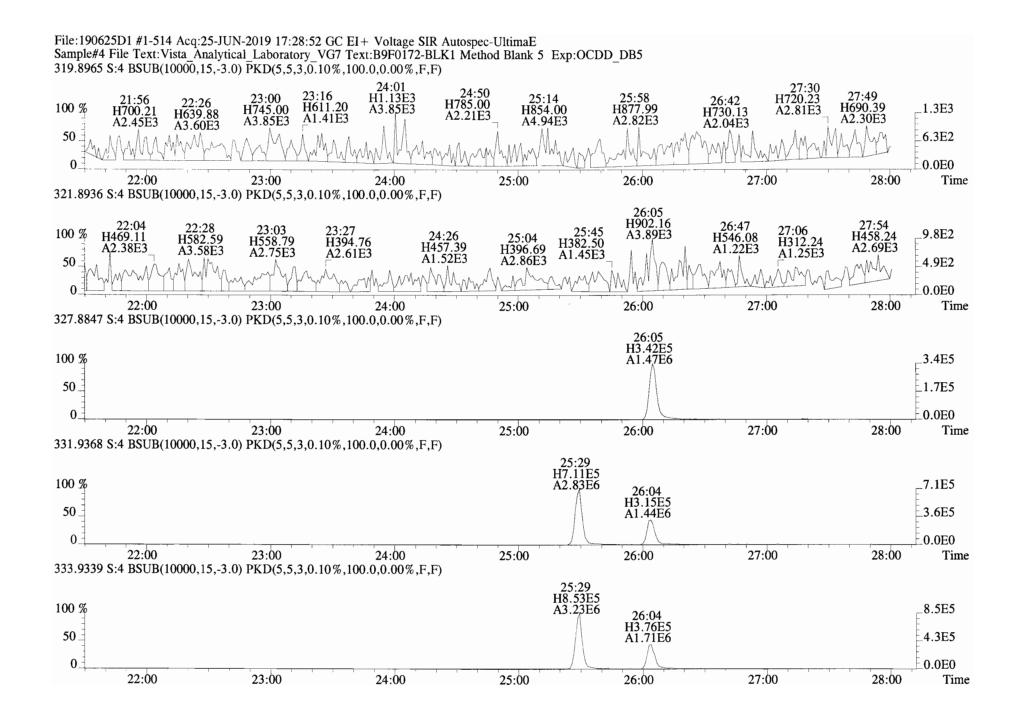
	в	с	D		F	G	Н		К	L M	N	0	Р
					BNB06/13/19	100 0W117117			BNBOU			NA	BNB deliBlig
Particle Size	SampID		SampType	Pan	Wet Pan and Sample	Dry Pan and Sample	Dry Sample	%Solids	Visual	CI- pH	pH	Acid Added	Sample Homogenized*
				Tare Wt. (gms)	Weight (g)	Weight (g)	Weight (g)	RawVal	Inspection	Before	Aiter	Added	Homogenized
	1901247-01		Sample	1.28	6.82	7.4-X		/	Muo				-
	1901247-02		Sample	1.28	9.15	5.42						\vdash	× 1
	1901247-03		Sample	1.28	6.75	4.05		~/		_		<u>}</u>	<u>×</u>
	1901247-04		Sample	1.27	8.61	5.09		- N/		_			×
	1901247-05		Sample	1.29	9.26	10.70					Ň	7	<u></u>
	1901247-06		Sample	1.27	5.41	3.70	6	Ý			e a	1	×
	1901247-07		Sample	1.27	9.94	6.03	e e e e e e e e e e e e e e e e e e e				\$ /		*
	1901247-08		Sample	1.27	9.61	5.86	₩.			e	<u> </u>		*
	1901247-09		Sample	1.27	12.72	7.43					X		*
	1901247-10		Sample	1.28	10.03	7.18				/	1		*
	1901248-01		Sample	1.28	14.03	8,10							*
	1901248-02		Sample	1.27	8.97	5.30							<u>x</u>
	1901248-03		Sample	1.27	11.07	0.54				_/_			
	1901248-04		Sample	1.27	7.78	6.94							*
	1901249-02		Sample	1.28	11.17	6.24							*
							-						
				-	¥4.45 00	010117119							
						<u> </u>							
	·												
												-	
											1	<u> </u>	
					·								<u> </u>
												<u> </u>	
	A												
											-		
											+		
											+	-	<u> </u>

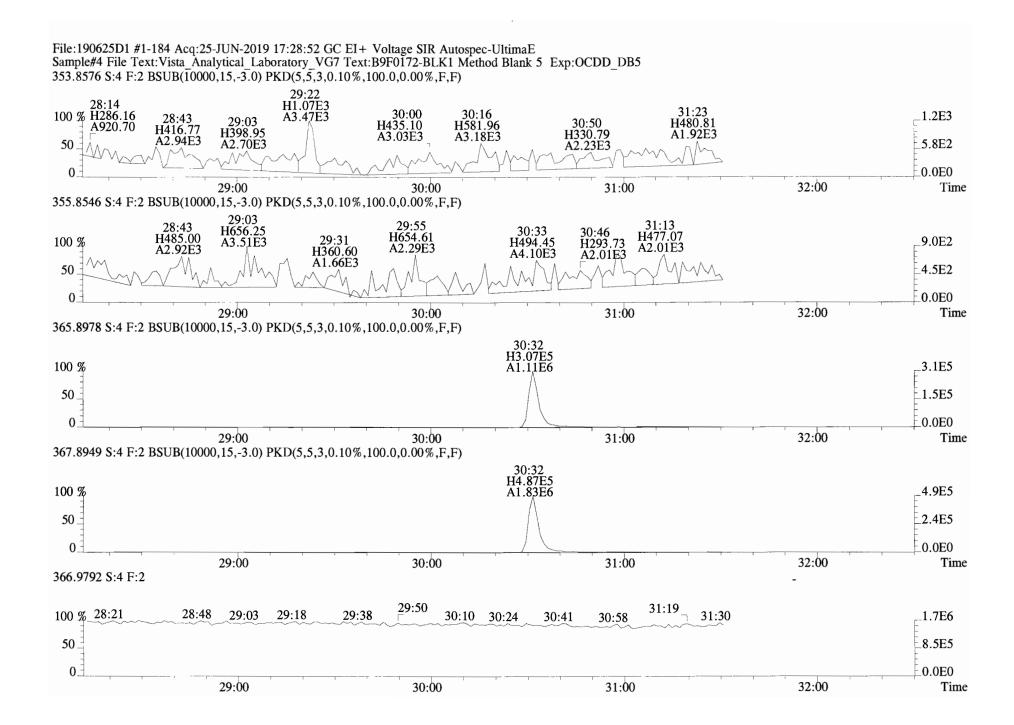
*Sample homogenized in sample container unless otherwise noted.

4

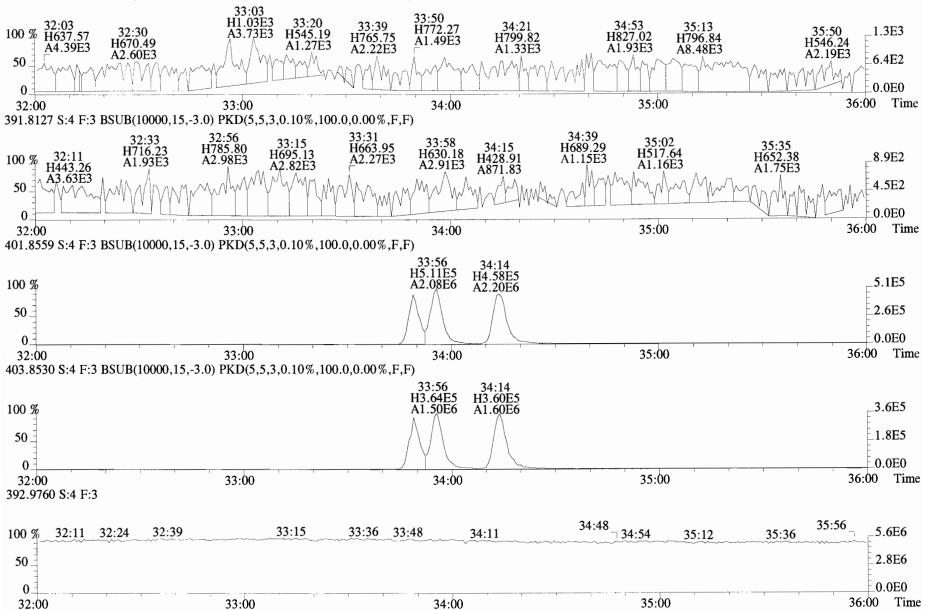
Batch: B9F0172

Matrix: Solid

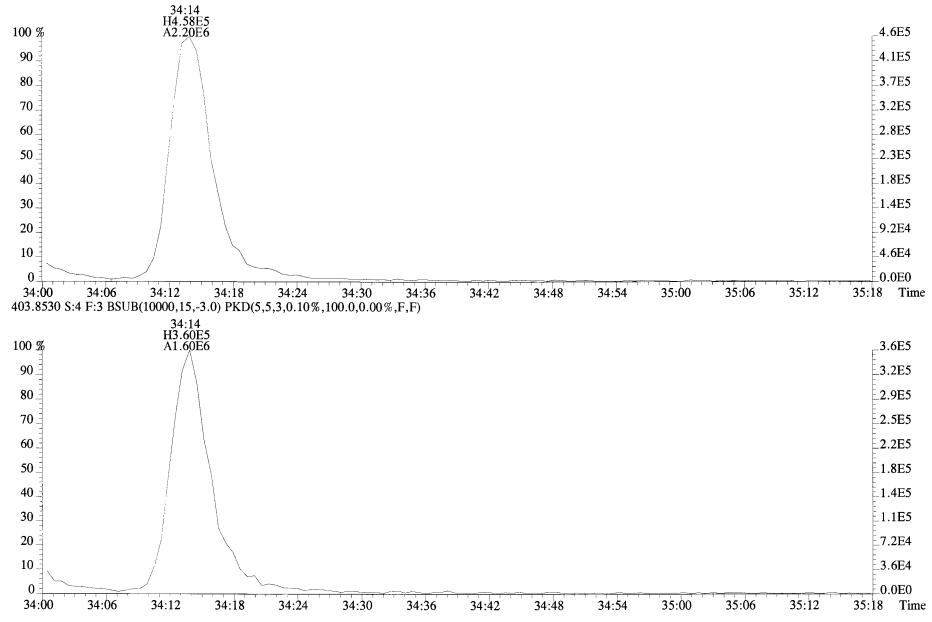

LabNumber	WetWeight (Initial)	% Solids (Extraction Solids)	DryWeight	 Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1901247-01	8.95 /	57.22021	5.1212	20	18-Jun-19 08:48				Sediment	1613 Full List
1901247-02	9.97 -	52.60483	5.2447	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901247-03	10.05 /	50.63986	5.0893	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901247-04	9.75	52.0436	5.0743	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901247-05	7.49/	68.63237	5.1406	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901247-06	8.75 /	58.69566	5.1359	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901247-07	9.18/	54.90197	5.0400	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901247-08	9.71 /	55.03598	5.3440	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901247-09	9.47 /	53.79913	5.0948	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901247-10	7.85 /	67.42857	5.2931	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901248-01	9.45 -	53.4902	5.0548	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901248-02	9.61 /	52.33766	5.0296	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901248-03	9.87 /	53.77551	5.3076	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901248-04	9.09 /	56.37481	5.1245	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901249-02	9.98 /	50.15166	5.0051	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901305-02	6.7 /	77.42364	5.1874	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901305-06	6.81 /	75.32096	5.1294	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901305-07	6.34 /	80.5668	5.1079	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
1901384-04	6.6 /	77.83843	5.1373	20	18-Jun-19 08:48	ACO			Sediment	1613 Full List
B9F0172-BLK1	5 /			20	18-Jun-19 08:48	ACO				QC
B9F0172-BS1	5 /			20	18-Jun-19 08:48	ACO	18F1913	/ 10 /		QC
B9F0172-DUP1	9.68 /			20	18-Jun-19 08:48	ACO				QC
B9F0172-DUP2	9.53 /			20	18-Jun-19 08:48	ACO				QC
B9F0172-DUP3	8.87 /			20	18-Jun-19 08:48	ACO				QC
B9F0172-DUP4	6.83 J			20 /	18-Jun-19 08:48	/ ACO /				QC

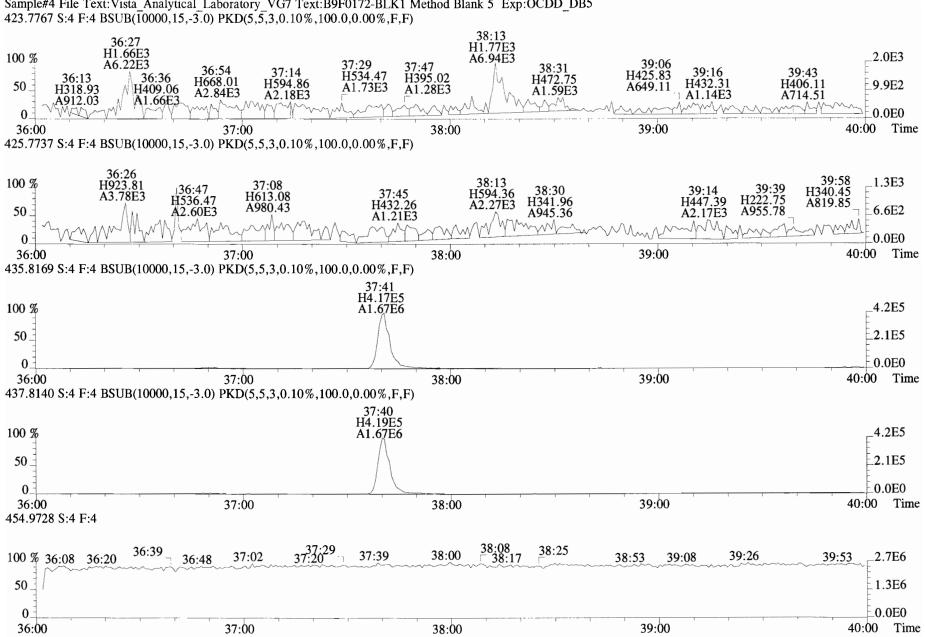

All bolded data on report verified against written benchsheet by (initial/date) <u>*QO*</u> <u>04/21/19</u> Work Order 1901248 Printed: 6/21/2019 1:56:33PM Page 1 of J Page 27 of 534

SAMPLE DATA – EPA METHOD 1613

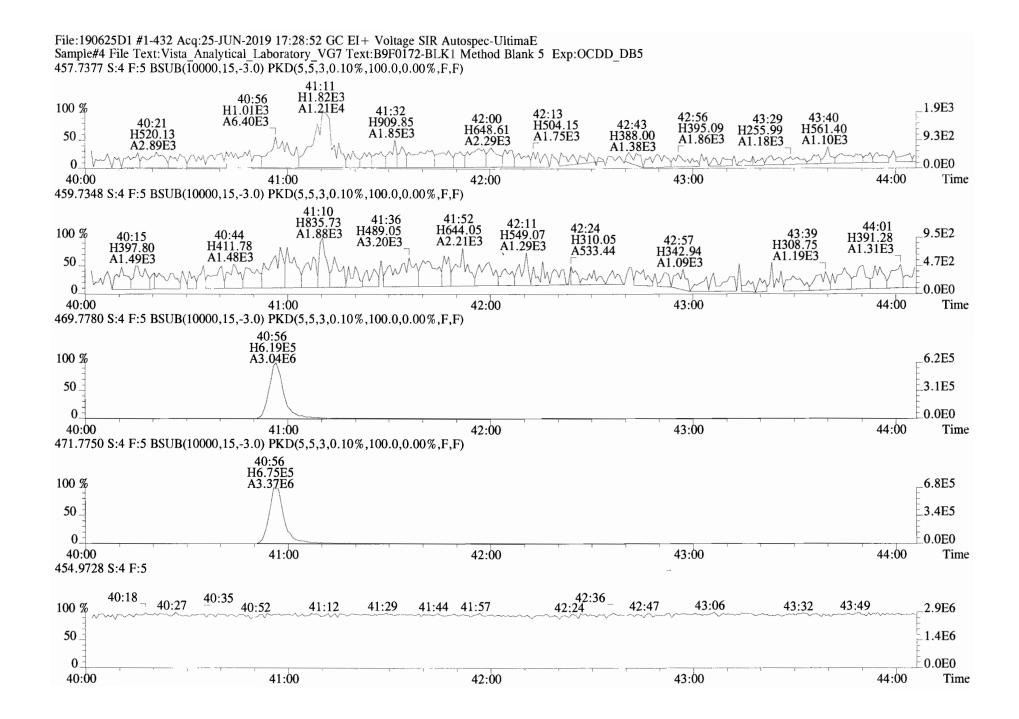

lient ID: Method Blank ab ID: B9F0172-BLK1		lename: 19 Column II			Acq:25-JU 1613VG7-5			l: 5.000	ConCa EndCA	l: ST190625D1 L: NA	-1			Page	3 0
Name	Resp	RA	RRF	RT	Conc	Qual	noise Fac	DL	Name		Conc	EMPC	Oual	noise	
2,3,7,8-TCDD	*	* n	0.90	NotF ₁	*	T = = = = =	176 2.5	0.518		etra-Dioxins	*	*	~	176	0.5
1,2,3,7,8-PeCDD	*	* n	0.87	NotF ₁	*		215 2.5	0.496		enta-Dioxins	*	*		215	0.4
1,2,3,4,7,8-HxCDD	*	* n	1.05	NotF ₁	*		166 2.5	0.470		exa-Dioxins	*	*		166	0.4
1,2,3,6,7,8-HxCDD	*	* n	0.93	NotF ₁	*		166 2.5	0.487		epta-Dioxins	*	*		205	0.4
1,2,3,7,8,9-HxCDD	*	* n	0.96	NotF ₁	*		166 2.5	0.499		etra-Furans	*	*		262	0.4
1,2,3,4,6,7,8-HpCDD	*	* n	0.99	Not F ₁	*		205 2.5	0.496		enta-Furans	0.0000	0.0000		240	Ο.
OCDD	*	* n	0.99	Not F ₁	*		176 2.5	0.524		exa-Furans	*	*		218	Ο.
							2.0 2.0			epta-Furans	*	*		135	
2,3,7,8-TCDF	*	* n	0.94	NotFa	*		262 2.5	0.481	roour n						
1,2,3,7,8-PeCDF	*	* n	0.92	NotF ₁	*		240 2.5	0.611							
2,3,4,7,8-PeCDF	*	* n	0.92	NotF ₁	*		240 2.5	0.603							
1,2,3,4,7,8-HxCDF	*	* n	1.15	NotF ₁	*		218 2.5	0.257							
1,2,3,6,7,8-HxCDF	*	* n	1.04	NotF ₁	*		218 2.5	0.235							
2,3,4,6,7,8-HxCDF	*	* n	1.10	NotFa	*		218 2.5	0.245							
1,2,3,7,8,9-HxCDF	*	* n	1.03	NotF ₁	*		218 2.5	0.451							
1,2,3,4,6,7,8-HpCDF	*	* n	1.05	NotF ₁	*		135 2.5	0.296							
1,2,3,4,7,8,9-HpCDF	*	* n	1.23	NotF ₁	*		135 2.5	0.333							
0CDF	*	* n	0.94	NotF ₁	*		177 2.5	0.496							
OCD1		11	0.94	NOULI			177 2.5	0.490	Rec	Qual					
13C-2,3,7,8-TCDD	3 15e+06	0.84 y	1.11	26:04	188.15				47.0	Quui					
	2.93e+06	0.61 y	0.98	30:33	198.34				49.6						
13C-1,2,3,4,7,8-HxCDD		1.35 y	0.68	33:49	213.26				53.3						
13C-1,2,3,6,7,8-HxCDD		1.39 y	0.84	33:56	228.18				57.0						
13C-1,2,3,7,8,9-HxCDD		1.38 y	0.81	34:15	250.91				62.7						
13C-1,2,3,4,6,7,8-HpCDD		1.00 y	0.69	37:41	260.66				65.2						
	6.41e+06	0.90 y	0.62	40:57	550.49				68.8						
13C-2,3,7,8-TCDF		0.83 y	1.05	25:19	155.69				38.9						
13C-1,2,3,7,8-PeCDF		1.52 y	0.95	29:23	141.22				35.3						
13C-2,3,4,7,8-PeCDF		1.52 y 1.57 y	0.95	30:17	133.90				33.5						
13C-1,2,3,4,7,8-HxCDF		0.51 y	0.86	32:56	239.18				59.8						
13C-1,2,3,6,7,8-HxCDF		0.51 y 0.51 y	1.02	33:04	260.23				65.1						
13C-2,3,4,6,7,8-HxCDF		0.51 y 0.50 y	0.95	33:40	268.36				67.1						
13C-1,2,3,7,8,9-HxCDF		0.50 y 0.51 y	0.87	34:39	231.41				57.9						
13C-1,2,3,4,6,7,8-HpCDF		0.31 y 0.38 y	0.87	36:27	180.60				45.2						
13C-1,2,3,4,7,8,9-HpCDF		0.38 y 0.38 y	0.81	36:27 38:14	180.80				45.2						
	7.62e+06	0.38 y 0.92 y	0.03	38:14 41:11	522.63				47.0 65.3						
13C-0CDF	1.020+00	0.92 Y	0.78	41:11	522.03				05.3						
37C1-2,3,7,8-TCDD	1 470+06		1.22	26:06	79.830				49.9	Integr	ations	Revi	.ewed		
p 37Cl-2,3,7,8-TCDD	1.1/6+00		1.22	20:00	12.030				47.7	by		by	.cacu		
T 13C-1,2,3,4-TCDD	6 060+06	0.88 y	1.00	25:29	400.00					Dy Analyst:	1)B	کرد م	vst · /	27	
13C-1,2,3,4-TCDF		0.88 y 0.81 y	1.00	25:29 24:05	400.00					Allaryst:	11.2	Aila1	., sc. C	07 0/72/	-
RT 13C-1,2,3,4,6,9-HxCDF		0.81 y 0.52 y	1.00	24:05 33:21	400.00						1			, ,	
130-1,2,3,4,0,3-nKCDF	/.100100	0.52 Y	1.00	33:21	400.00					6	128/19		126	170	G

1

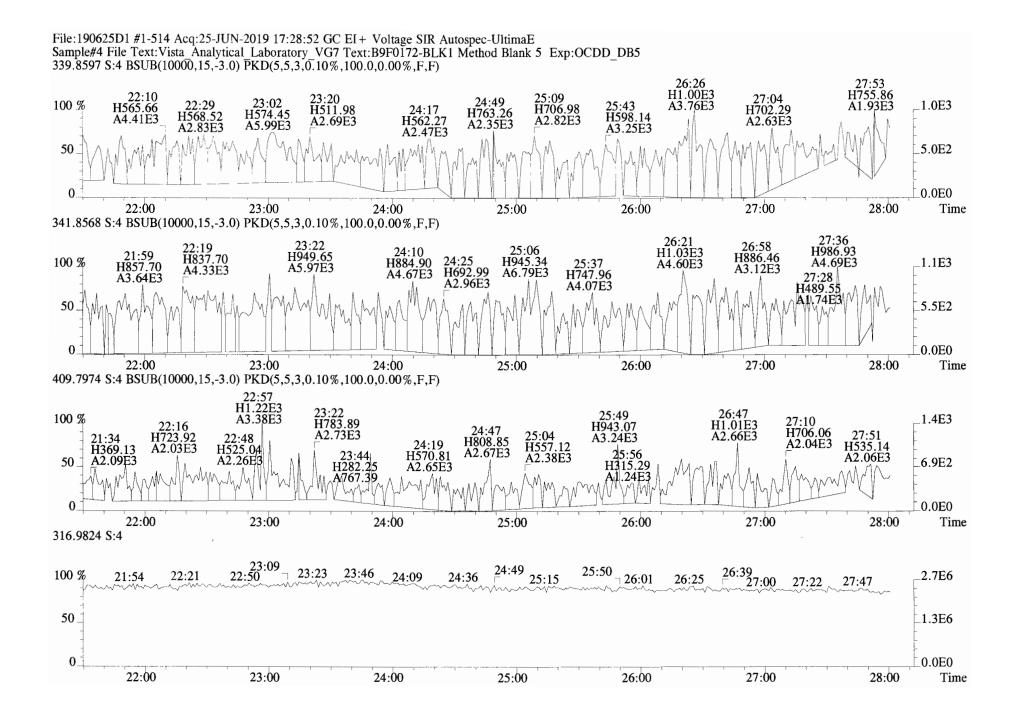


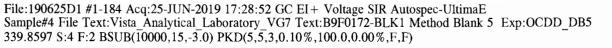


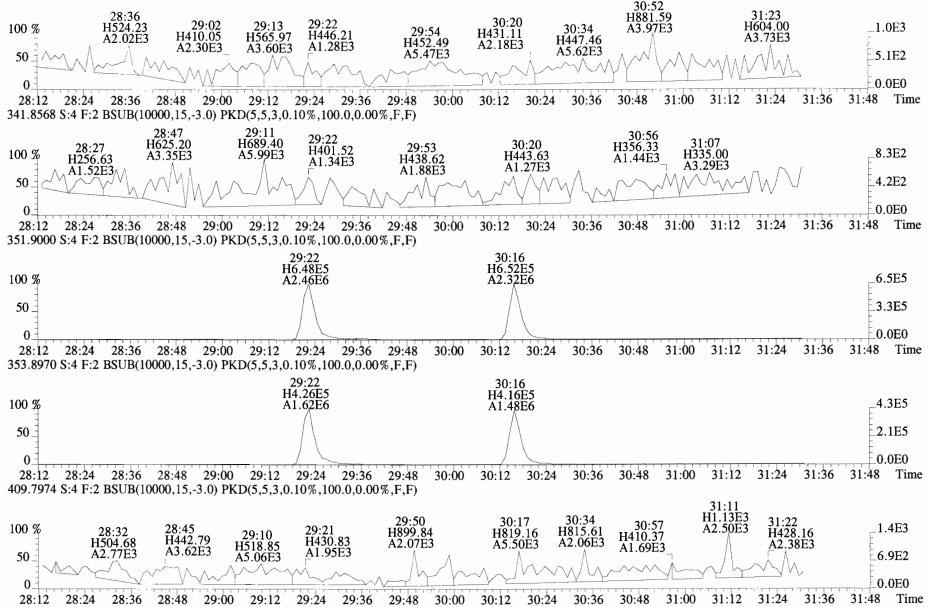
File:190625D1 #1-399 Acq:25-JUN-2019 17:28:52 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista_Analytical_Laboratory_VG7 Text:B9F0172-BLK1 Method Blank 5 Exp:OCDD_DB5 389.8156 S:4 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



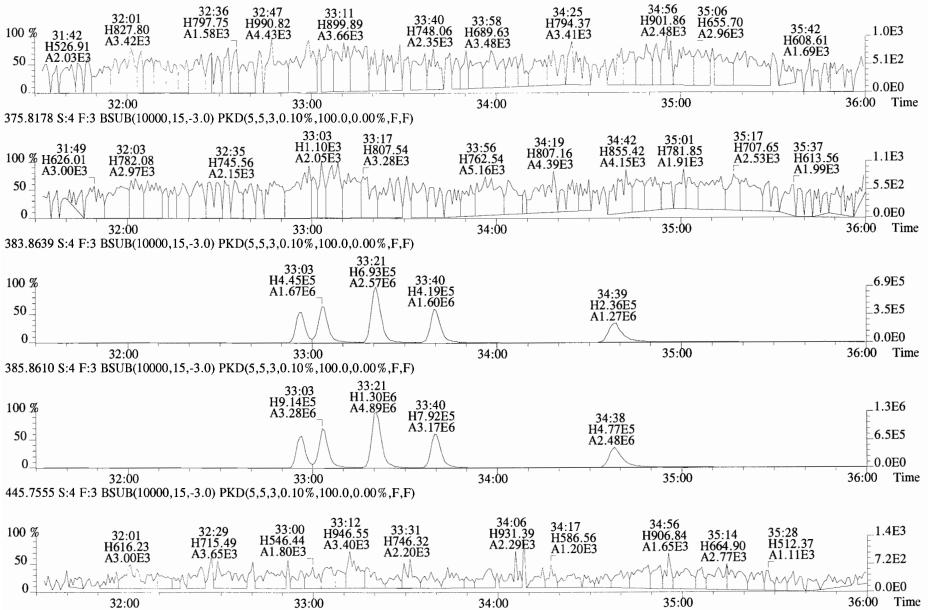
File:190625D1 #1-399 Acq:25-JUN-2019 17:28:52 GC EI + Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-BLK1 Method Blank 5 Exp:OCDD_DB5 401.8559 S:4 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

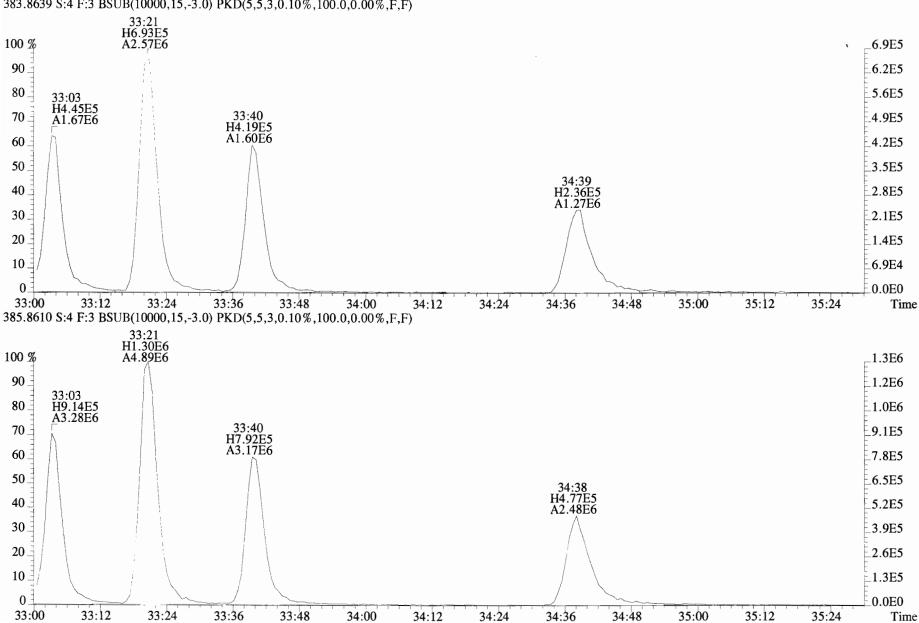

File:190625D1 #1-355 Acq:25-JUN-2019 17:28:52 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text: Vista Analytical Laboratory VG7 Text: B9F0172-BLK1 Method Blank 5 Exp:OCDD DB5

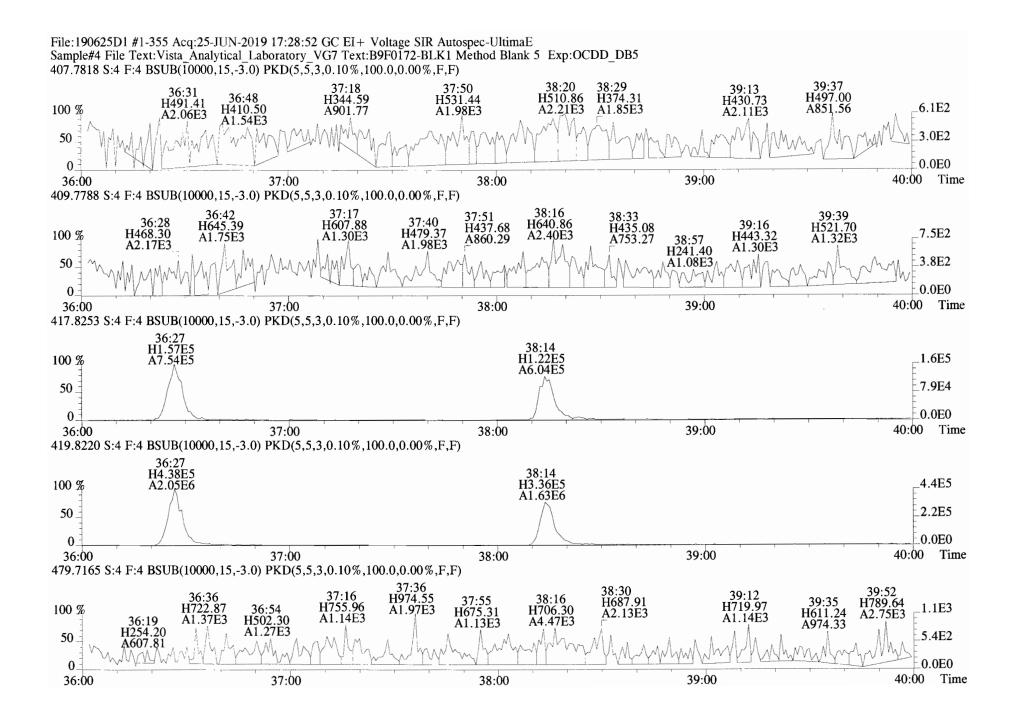



303.9016 S:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F) 20:48 21:23 H733.60 25:07 H1.01E3 27:07 H950.31 26:28 27:49 H832.71 H1.01E3 22:21 23:04 24:13 H664.79 25:47 H924.76 20:08 H519.78 _1.2E3 100 % A3.70E3 H777.46 A4.96E3 H732.57 H699.00 A3.07E3 A3.83E3 A4.29E3 A3.10E3 A3.81E3 A3.15E3 A3.21E3 A3.27E3 A1.91E3 _5.9E2 11M 50 0.0E0 0 25:00 26:00 27:00 28:00 Time 20:00 21:00 22:00 23:00 24:00305.8987 S:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F) 24:53 H1.32E3 23:40 H1.03E3 26:16 H886.71 26:50 H1.00E3 22:06 H1.12E3 20:19 23:04 27:41 H764.79 21:13 H1.13E3 H856.50 _1.3E3 100 % A3.46E3 A3.86E3 H774.02 A3.47E3 A1.92E3 A6.91E3 A4.96E3 A6.34E3 A2.81E3 A2.90E3 6.6E2 50 0.0E0 0 26:00 27:00 28:00 Time 20:00 21:0022:00 24:00 25:00 23:00315,9419 S:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F) 24:04 H1.21E6 _1.2E6 100 % A5.42E6 25:19 H4.68E5 6.1E5 50 A2.25E6 0.0E0 0 26:00 27:00 28:00 Time 20:00 21:00 22:0023:00 24:00 25:00 317.9389 S:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F) 24:04 H1.52E6 100 % A6.69E6 _1.5E6 25:18 H5.93E5 7.6E5 50 A2.71E6 0.0E0 0 22:00 25:00 26:00 27:00 28:00 Time 20:00 21:00 23:00 24:00 375.8364 S:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F) 22:52 27:14 H684.84 20:55 21:56 H637.77 A2.84E3 25:49 H738.78 A2.09E3 H800.69 24:13 H536.20 24:44 26:34 H606.58 A2.87E3 27:51 H758.13 H710.07 _1.0E3 100 % A1.46E3 H359.89 A2.73E3 A1.59E3 20:13 A2.04E3 A3.75E3 A1.39E3 H254.21 5.1E2 50 A901.49 W 0.0E0 0 28:00 20:00 21:00 22:00 23:00 24:00 25:00 26:00 27:00 Time

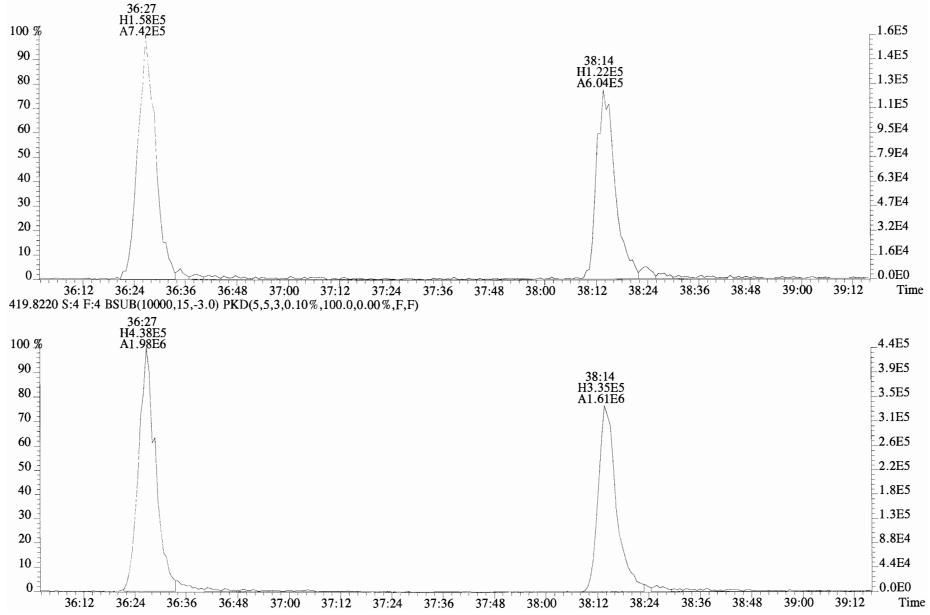
File:190625D1 #1-514 Acq:25-JUN-2019 17:28:52 GC EI+ Voltage SIR Autospec-UltimaE

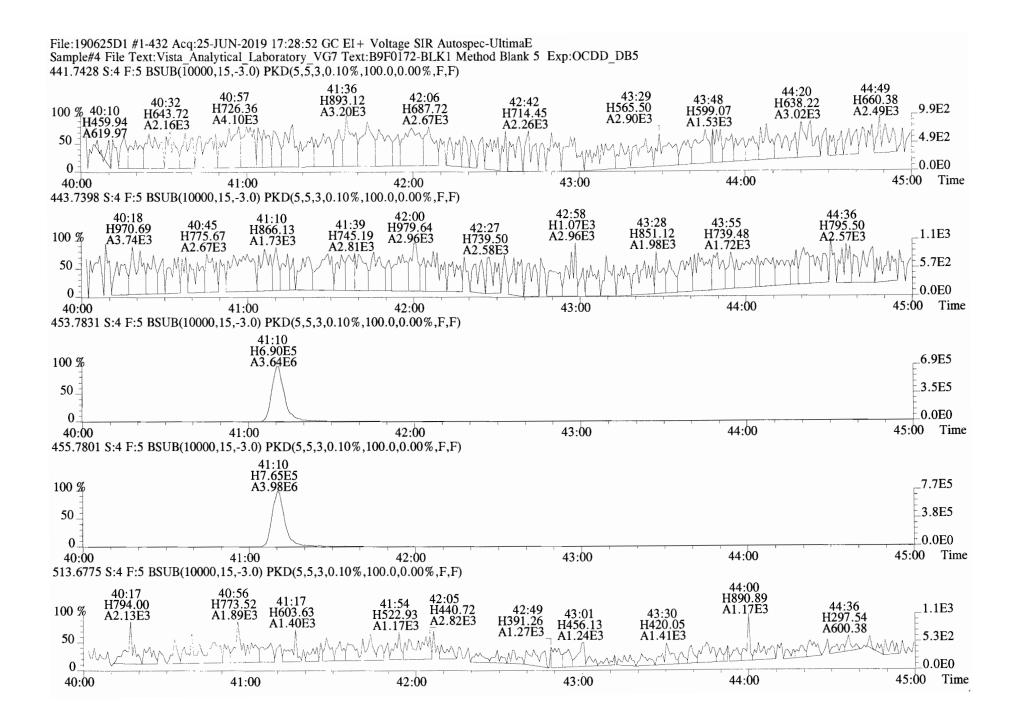

Sample#4 File Text: Vista Analytical Laboratory VG7 Text: B9F0172-BLK1 Method Blank 5 Exp:OCDD DB5





File:190625D1 #1-399 Acq:25-JUN-2019 17:28:52 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista_Analytical_Laboratory_VG7 Text:B9F0172-BLK1 Method Blank 5 Exp:OCDD_DB5 373.8207 S:4 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)





File:190625D1 #1-399 Acq:25-JUN-2019 17:28:52 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-BLK1 Method Blank 5 Exp:OCDD_DB5 383.8639 S:4 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

File:190625D1 #1-355 Acq:25-JUN-2019 17:28:52 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-BLK1 Method Blank 5 Exp:OCDD_DB5 417.8253 S:4 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

FORM 8A PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

Lab Name: Vista Analytical Laboratory	Extraction Batch: B9F0172-BS1
---------------------------------------	-------------------------------

Contract No .: SAS No.:

Matrix (aqueous/solid/le	achate): SOLID	OPR Data	Filename:	190625D1-2
--------------------------	----------------	----------	-----------	------------

Ext. Date: Shift: Day Analysis Date: 25-JUN-19 Time: 15:53:21

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT.

NATIVE ANALYTES	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS (1) (ng/mL)
2,3,7,8-TCDD	10	14.3	6.7 - 15.8 7.3 - 14.6 (2)
1,2,3,7,8-PeCDD	50	55.8	35.0 - 71.0
1,2,3,4,7,8-HxCDD	50	52.3	35.0 - 82.0
1,2,3,6,7,8-HxCDD	50	53.7	38.0 - 67.0
1,2,3,7,8,9-HxCDD	50	51.6	32.0 - 81.0
1,2,3,4,6,7,8-HpCDD	50	48.3	35.0 - 70.0
OCDD	100	99.2	78.0 - 144.0
2,3,7,8-TCDF	10	10.0	7.5 - 15.8 8.0 - 14.7 (2)
1,2,3,7,8-PeCDF	50	45.9	40.0 - 67.0
2,3,4,7,8-PeCDF	50	46.3	34.0 - 80.0
1,2,3,4,7,8-HxCDF	50	52.7	36.0 - 67.0
1,2,3,6,7,8-HxCDF	50	54.5	42.0 - 65.0
2,3,4,6,7,8-HxCDF	50	53.7	35.0 - 78.0
1,2,3,7,8,9-HxCDF	50	54.8	39.0 - 65.0
1,2,3,4,6,7,8-HpCDF	50	46.7	41.0 - 61.0
1,2,3,4,7,8,9-HpCDF	50	46.1	39.0 - 69.0
OCDF	100	104	63.0 - 170.0

(1) Contract-required concentration limits for OPR as specified in Table 6, Method 1613. 10/94

(2) Contract-required concentration limits for OPR as specified in Table 6a, Method 1613. 10/94

Analyst: <u>}</u> Date: <u>6/26/19</u>

FORM 8B PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR)

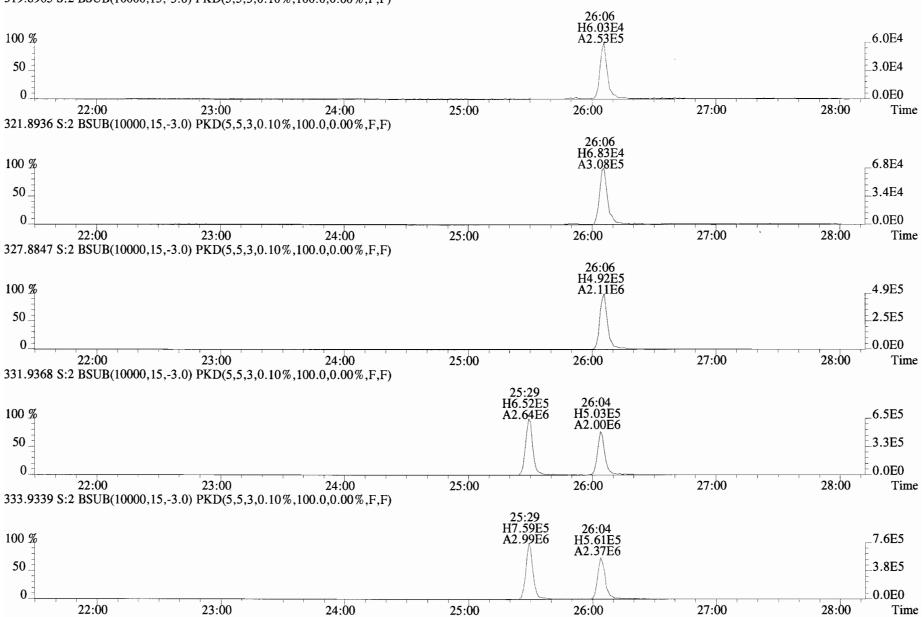
Lab Name: Vista Analytical Laborato	ry Extraction Batch: B9F0172-BS1
-------------------------------------	----------------------------------

Contract No.: SAS No.:

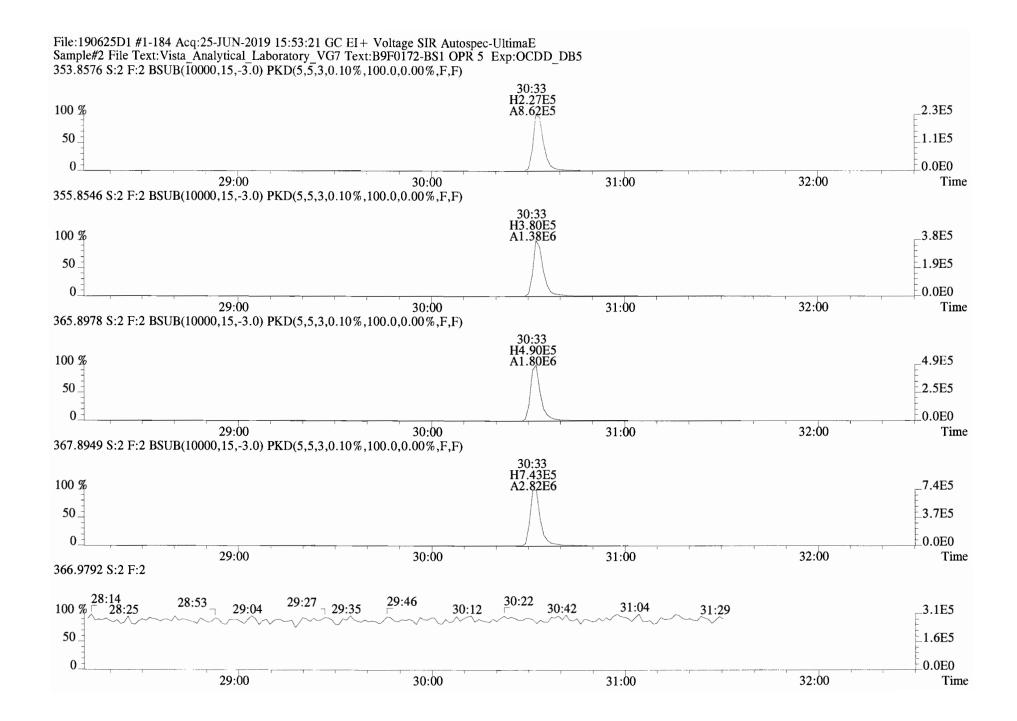
Matrix (aqueous/solid/leachate): SOLID OPR Data Filename: 190625D1-2

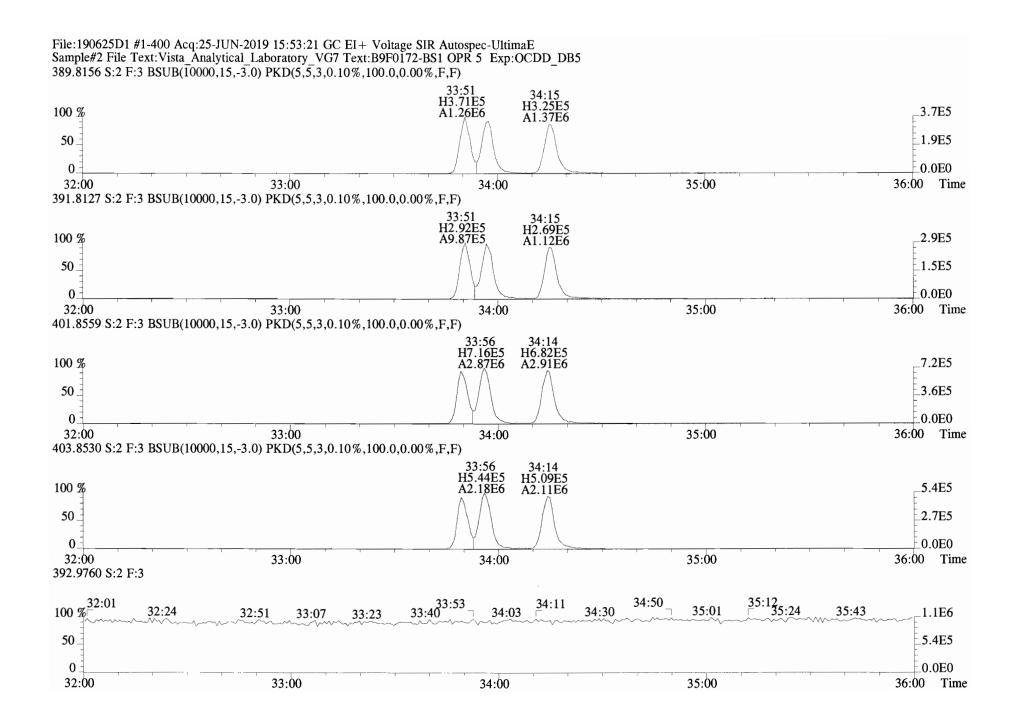
Ext. Date: Shift: Day Analysis Date: 25-JUN-19 Time: 15:53:21

ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT.

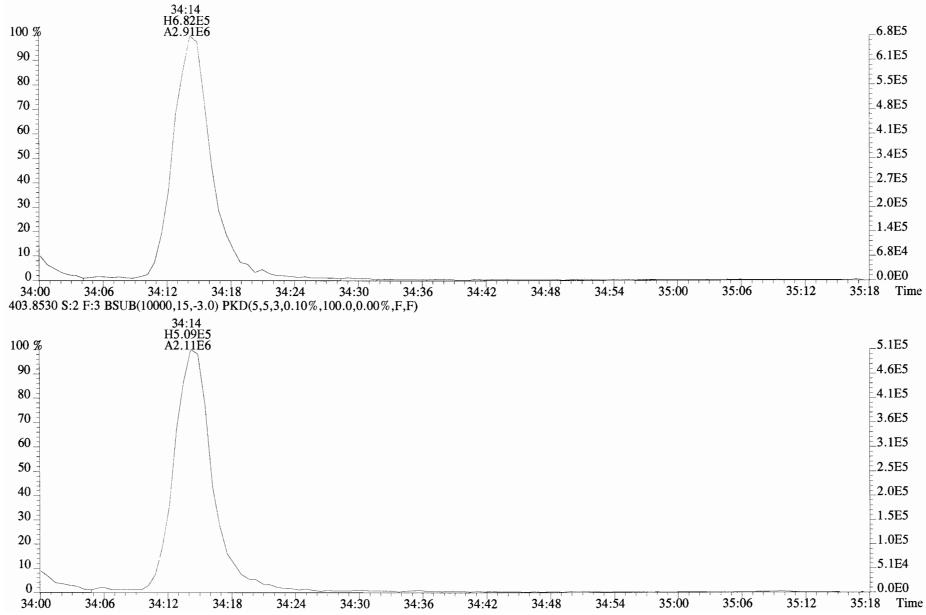

LABELED COMPOUNDS	SPIKE CONC. (ng/mL)	CONC. FOUND (ng/mL)	OPR CONC. LIMITS (1) (ng/mL)
13C-2,3,7,8-TCDD	100	70.2	20.0 - 175.0
13C-1,2,3,7,8-PeCDD	100	84.0	25.0 - 141.0 (2) 21.0 - 227.0
13C-1,2,3,4,7,8-HxCDD	100	88.5	21.0 - 193.0
13C-1,2,3,6,7,8-HxCDD	100	87.3	25.0 - 163.0
13C-1,2,3,7,8,9-HxCDD	100	90.0	21.0 - 193.0
13C-1,2,3,4,6,7,8-HpCDD	100	82.9	26.0 - 166.0
13C-OCDD	200	177	26.0 - 397.0
13C-2,3,7,8-TCDF	100	56.8	22.0 - 152.0
13C-1,2,3,7,8-PeCDF	100	60.8	26.0 - 126.0 (2) 21.0 - 192.0
13C-2,3,4,7,8-PeCDF	100	62.3	13.0 - 328.0
13C-1,2,3,4,7,8-HxCDF	100	83.1	19.0 - 202.0
13C-1,2,3,6,7,8-HxCDF	100	83.3	21.0 - 159.0
13C-2,3,4,6,7,8-HxCDF	100	87.5	22.0 - 176.0
13C-1,2,3,7,8,9-HxCDF	100	89.0	17.0 - 205.0
13C-1,2,3,4,6,7,8-HpCDF	100	71.1	21.0 - 158.0
13C-1,2,3,4,7,8,9-HpCDF	100	77.4	20.0 - 186.0
13C-OCDF	200	170	26.0 - 397.0
CLEANUP STANDARD			
37Cl-2,3,7,8-TCDD	40	30.8	12.4 - 76.4

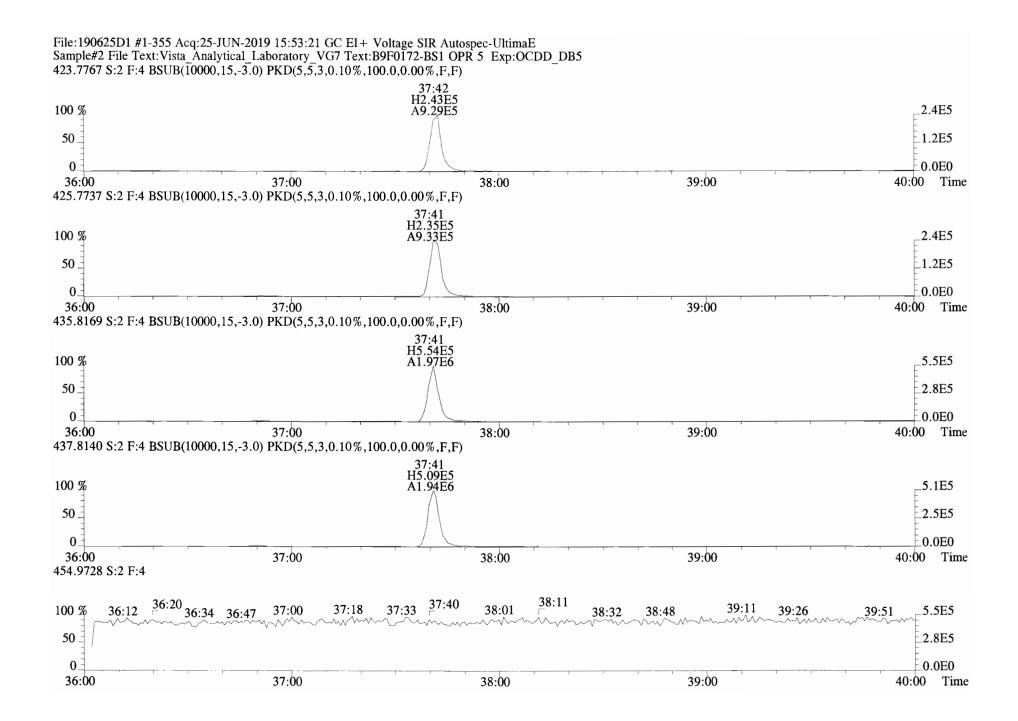
(1) Contract-required concentration limits for OPR as specified in Table 6, Method 1613. 10/94

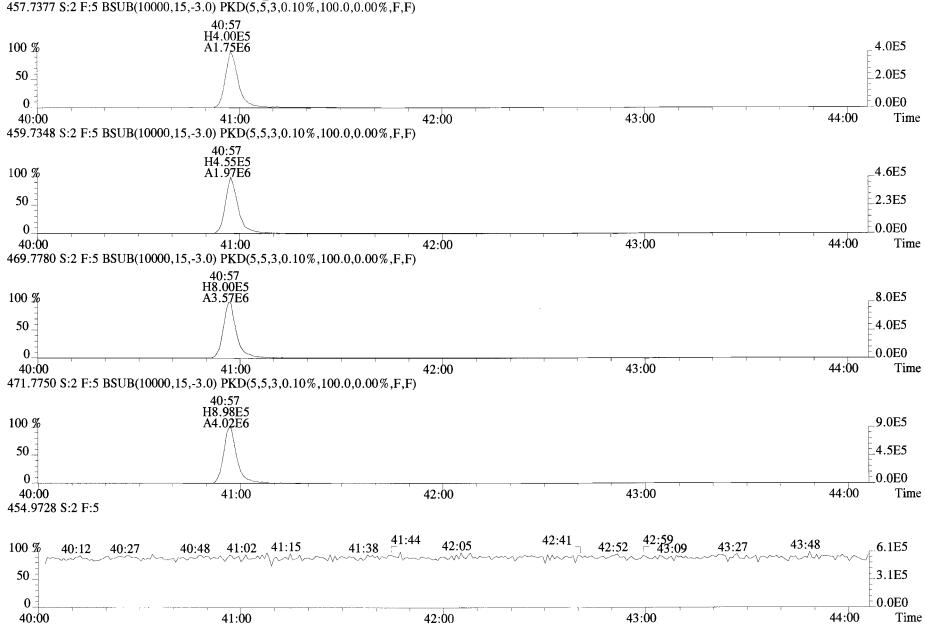

(2) Contract-required concentration limits for OPR as specified in Table 6a, Method 1613. 10/94


Analyst: DB Date: 6/26/19

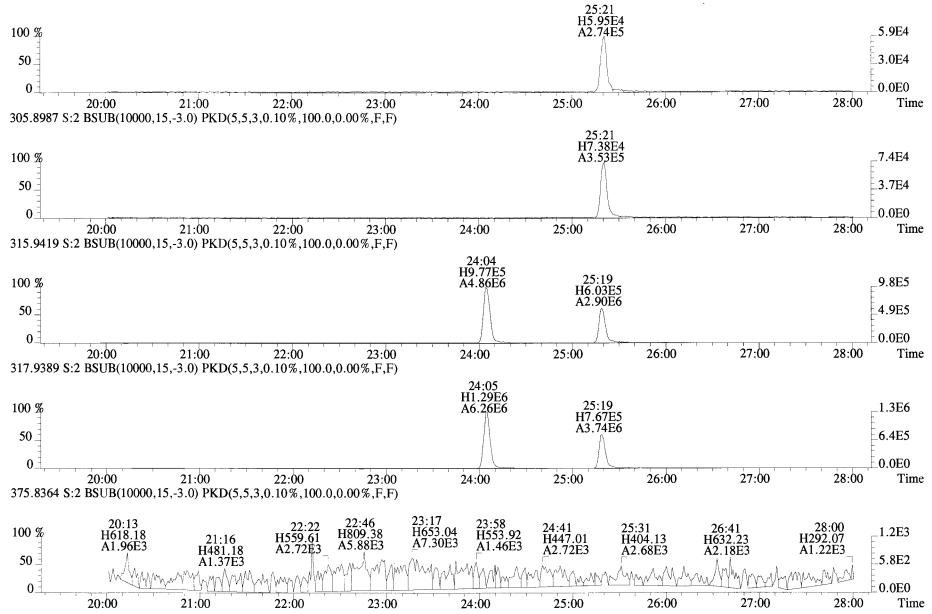
Client ID: OPR	Fi	lename: 19	062501	5.2	Acq:25-J	INI-19 1	5.53.21		ConCal: ST190625D1	-1			Page 2	of 2
Lab ID: B9F0172-BS1		Column II			-			: 1.000	EndCAL: NA				5	
	00	. corunar m		io rear	1013107	5 10 17	1107 101	1.000						
Name	Resp	RA	RRF	RT	Conc	Qual	noise Fac	DL	Name	Conc	EMPC	Qual	noise	DL
2,3,7,8-TCDD	-	0.82 y	0.90	26:06	14.253		* 2.5	*	Total Tetra-Dioxins	15.2	19.6		*	*
1,2,3,7,8-PeCDD		0.62 y	0.87	30:34	55.787		* 2.5	*	Total Penta-Dioxins	55.8	57.0		*	*
1,2,3,4,7,8-HxCDD		1.28 y	1.05	33:51	52.266		* 2.5	*	Total Hexa-Dioxins	159	160		*	*
1,2,3,6,7,8-HxCDD		1.17 y	0.93	33:57	53.743		* 2.5	*	Total Hepta-Dioxins	49.7	51.7		*	*
1,2,3,7,8,9-HxCDD		1.23 y	0.96	34:16	51.575		* 2.5	*	Total Tetra-Furans	12.1	17.0		*	*
1,2,3,4,6,7,8-HpCDD		1.00 y	0.99	37:42	48.276		* 2.5	*	Total Penta-Furans	93.633	98.228		*	*
OCDD		0.89 y	0.99	40:58	99.213		* 2.5	*	Total Hexa-Furans	216	218		*	*
0000	5.710,00	0.05 1	0.55	10.50	<i>>></i> .215		2.0		Total Hepta-Furans	93.2	96.0		*	*
2,3,7,8-TCDF	6 270+05	0.77 y	0.94	25:21	10.011		* 2.5	*						
1,2,3,7,8-PeCDF		1.62 y	0.92	29:21	45.925		* 2.5	*						
2,3,4,7,8-PeCDF		1.66 y	0.96	30:18	46.278		* 2.5	*						
1,2,3,4,7,8-HxCDF		1.00 y 1.22 y	1.15	32:58	52.667		* 2.5	*						
		-	1.04	33:05	54.475		* 2.5	*						
1,2,3,6,7,8-HxCDF		1.18 y	1.10	33:05	54.475		* 2.5	*						
2,3,4,6,7,8-HxCDF		1.19 y			54.838		* 2.5							
1,2,3,7,8,9-HxCDF		1.21 y	1.03	34:40			* 2.5	*						
1,2,3,4,6,7,8-HpCDF		0.94 y	1.06	36:28	46.655			*						
1,2,3,4,7,8,9-HpCDF		0.92 y	1.23	38:16	46.109		* 2.5	*						
OCDF	4.46e+06	0.91 y	0.94	41:13	104.27		* 2.5	Ŷ	Rec Qual					
	1 25. 06	0.04		26 05	70.164				70.2					
IS 13C-2,3,7,8-TCDD		0.84 y	1.11	26:05	70.164									
IS 13C-1,2,3,7,8-PeCDD		0.64 y	0.98	30:33	84.040				84.0					
IS 13C-1,2,3,4,7,8-HxCDD		1.37 y	0.68	33:50	88.515				88.5					
IS 13C-1,2,3,6,7,8-HxCDD		1.32 y	0.84	33:56	87.348				87.3					
IS 13C-1,2,3,7,8,9-HxCDD		1.38 y	0.81	34:15	90.034				90.0					
IS 13C-1,2,3,4,6,7,8-HpCDD		1.02 Y	0.69	37:41	82.884				82.9					
	7.59e+06	0.89 Y	0.62	40:57	176.95				88.5					
IS 13C-2,3,7,8-TCDF		0.78 Y	1.05	25:20	56.763				56.8					
IS 13C-1,2,3,7,8-PeCDF		1.59 y	0.95	29:23	60.768				60.8					
IS 13C-2,3,4,7,8-PeCDF		1.64 y	0.94	30:17	62.291				62.3					
IS 13C-1,2,3,4,7,8-HxCDF		0.51 y	0.86	32:57	83.113				83.1					
IS 13C-1,2,3,6,7,8-HxCDF		0.53 y	1.02	33:04	83.330				83.3					
IS 13C-2,3,4,6,7,8-HxCDF		0.53 Y	0.95	33:41	87.512				87.5					
IS 13C-1,2,3,7,8,9-HxCDF	5.30e+06	0.51 Y	0.87	34:39	89.035				89.0					
IS 13C-1,2,3,4,6,7,8-HpCDF	3.94e+06	0.38 Y	0.81	36:28	71.118				71.1					
IS 13C-1,2,3,4,7,8,9-HpCDF	3.36e+06	0.40 y	0.63	38:15	77.360				77.4					
IS 13C-OCDF	9.10e+06	0.89 Y	0.78	41:12	169.51				84.8					
C/Up 37Cl-2,3,7,8-TCDD	2.11e+06		1.22	26:06	30.832				5	rations		lewed		
									by	DR	by	r	-	
RS/RT 13C-1,2,3,4-TCDD	5.63e+06	0.88 y	1.00	25:29	100.00				Analyst:		Ana	lyst: (1	
RS 13C-1,2,3,4-TCDF	1.11e+07	0.78 y	1.00	24:05	100.00									
RS/RT 13C-1,2,3,4,6,9-HxCDF	6.87e+06	0.51 y	1.00	33:22	100.00				Dy Analyst: Date:	176/10		1.1-	1201 -	
									Date:	10017	Date	e:_00	2019	

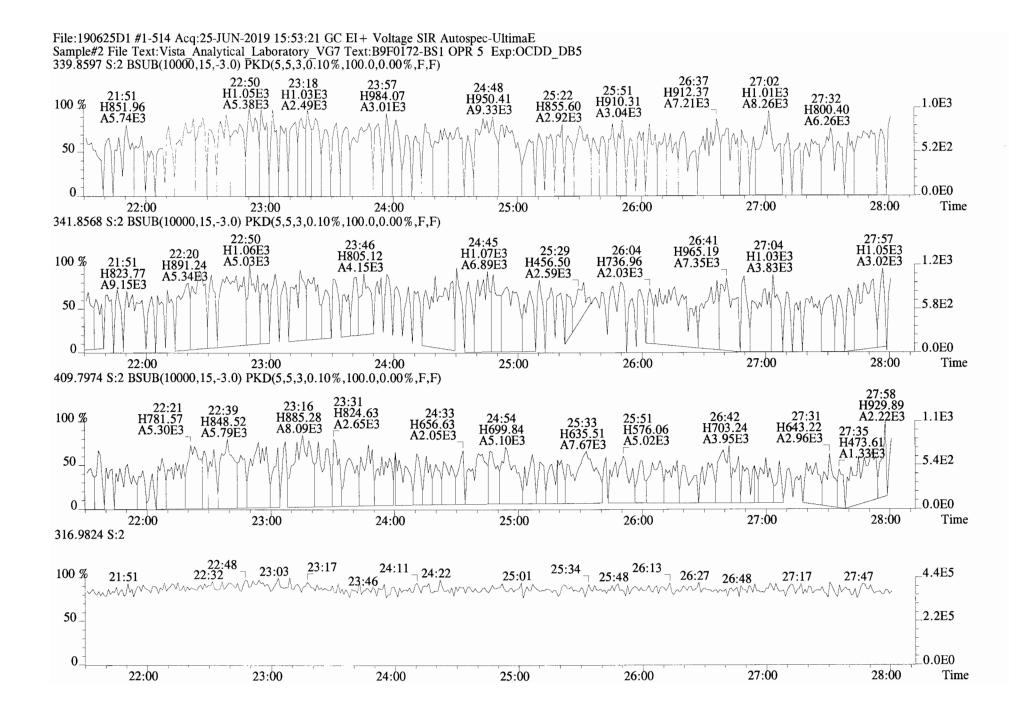


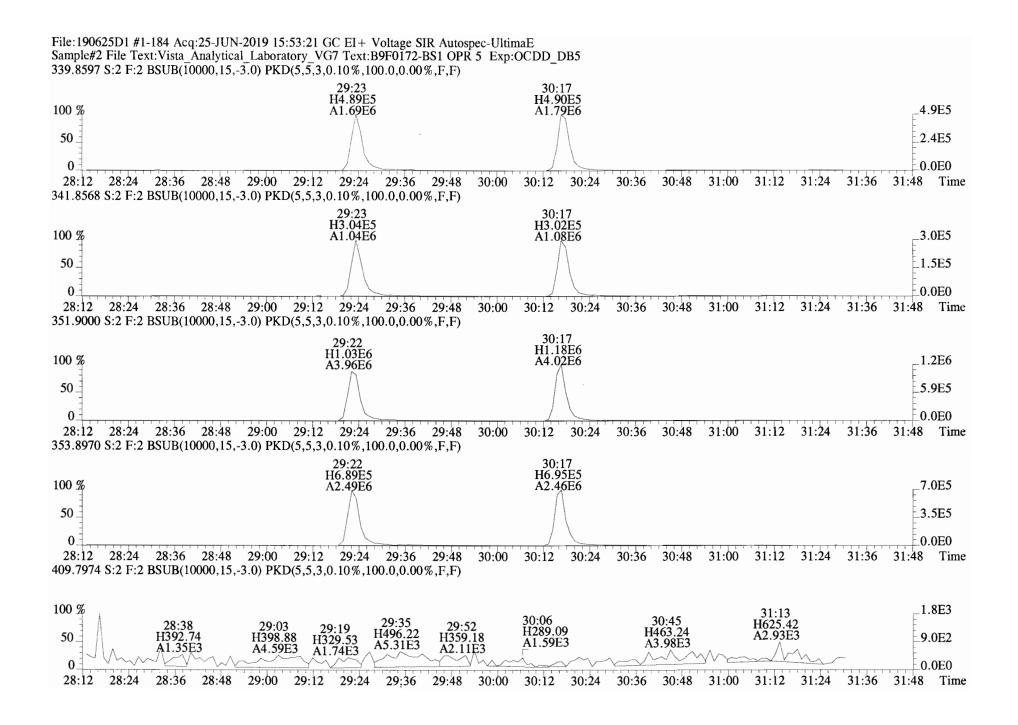

File:190625D1 #1-514 Acq:25-JUN-2019 15:53:21 GC EI + Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista_Analytical_Laboratory_VG7 Text:B9F0172-BS1 OPR 5 Exp:OCDD_DB5 319.8965 S:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



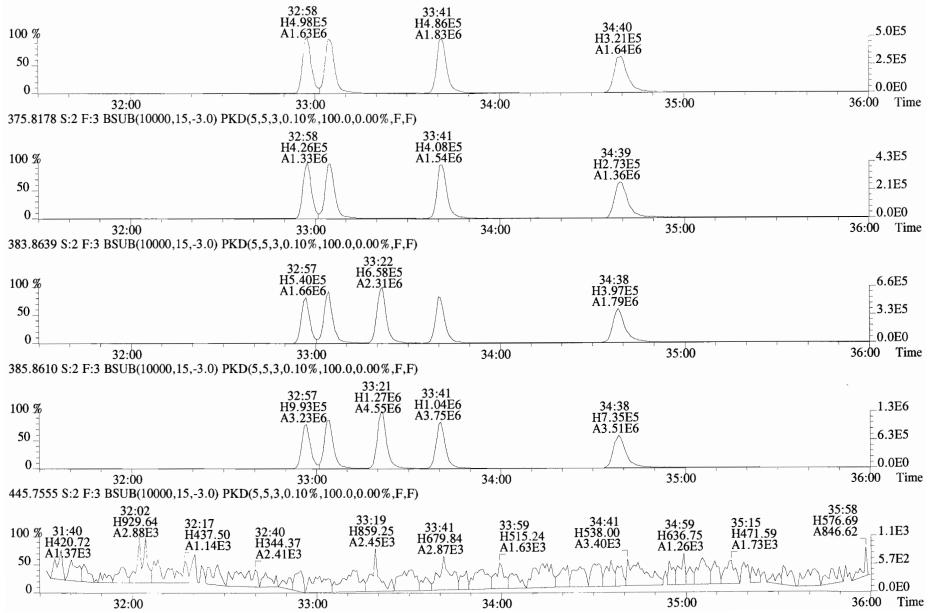
File:190625D1 #1-400 Acq:25-JUN-2019 15:53:21 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-BS1 OPR 5 Exp:OCDD_DB5 401.8559 S:2 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

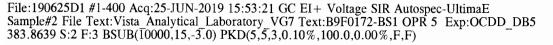


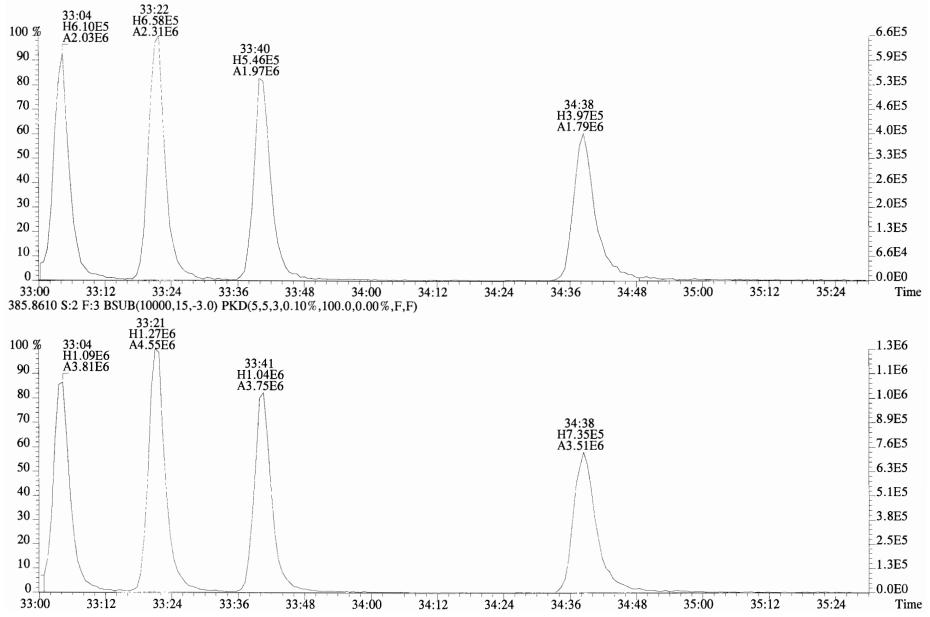


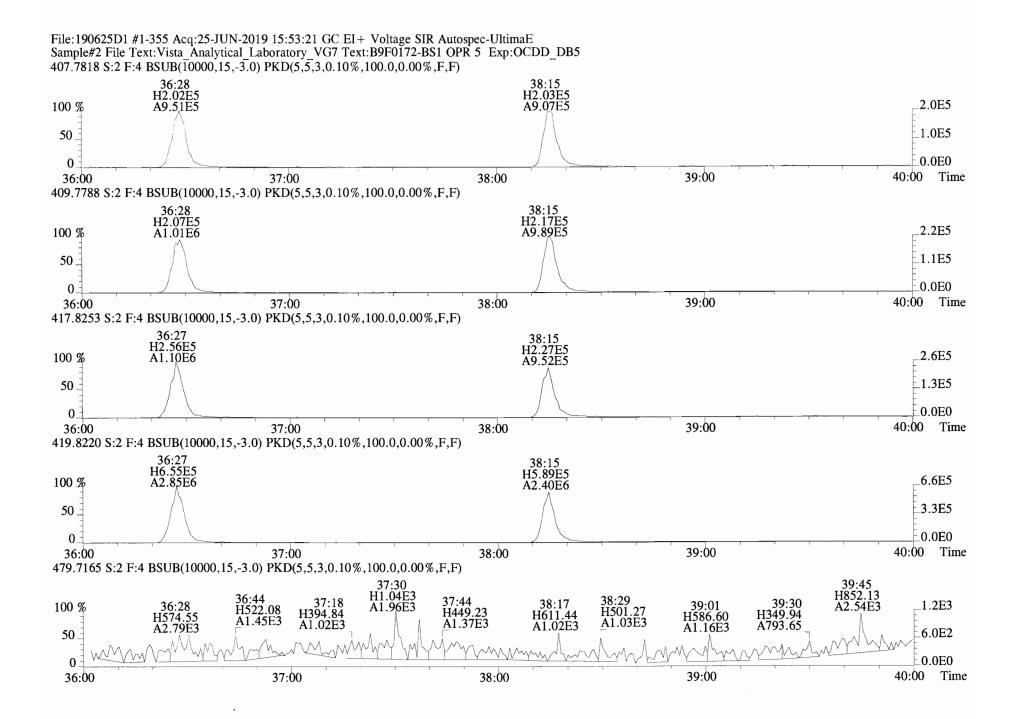


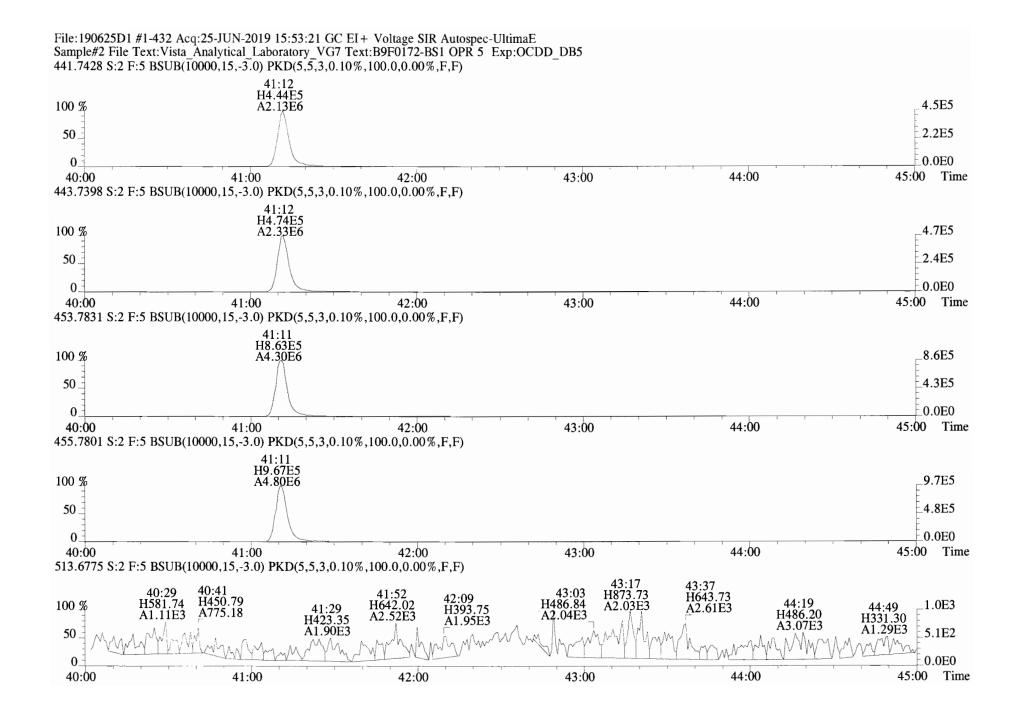
File:190625D1 #1-432 Acq:25-JUN-2019 15:53:21 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista_Analytical_Laboratory_VG7 Text:B9F0172-BS1 OPR 5 Exp:OCDD_DB5 457.7377 S:2 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)


File:190625D1 #1-514 Acq:25-JUN-2019 15:53:21 GC EI + Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista_Analytical_Laboratory_VG7 Text:B9F0172-BS1 OPR 5 Exp:OCDD_DB5 303.9016 S:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)








File:190625D1 #1-400 Acq:25-JUN-2019 15:53:21 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista_Analytical_Laboratory_VG7 Text:B9F0172-BS1 OPR 5 Exp:OCDD_DB5 373.8207 S:2 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

Work Order 1901248

Client ID: FD-201905241641 Lab ID: 1901248-01		lename: 19 Column II			Асq: 1-Л : 1613VG7-!			l: 5.055 🗸	-		al: ST190701D: AL: NA	2 - I			Page	e 2 of 2
Name	Resp	RA	RRF	RT	Conc	Qual	noise Fac	DL	1	Jame		Conc	EMPC	Qual	noise	DL
2,3,7,8-TCDD	*	* n	0.90	NotFi	*		167 2.5	0.215	C	Total ?	Tetra-Dioxins	*	*		167	0.215
1,2,3,7,8-PeCDD	*	* n	0.87	NotF	*		260 2.5	0.176	1	Total 1	Penta-Dioxins	*	*		260	0.176
1,2,3,4,7,8-HxCDD	7.63e+03	1.31 y	1.05	34:25	0.35400		* 2.5	*	1	Total H	Hexa-Dioxins	13.6	13.6		*	*
1,2,3,6,7,8-HxCDD	3.55e+04	1.25 y	0.93	34:31	1.6544		* 2.5	*	1	Total H	Hepta-Dioxins	116	116		*	*
1,2,3,7,8,9-HxCDD	1.28e+04	1.36 y	0.96	34:49	0.52730		* 2.5	*	3	Total ?	Tetra-Furans	*	*		168	0.181
1,2,3,4,6,7,8-HpCDD	9.93e+05	1.01 y	0.99	38:11	44.195		* 2.5	*	3	Total 1	Penta-Furans	2.4677	2.4677		*	*
OCDD	6.97e+06	0.92 y	0.99	41:35	352.40		* 2.5	*	1	Total H	Hexa-Furans	7.51	7.89		*	*
		-							3	Total H	Hepta-Furans	15.0	15.0		*	*
2,3,7,8-TCDF	*	* n	0.94	NotFa	*		168 2.5	0.181								
1,2,3,7,8-PeCDF	*	* n	0.92	NotFi	*		228 2.5	0.192								
2,3,4,7,8-PeCDF	7.22e+03	1.71 y	0.96	30:48	0.34130		* 2.5	*								
1,2,3,4,7,8-HxCDF	2.29e+04	1.40 y	1.15	33:29	0.77498		* 2.5	*								
1,2,3,6,7,8-HxCDF	9.25e+03	1.09 y	1.04	33:37	0.30323		* 2.5	*								
2,3,4,6,7,8-HxCDF	7.71e+03	0.97 n	1.10	34:14	0.24319		* 2.5	*								
1,2,3,7,8,9-HxCDF	4.95e+03	1.32 y	1.03	35:14	0.18254		* 2.5	*								
1,2,3,4,6,7,8-HpCDF	1.06e+05	0.96 y	1.06	37:04	4.0435		* 2.5	*								
1,2,3,4,7,8,9-HpCDF		1.04 y	1.23	38:45	0.36546		* 2.5	*								
	2.74e+05	0.88 y	0.94	41:49	11.706		* 2.5	*								
		-								Rec	Qual					
IS 13C-2,3,7,8-TCDD	5.26e+06	0.77 y	1.11	26:46	135.64				3	34.3						
IS 13C-1,2,3,7,8-PeCDD	7.67e+06	0.61 y	0.98	31:02	224.17				Ę	56.7						
IS 13C-1,2,3,4,7,8-HxCDD	8.12e+06	1.27 y	0.68	34:24	316.22				-	79.9						
IS 13C-1,2,3,6,7,8-HxCDD	9.14e+06	1.30 y	0.84	34:31	285.69				-	72.2						
IS 13C-1,2,3,7,8,9-HxCDD	1.00e+07	1.27 y	0.81	34:49	324.67				8	32.1						
IS 13C-1,2,3,4,6,7,8-HpCDD	8.99e+06	1.04 y	0.69	38:11	344.83				8	37.2						
IS 13C-OCDD	1.59e+07	0.93 y	0.62	41:34	668.17				8	34.4						
IS 13C-2,3,7,8-TCDF	6.28e+06	0.78 y	1.05	26:03	110.07				2	27.8						
IS 13C-1,2,3,7,8-PeCDF	9.80e+06	1.56 y	0.95	29:54	189.29				4	17.8						
IS 13C-2,3,4,7,8-PeCDF	8.74e+06	1.60 y	0.94	30:47	172.41				4	43.6						
IS 13C-1,2,3,4,7,8-HxCDF	1.02e+07	0.52 y	0.86	33:29	311.72				-	78.8						
IS 13C-1,2,3,6,7,8-HxCDF	1.16e+07	0.51 y	1.02	33:37	299.39				-	75.7						
IS 13C-2,3,4,6,7,8-HxCDF	1. 14 e+07	0.50 y	0.95	34:14	315.97				-	79.9						
IS 13C-1,2,3,7,8,9-HxCDF	1.04e+07	0.52 y	0.87	35:14	315.93				-	79.9						
IS 13C-1,2,3,4,6,7,8-HpCDF	9.74e+06	0.43 y	0.81	37:03	317.11				8	30.1						
IS 13C-1,2,3,4,7,8,9-HpCDF	8.30e+06	0.44 y	0.63	38:45	345.61				8	37.4						
IS 13C-OCDF	1.97e+07	0.89 Y	0.78	41:49	663.54				8	33.9						
C/Up 37Cl-2,3,7,8-TCDD	2.43e+06		1.22	26:47	56.879				3	35.9	Integ	rations	Revi	ewed		
											by	$ \frown a $	by		•	
RS/RT 13C-1,2,3,4-TCDD	1.39e+07	0.77 y	1.00	26:14	395.65						Analyst:_	1/0_	Anal	yst:	C7	_
RS 13C-1,2,3,4-TCDF	2.14e+07	0.82 y	1.00	24:55	395.65						Dy Analyst: Date:					
RS/RT 13C-1,2,3,4,6,9-HxCDF	1.50e+07	0.52 y	1.00	33:54	395.65						-	1-1.0			-1-1	

7

1

Ţ

Page 6 of 18

Totals class: Hx	CDD EMPC	Entry #: 23	
		1D2 S: 6 Processed: 2-JUL-1	
Total Concentration	on: 13.581	Unnamed Concentra	tion: 11.045
RT ml Resp	m2 Resp RA	Resp Concentr	ation Name
32:48 6.294e+04	4.826e+04 1.30 y	1.112e+05 4	.9588
33:25 8.694e+03	6.515e+03 1.33 y	1.521e+04 0.	67825
33:40 6.280e+04	5.034e+04 1.25 y	1.131e+05 5	.0455
33:47 4.343e+03	3.795e+03 1.14 y	8.138e+03 0.	36290
34:25 4.320e+03	3.305e+03 1.31 y	7.625e+03 0.	35400 1,2,3,4,7,8-HxCDD
34:31 1.976e+04	1.577e+04 1.25 y	3.553e+04 1	.6544 1,2,3,6,7,8-HxCDD
34:49 7.402e+03	5.447e+03 1.36 y	1.285e+04 0.	52730 1,2,3,7,8,9-HxCDD

•

Totals class: HpCDD EMPC Entry #: 25

 Run: 8
 File: 190701D2
 S: 6
 I: 1
 F: 4

 Acquired: 1-JUL-19
 22:03:37
 Processed: 2-JUL-19
 09:35:58

Total Concentration: 115.78 Unnamed Concentration: 71.583

RT	ml Resp	m2 Resp RA	Resp Concentration	Name
37:22	8.059e+05	8.020e+05 1.00 y	1.608e+06 71.583	
38:11	4.989e+05	4.938e+05 1.01 y	9.927e+05 44.195	1,2,3,4,6,7,8-HpCDD

Totals class: 1st Func. PeCDF EMPC Entry #: 29

Run:	8	File: 1	190701D2	S: 6 I	: 1	F:	1
Acquired:	1-JUL-19	22:03:3	37 Processed:	2-JUL-19	09:	35:5	8

Total Concentration: 1.3147 Unnamed Concentration: 1.315

RT m1 Resp m2 Resp RA Resp Concentration Name

27:40 1.774e+04 1.120e+04 1.58 y 2.894e+04 1.3147

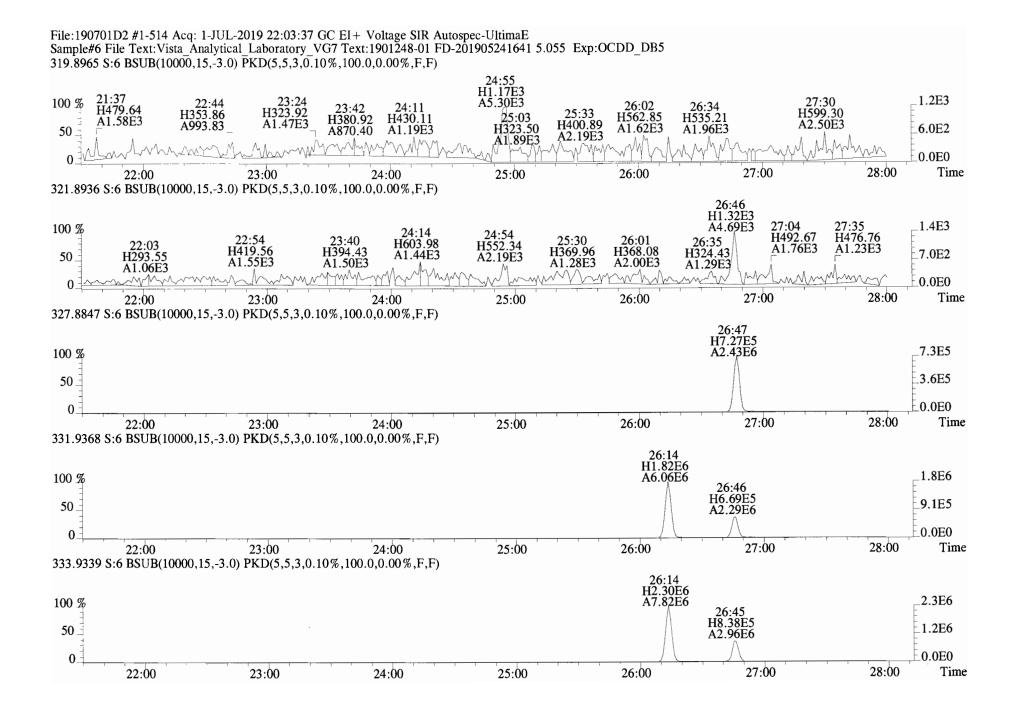
0.34130 2,3,4,7,8-PeCDF

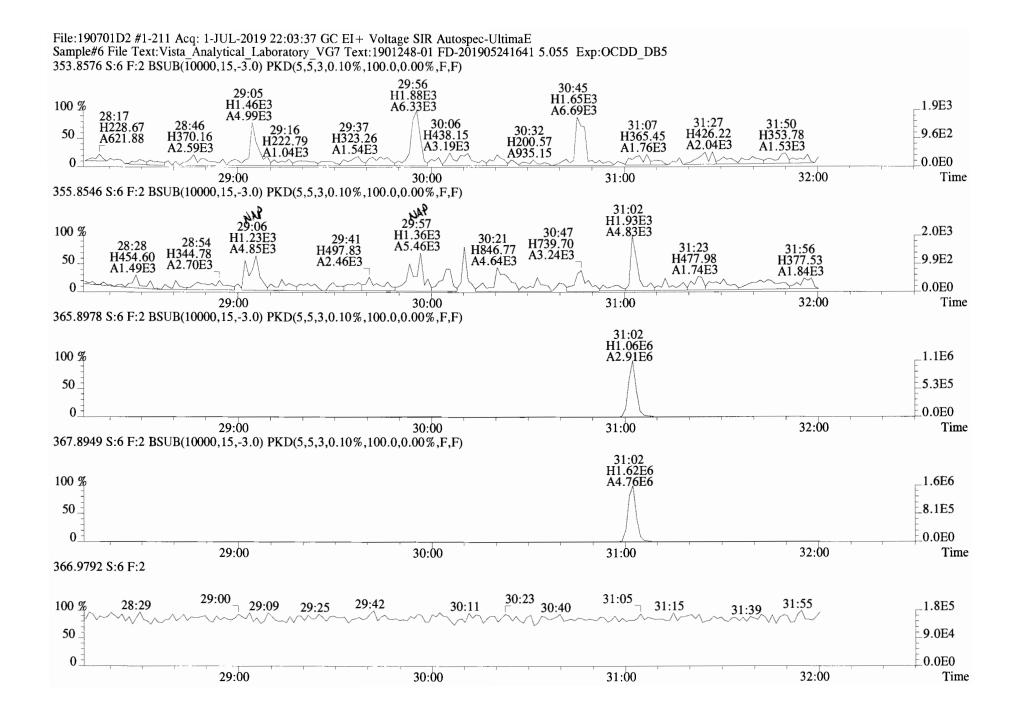
 Totals class: PeCDF EMPC
 Entry #: 31

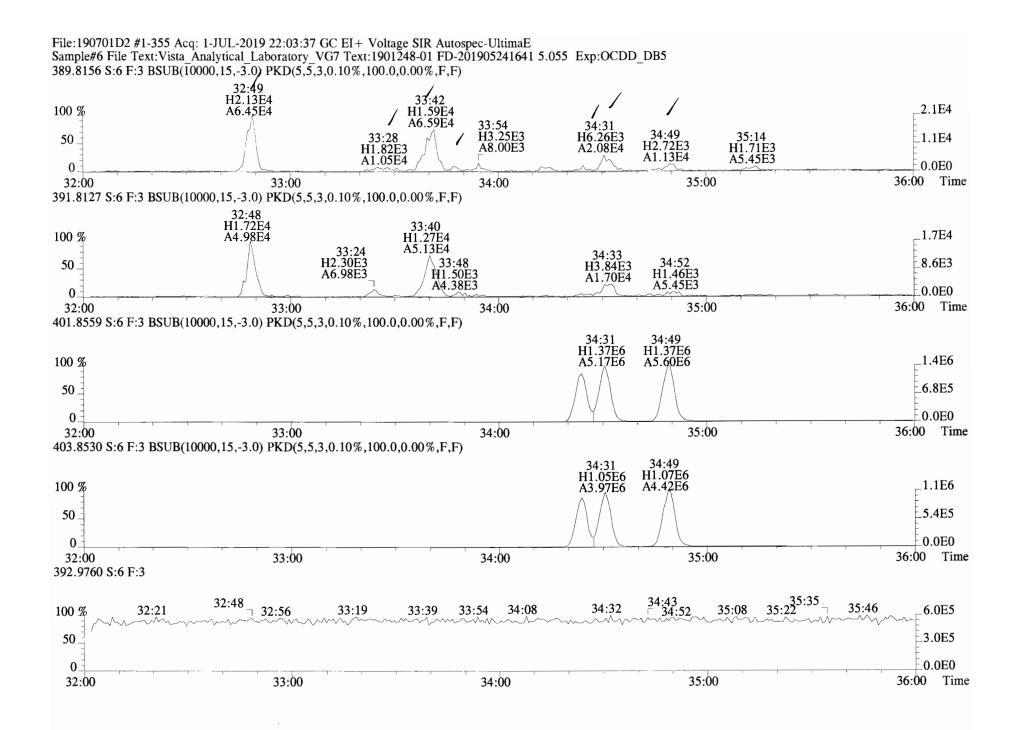
 Run: 8
 File: 190701D2
 S: 6 I: 1 F: 2

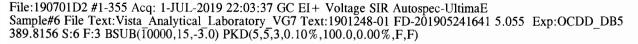
 Acquired: 1-JUL-19 22:03:37
 Processed: 2-JUL-19 09:35:58

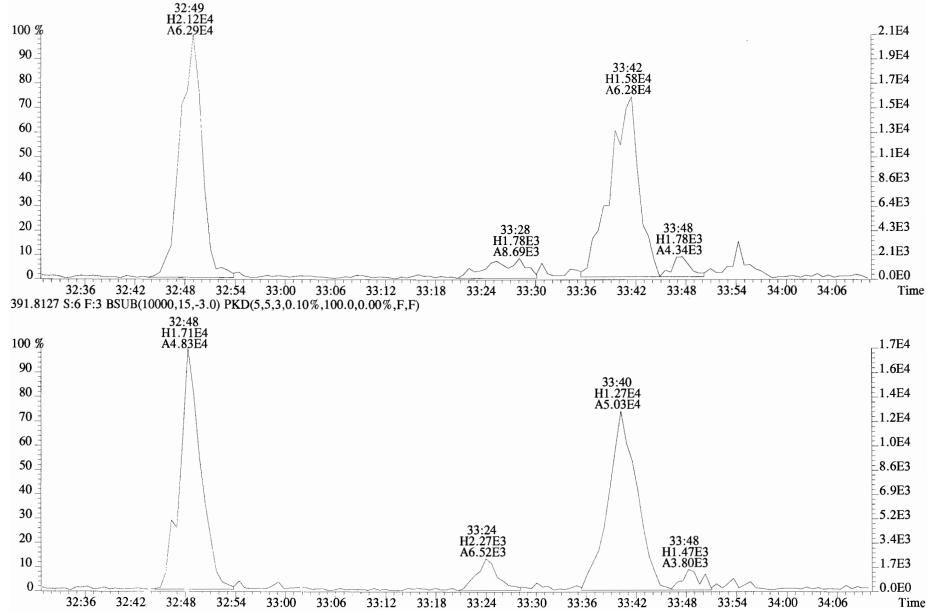
 Total Concentration: 1.1530
 Unnamed Concentration: 0.812

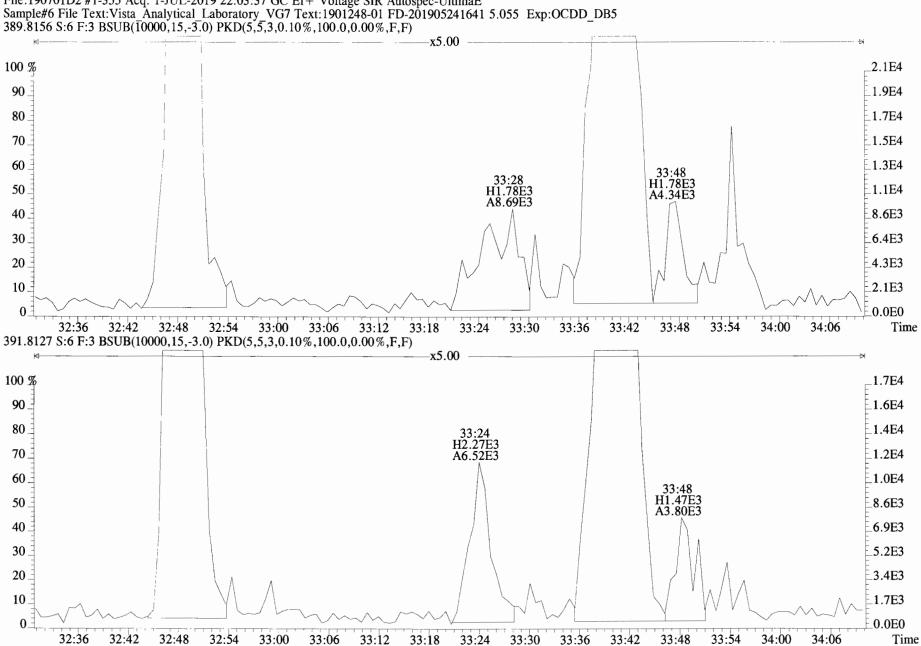

 RT
 m1 Resp
 m2 Resp RA
 Resp Concentration

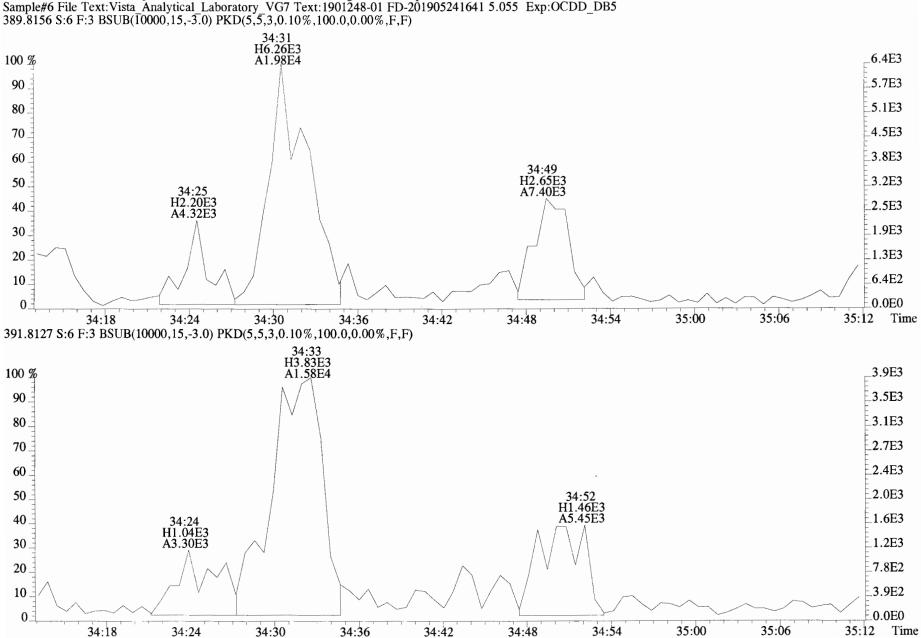

 29:02
 1.037e+04
 7.496e+03
 1.38 y
 1.787e+04
 0.81167

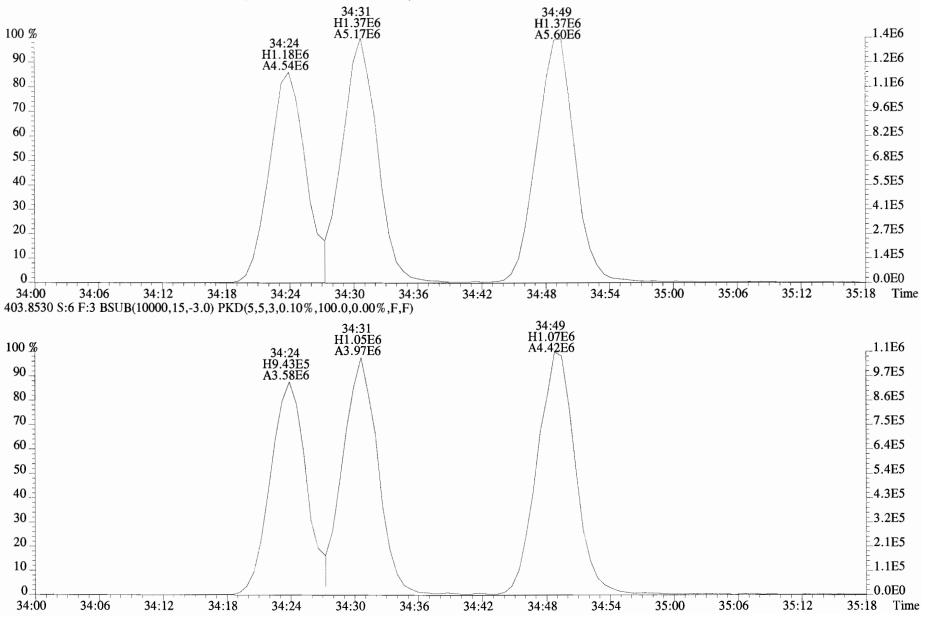

30:48 4.559e+03 2.664e+03 1.71 y 7.223e+03

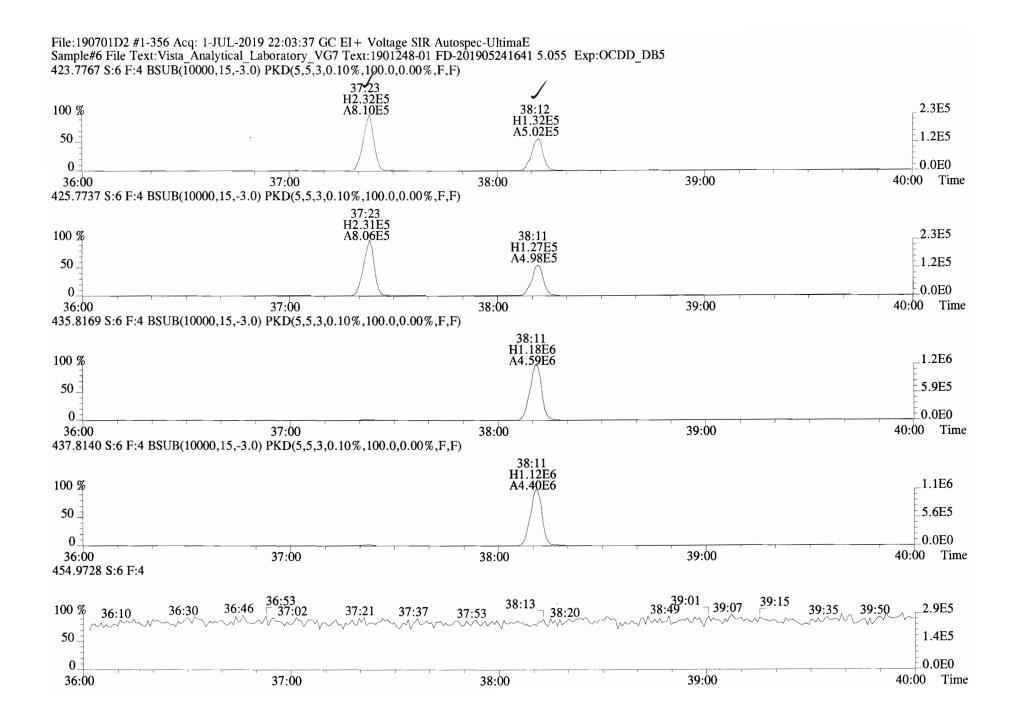

Totals	class: HxC	DF EMPC	Entry	#: 33	
Acc		File: 19070 JUL-19 22:03:37			
Total Co	oncentration	n: 7.8853	Unnamed Conc	entration: 6	.381
7.0			D		No
RT	mi kesp	m2 Resp RA	Resp Con	centration	Name
32:15	1.460e+04	1.219e+04 1.20 y	2.679e+04	0.90173	
32:26 3	3.538e+04	2.841e+04 1.25 y	6.379e+04	2.1472	
33:00 5	5.296e+04	4.212e+04 1.26 y	9.508e+04	3.2004	
33:29 1	1. 336e+04	9.574e+03 1.40 y	2.294e+04	0.77498	1,2,3,4,7,8-HxCDF
33:37 4	4.820e+03	4.432e+03 1.09 y	9.252e+03	0.30323	1,2,3,6,7,8-HxCDF
34:14 4	4.266e+03	4.382e+03 0.97 n	7.706e+03	0.24319	2,3,4,6,7,8-HxCDF
35:14 2	2.813e+03	2.137e+03 1.32 y	4.950e+03	0.18254	1,2,3,7,8,9-HxCDF
35:18 2	2.687e+03	1.751e+03 1.53 n	3.922e+03	0.13202	

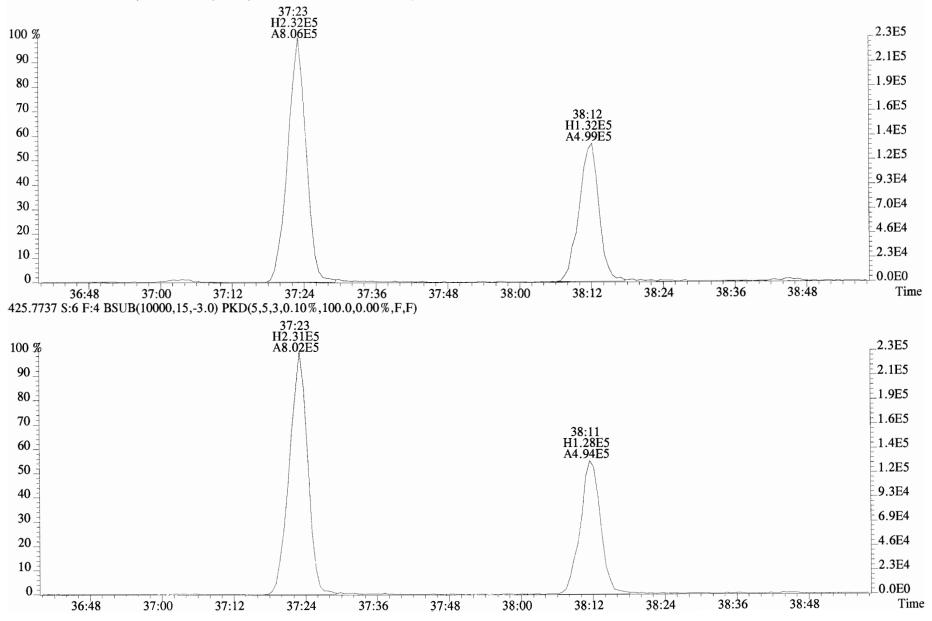

Totals class: HpCDF EMPC	Entry #: 35
Run: 8 File: 1907 Acquired: 1-JUL-19 22:03:37	V01D2 S: 6 I: 1 F: 4 Processed: 2-JUL-19 09:35:58
Total Concentration: 15.031	Unnamed Concentration: 10.622
RT ml Resp m2 Resp RA	Resp Concentration Name
37:04 5.190e+04 5.409e+04 0.96 y 37:33 1.378e+05 1.370e+05 1.01 y	
38:45 4.792e+03 4.606e+03 1.04 y	9.398e+03 0.36546 1,2,3,4,7,8,9-HpCDF

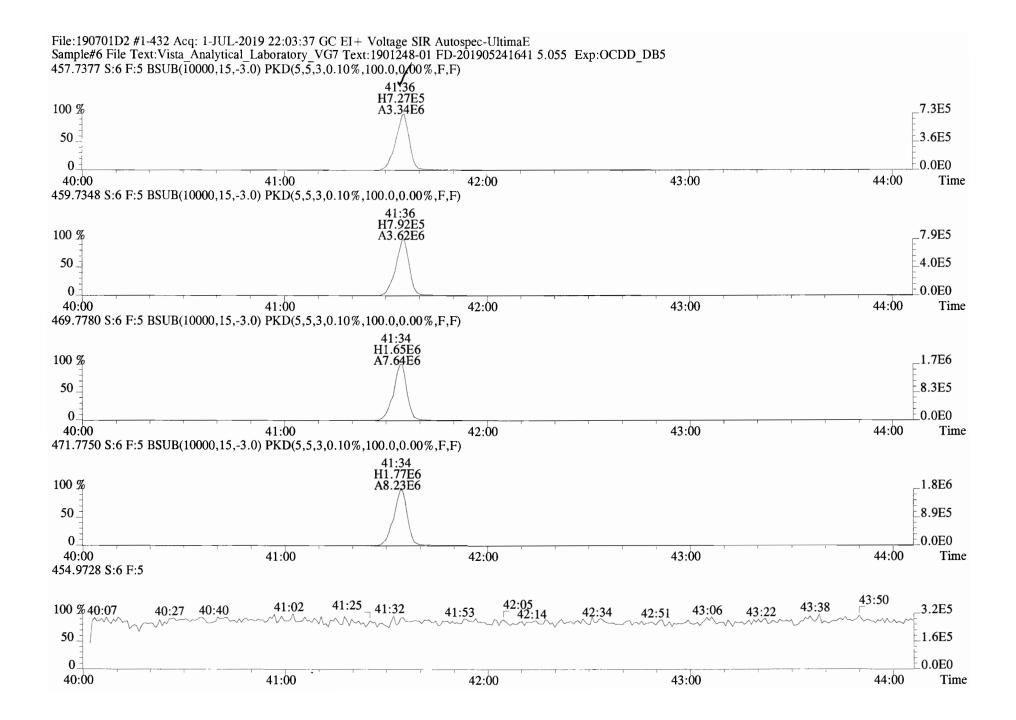


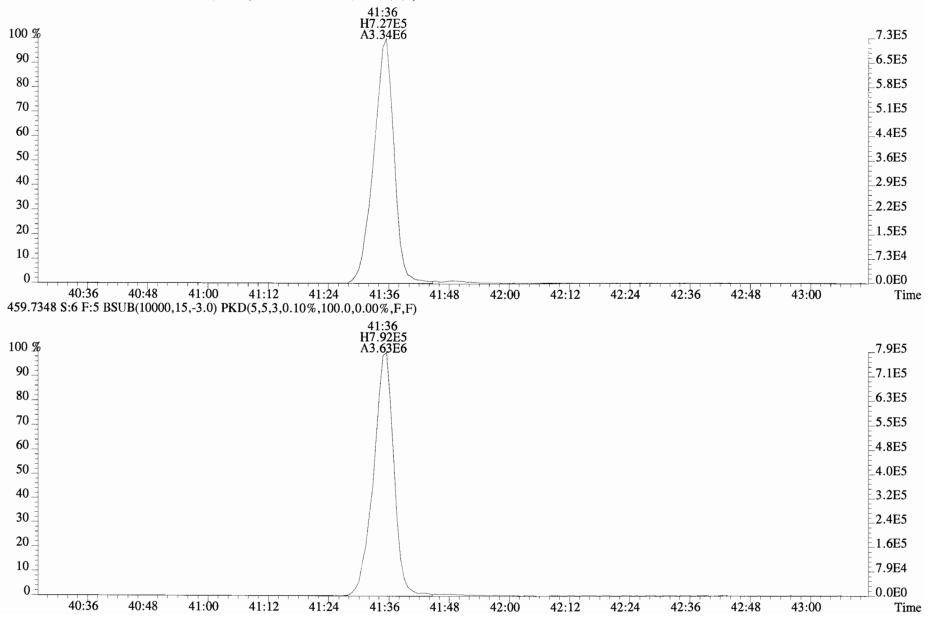




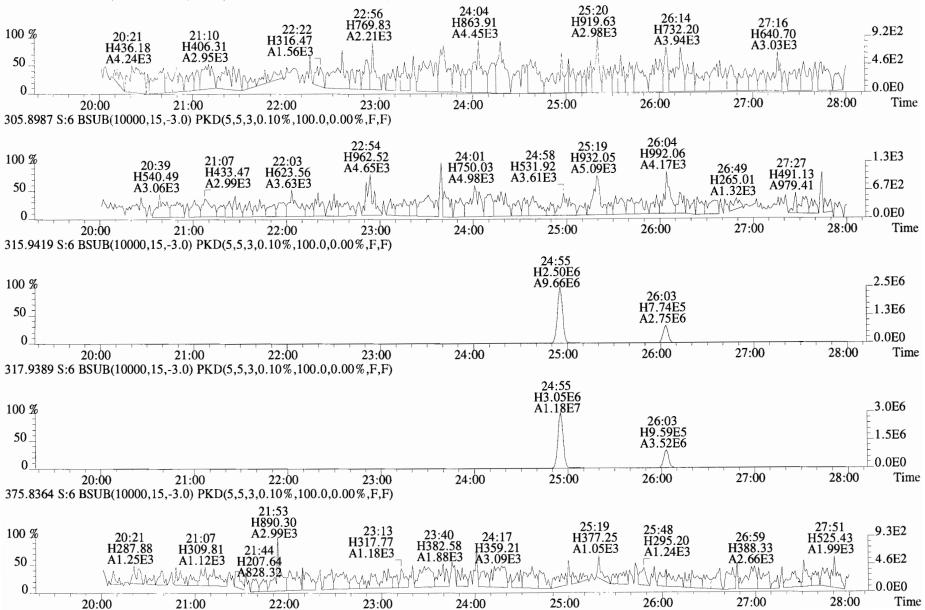

File:190701D2 #1-355 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE

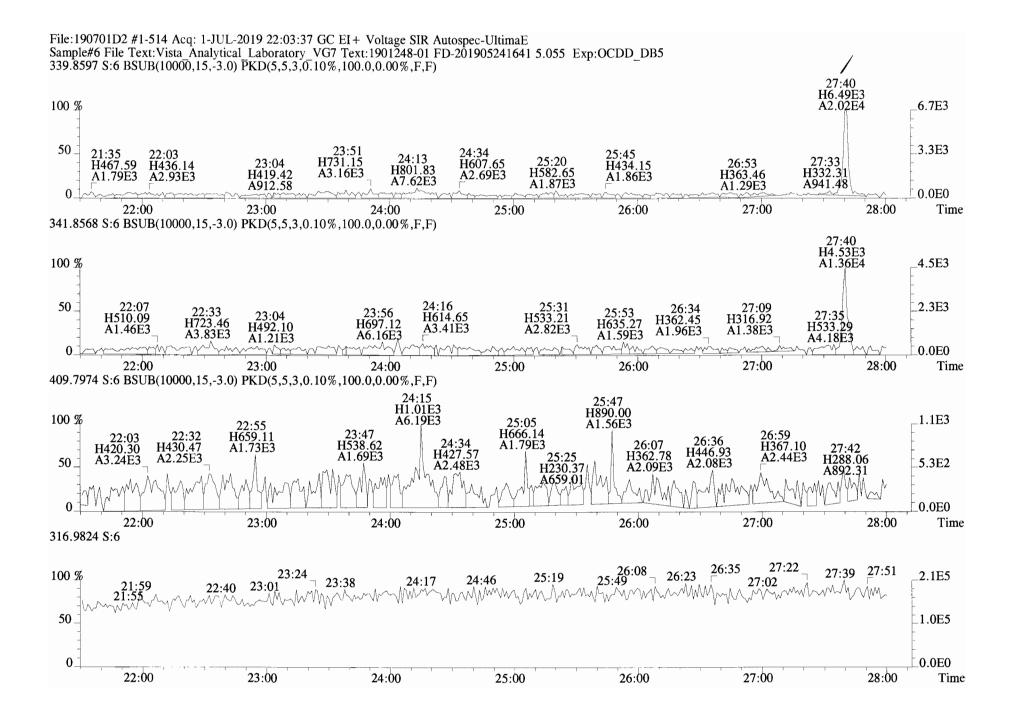

File:190701D2 #1-355 Acq: 1-JUL-2019 22:03:37 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 389.8156 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)


File:190701D2 #1-355 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 401.8559 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

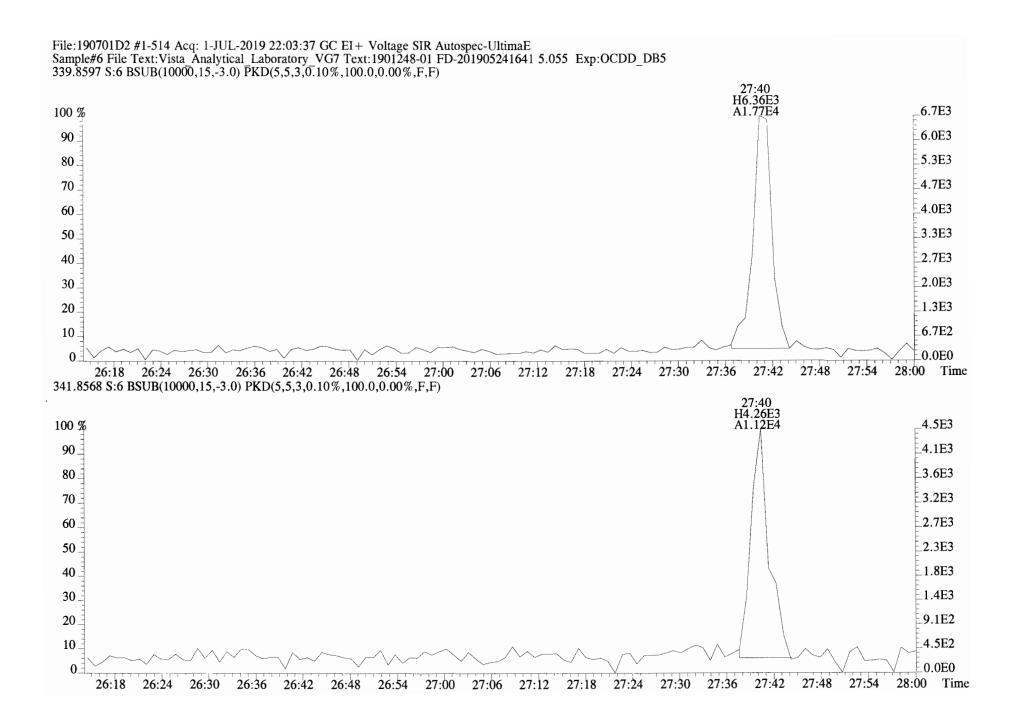


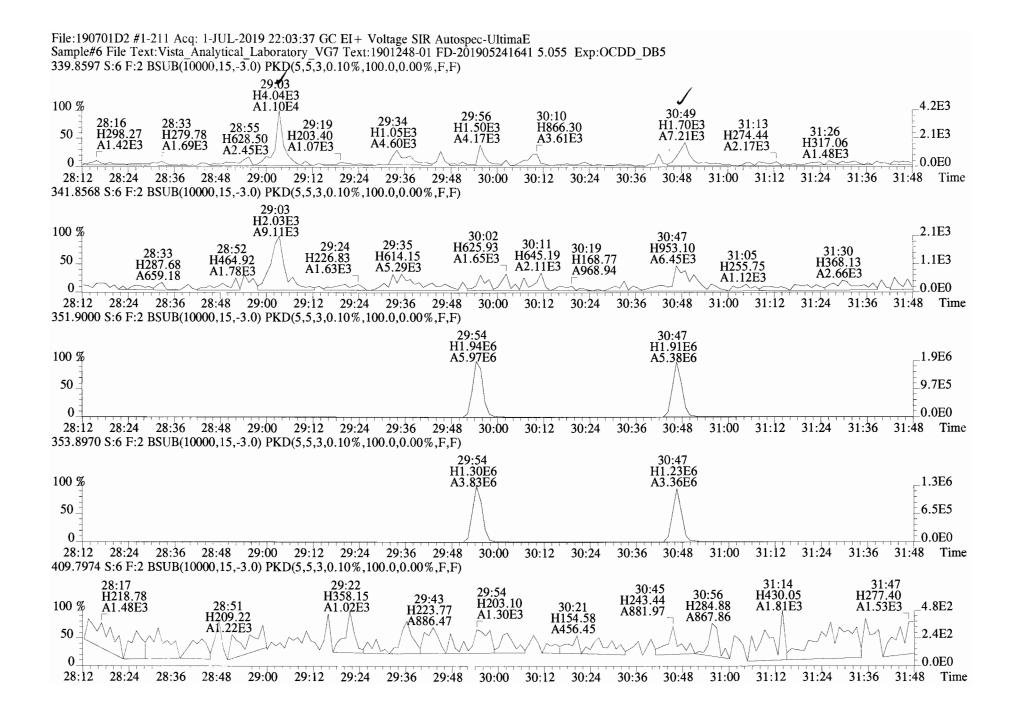
File:190701D2 #1-356 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista_Analytical_Laboratory_VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 423.7767 S:6 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

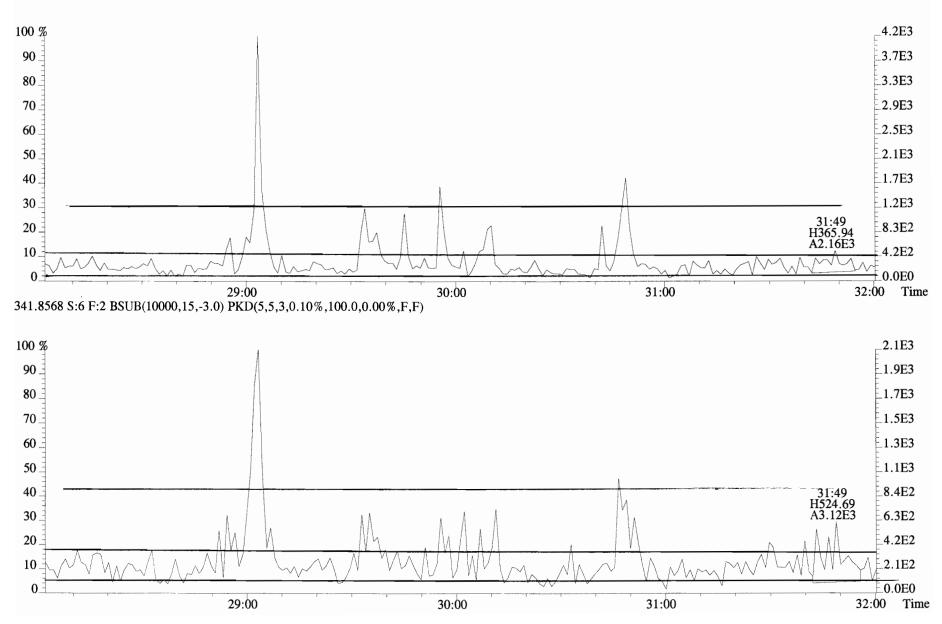


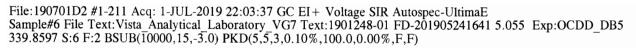


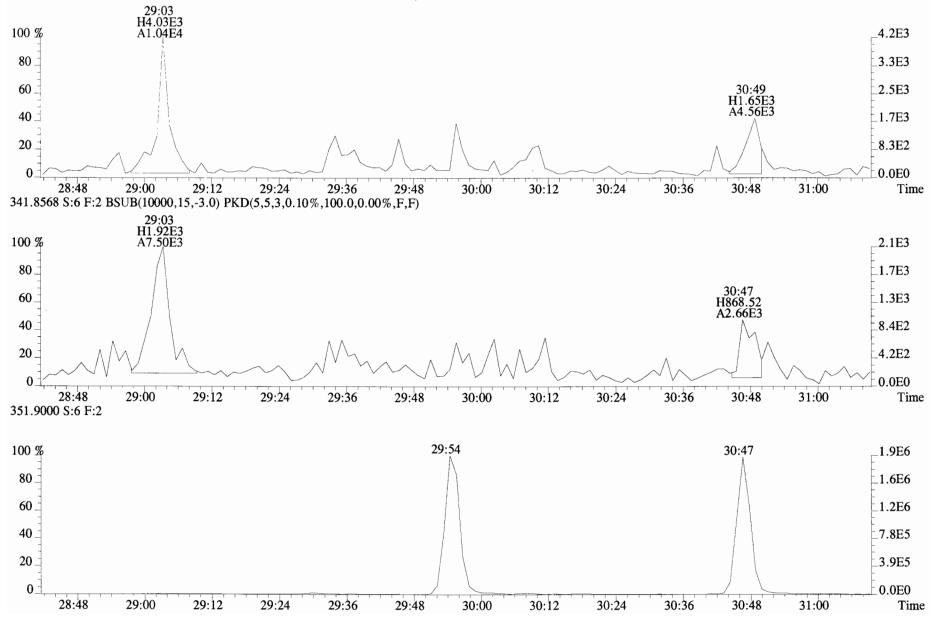
File:190701D2 #1-432 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 457.7377 S:6 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

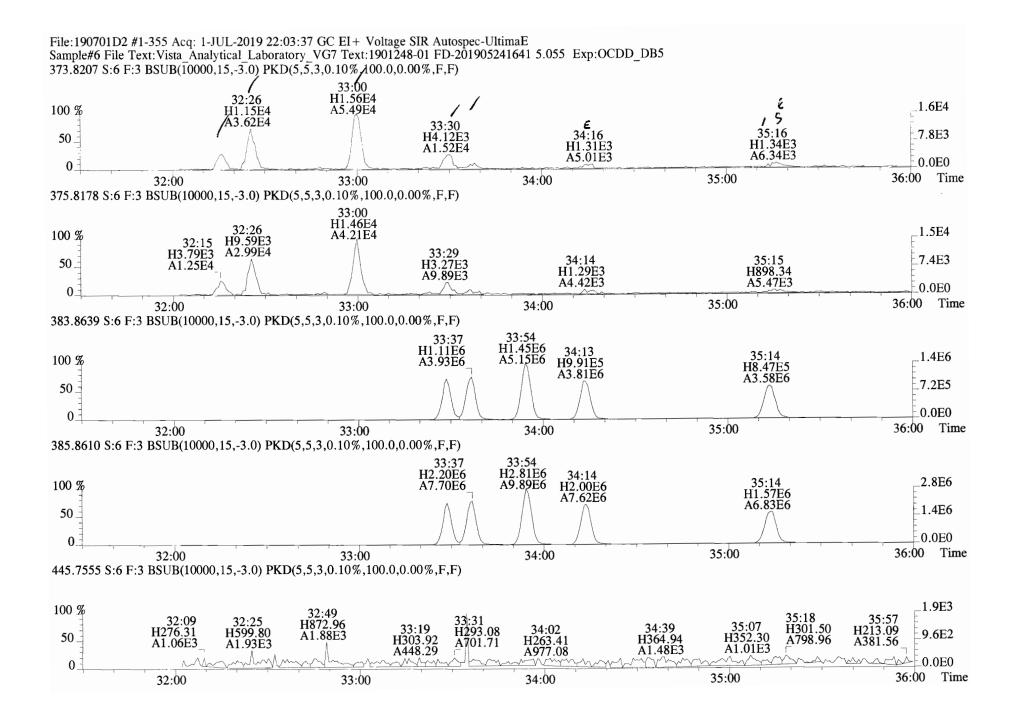


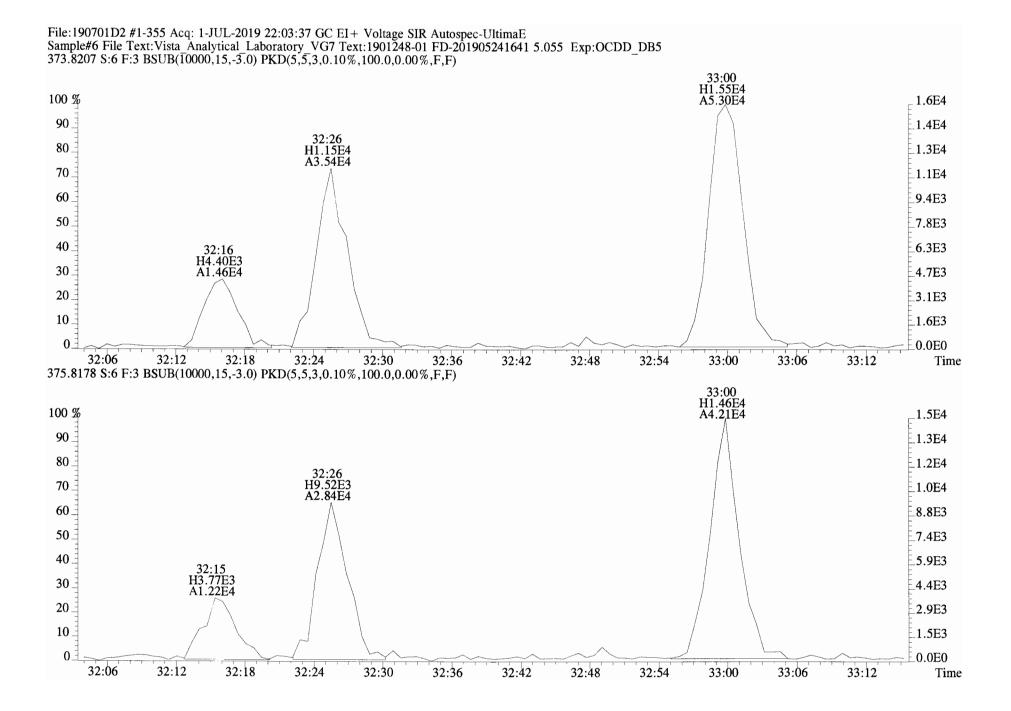

File:190701D2 #1-514 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista_Analytical_Laboratory_VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 303.9016 S:6 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

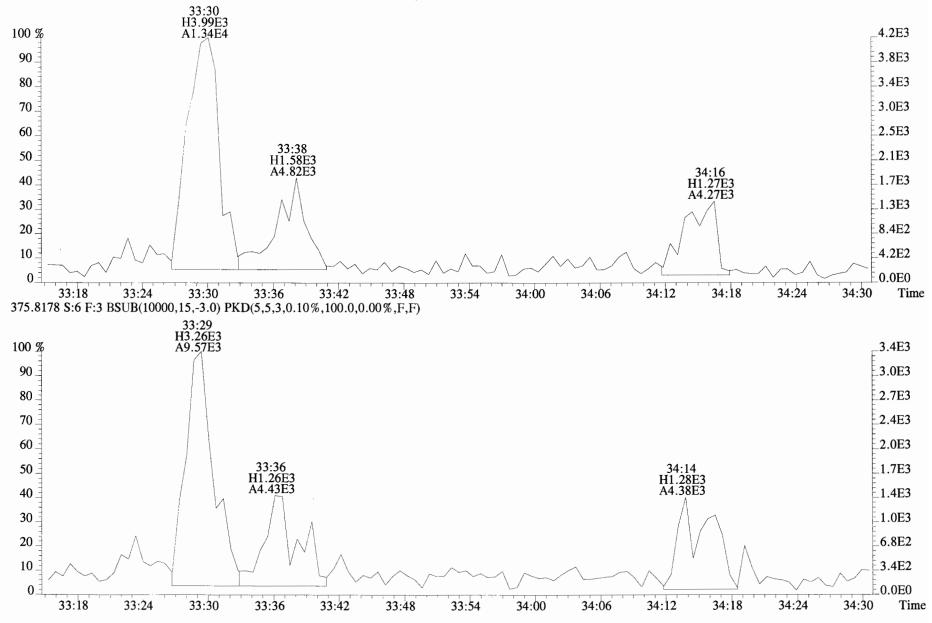


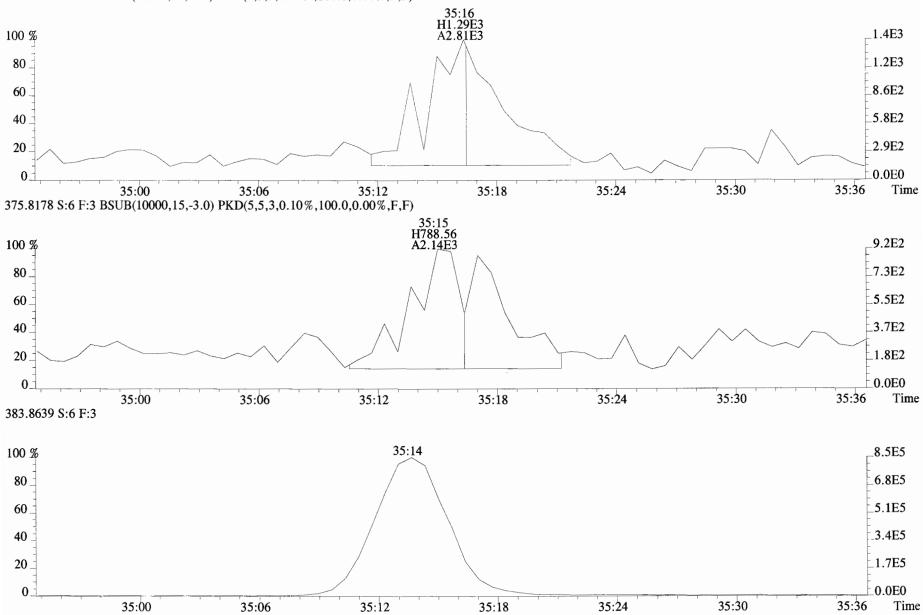

Work Order 1901248

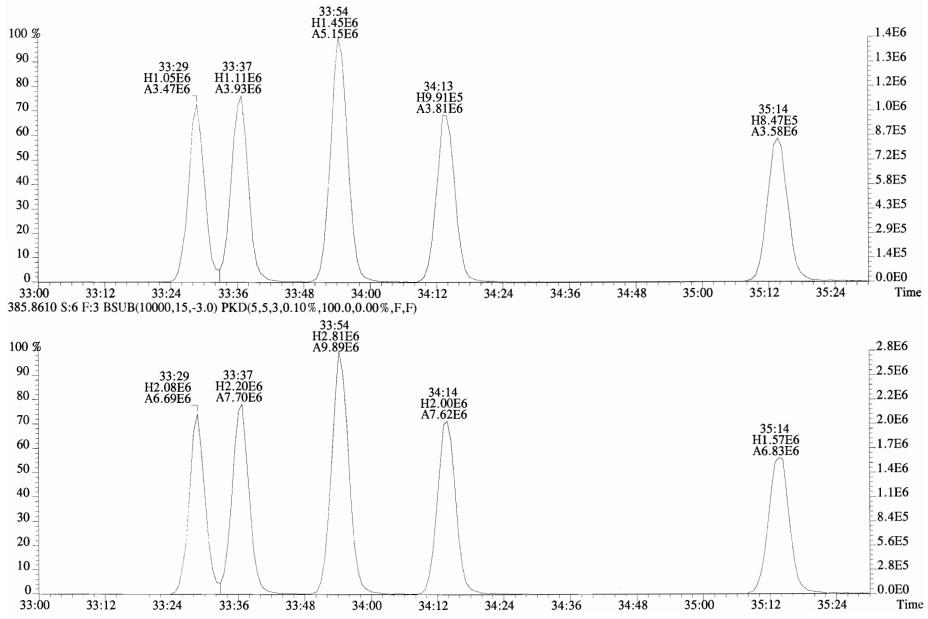


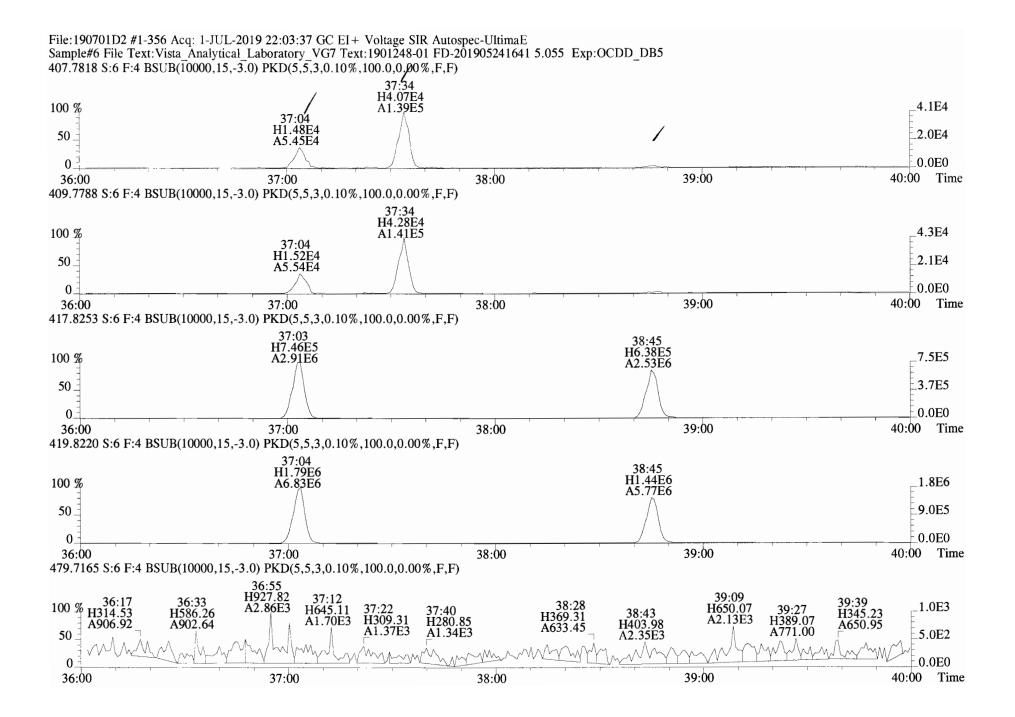



File:190701D2 #1-211 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 339.8597 S:6 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

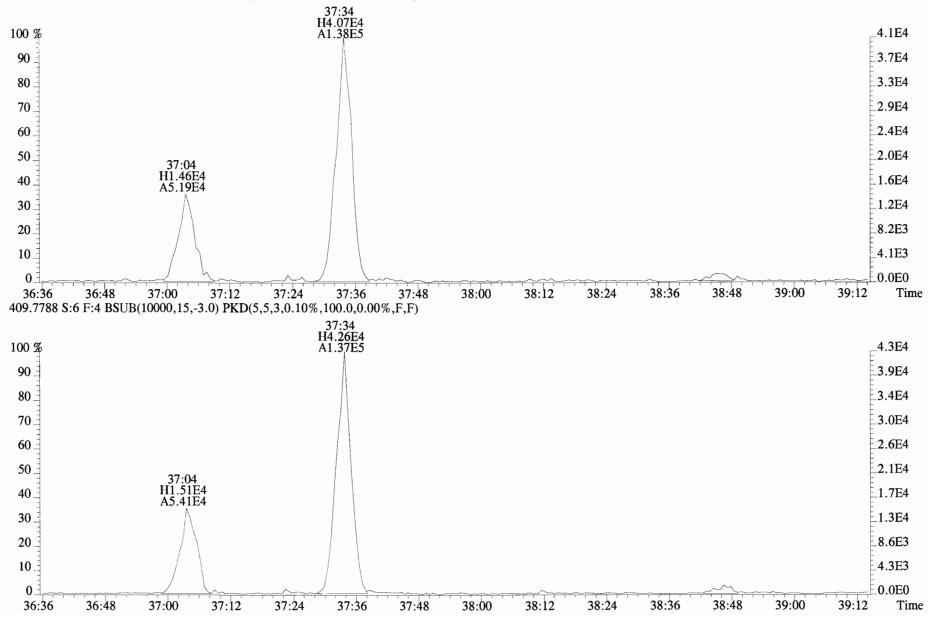




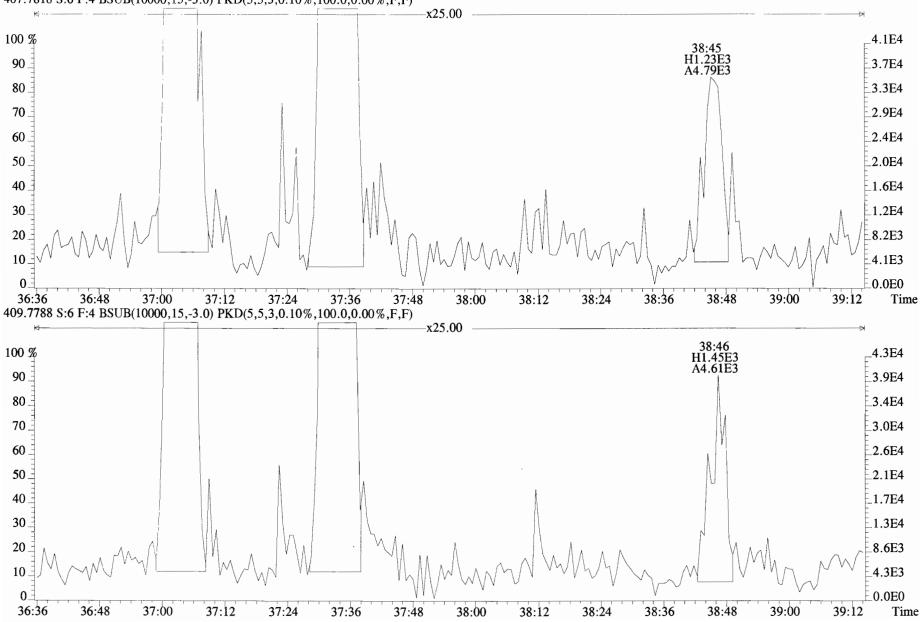

File:190701D2 #1-355 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 373.8207 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

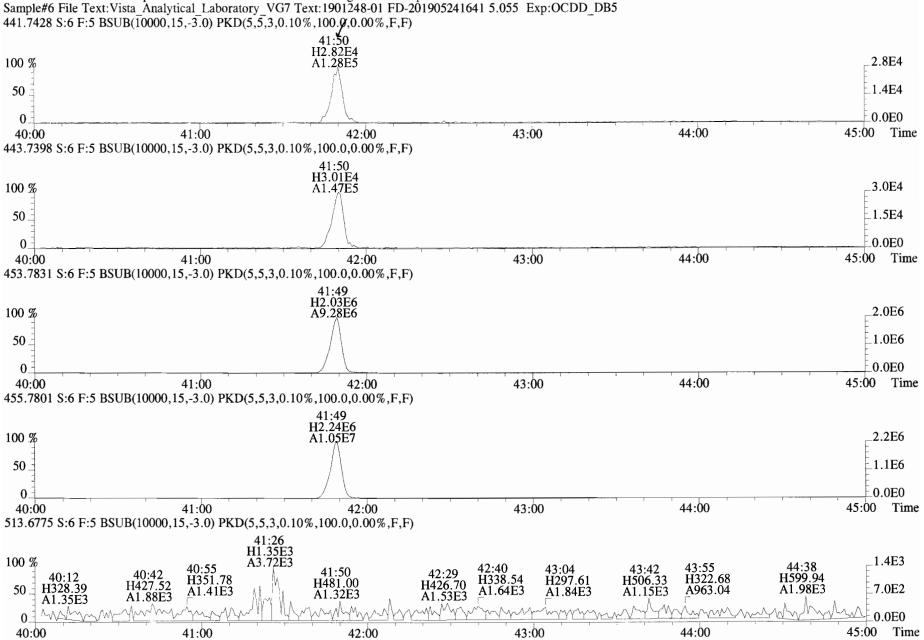


File:190701D2 #1-355 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 373.8207 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

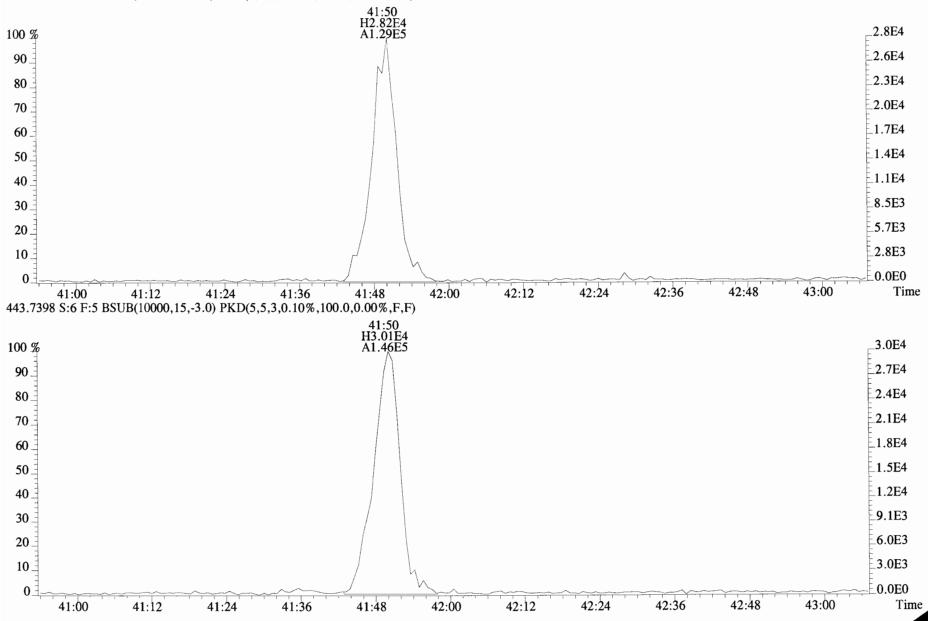


File:190701D2 #1-355 Acq: 1-JUL-2019 22:03:37 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 383.8639 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)





File:190701D2 #1-356 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 407.7818 S:6 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)


File:190701D2 #1-356 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 407.7818 S:6 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

File:190701D2 #1-432 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE

File:190701D2 #1-432 Acq: 1-JUL-2019 22:03:37 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-01 FD-201905241641 5.055 Exp:OCDD_DB5 441.7428 S:6 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

ent ID: T4-PDI2 DID: 1901248-02						Асq:25-Л 1613VG7-!			l: 5.030 🗸		Cal: ST190625D CAL: NA	1-1			Page	: כ
	Name	Resp	RA	RRF	RT	Conc	Qual	noise Fac	DL	Name		Conc	EMPC	Qual	noise	
2,3,	7,8-TCDD	*	* n	0.90	NotF	*		220 2.5	0.841	Total	Tetra-Dioxins	2.32	2.32		*	
1,2,3,7	,8-PeCDD	*	* n	0.87	NotFi	*		364 2.5	0.955	Total	Penta-Dioxins	1.47	1.47		*	
1,2,3,4,7	,8-HxCDD	*	* n	1.05	NotFi	*		374 2.5	1.12	Total	Hexa-Dioxins	41.4	44.4		*	
1,2,3,6,7	,8-HxCDD	3.97e+04	1.36 y	0.93	33:57	4.8045		* 2.5	*	Total	Hepta-Dioxins	313	313		*	
1,2,3,7,8	,9-HxCDD	1.90e+04	1.07 y	0.96	34:15	2.2243		* 2.5	*	Total	Tetra-Furans	*	*		269	0.
1,2,3,4,6,7	,8-HpCDD	8.58e+05	0.97 y	0.99	37:42	125.64		* 2.5	*	Total	Penta-Furans	7.4095	7.4095		*	
	OCDD	1.01e+07	0.90 y	0.99	40:57	1356.5		* 2.5	*	Total	Hexa-Furans	16.5	26.4		*	
										Total	Hepta-Furans	14.9	44.9		*	
2,3,	7,8-TCDF	*	* n	0.94	NotFi	*		269 2.5	0.711							
1,2,3,7	,8-PeCDF	*	* n	0.92	NotFi	*		270 2.5	0.810							
2,3,4,7	,8-PeCDF	1.05e+04	1.37 y	0.96	30:18	1.2992		* 2.5	*							
1,2,3,4,7	,8-HxCDF	3.35e+04	1.15 y	1.15	32:57	3.0663		* 2.5	*							
1,2,3,6,7	,8-HxCDF	1.75e+04	1.10 y	1.04	33:04	1.3771		* 2.5	*							
2,3,4,6,7	,8-HxCDF	1.61e+04	1.14 y	1.10	33:42	1.2618		* 2.5	*							
1,2,3,7,8	,9-HxCDF	*	* n	1.03	NotFi	*		266 2.5	0.494							
1,2,3,4,6,7	,8-HpCDF	8.68e+04	0.89 y	1.06	36:28	12.879		* 2.5	*							
1,2,3,4,7,8	,9-HpCDF	1.36e+04	0.95 y	1.23	38:16	2.0389		* 2.5	*							
	OCDF	4.91e+05	0.95 y	0.94	41:12	54.930		* 2.5	*							
										Rec	Qual					
13C-2,3,	7,8-TCDD	2.31e+06	0.88 y	1.11	26:04	149.79				37.7						
13C-1,2,3,7	,8-PeCDD	2.79e+06	0.66 y	0.98	30:33	205.35				51.6						
13C-1,2,3,4,7	,8-HxCDD	2.65e+06	1.36 y	0.68	33:50	225.31				56.7						
13C-1,2,3,6,7	,8-HxCDD	3.54e+06	1.36 y	0.84	33:56	241.52				60.7						
13C-1,2,3,7,8	,9-HxCDD	3.52e+06	1.31 y	0.81	34:15	249.30				62.7						
13C-1,2,3,4,6,7	,8-HpCDD	2.75e+06	0.99 y	0.69	37:41	230.29				57.9						
	13C-OCDD	6.00e+06	0.88 y	0.62	40:57	551.71				69.4						
13C-2,3,	7,8-TCDF	3.35e+06	0.81 y	1.05	25:20	116.29				29.2						
13C-1,2,3,7	,8-PeCDF	3.62e+06	1.57 y	0.95	29:24	138.26				34.8						
13C-2,3,4,7	,8-PeCDF	3.35e+06	1.57 y	0.94	30:17	130.48				32.8						
13C-1,2,3,4,7	,8-HxCDF	3.77e+06	0.52 y	0.86	32:57	252.71				63.6						
13C-1,2,3,6,7	,8-HxCDF	4.86e+06	0.51 y	1.02	33:04	273.32				68.7						
13C-2,3,4,6,7	,8-HxCDF	4.63e+06	0.51 y	0.95	33:41	279.38				70.3						
13C-1,2,3,7,8	,9-HxCDF	4.13e+06	0.53 y	0.87	34:40	273.76				68.8						
13C-1,2,3,4,6,7	,8-HpCDF	2.52e+06	0.37 y	0.81	36:27	179.00				45.0						
13C-1,2,3,4,7,8	,9-HpCDF	2.17e+06	0.38 y	0.63	38:15	197.31				49.6						
	13C-OCDF	7.56e+06	0.88 Y	0.78	41:11	555.69				69.9						
37Cl-2,3,	7,8-TCDD	1.41e+06		1.22	26:06	83.322				52.4	-	grations		lewed		
r 13C-1,2,	3,4-TCDD	5.54e+06	0.86 y	1.00	25:29	397.64					by Analyst	1B	by Ana	lyst:	CT	
		1.09e+07	0.83 y	1.00	24:06	397.64										
I 13C-1,2,3,4,6			0.51 y	1.00	33:22	397.64						chalia	Ana Date	0	(Jool)	

Totals class: TCDD EMPC Entry #: 19

 Run: 11
 File: 190625D1
 S: 6
 I: 1
 F: 1

 Acquired: 25-JUN-19
 19:04:24
 Processed: 26-JUN-19
 09:27:38

Total Concentration: 2.3213 Unnamed Concentration: 2.321

RT m1 Resp m2 Resp RA Resp Concentration Name

25:51 5.322e+03 6.819e+03 0.78 y 1.214e+04 2.3213

•

Totals class: PeCDD EMPC Entry #: 21

 Run: 11
 File: 190625D1
 S: 6
 I: 1
 F: 2

 Acquired: 25-JUN-19
 19:04:24
 Processed: 26-JUN-19
 09:27:38

Total Concentration: 1.4732 Unnamed Concentration: 1.473

RT m1 Resp m2 Resp RA Resp Concentration Name

28:31 3.565e+03 5.460e+03 0.65 y 9.025e+03 1.4732

Page 6 of 18

Total	s class: HxC	CDD EMPC	Entry #	: 23	
А		File: 19062 -JUN-19 19:04:24		:6 I:1 : JUN-19 09:2	· · •
Total	Concentratio	on: 44.413	Unnamed Conce	ntration: 3	7.384
RT	ml Resp	m2 Resp RA	Resp Conc	entration	Name
32:18	6.739e+04	6.138e+04 1.10 y	1.288e+05	16.221	
32:52	9.683e+03	6.410e+03 1.51 n	1.436e+04	1.8087	
33:08	7.904e+04	6.524e+04 1.21 y	1.443e+05	18.175	
33:15	5.185e+03	6.603e+03 0.79 n	9.366e+03	1.1798	
33:57	2.287e+04	1.686e+04 1.36 y	3.972e+04	4.8045	1,2,3,6,7,8-HxCDD
34:15	9.809e+03	9.143e+03 1.07 y	1.895e+04	2.2243	1,2,3,7,8,9-HxCDD

Totals clas	s: HpCDD EMPC	E	ntry #: 25	
		le: 190625D1 :04:24 Processe	S: 6 I: 1 d: 26-JUN-19 09:2	
Total Concen	tration: 312.50	Unnamed	Concentration: 3	186.865
RT ml	Resp m2 Resp	RA Res	p Concentration	Name
36:51 6.220 37:42 4.218		5 0.95 y l.277e+0 5 0.97 y 8.583e+0		1,2,3,4,6,7,8-HpCDD

Totals class: 1st Func. PeCDF EMPC Entry #: 29

 Run: 11
 File: 190625D1
 S: 6
 I: 1
 F: 1

 Acquired: 25-JUN-19
 19:04:24
 Processed: 26-JUN-19
 09:27:38

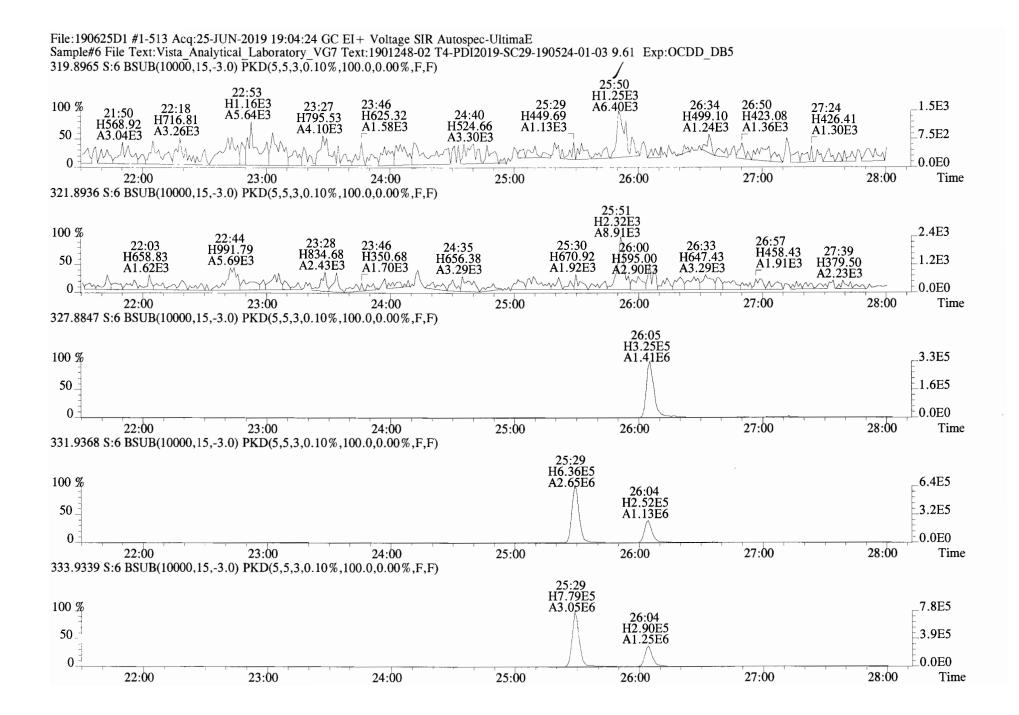
Total Concentration: 3.2037 Unnamed Concentration: 3.204

RT m1 Resp m2 Resp RA Resp Concentration Name

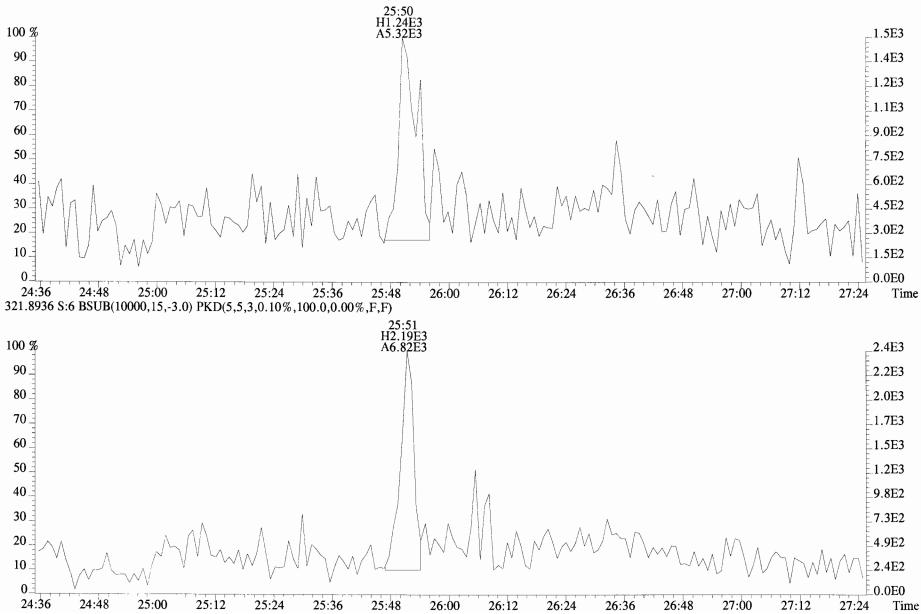
27:02 1.607e+04 1.030e+04 1.56 y 2.637e+04 3.2037

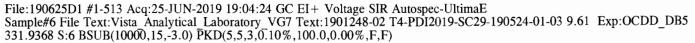
Total	s class:	PeCDF	EMPC		Ent	cry #: 31	
A	Run: cquired:			e: 19062 04:24		S: 6 I: 1 : 26-JUN-19 09:2	
Total	Concentr	ation:	4.2058		Unnamed (Concentration: 2	.907
RT	m1 Re	sp	m2 Resp	RA	Resp	Concentration	Name
28:30	1.524e+	04 8	.690e+03	1.75 y	2.393e+04	2.9066	
30:18	6.047e+	03 4	.426e+03	1.37 y	1.047e+04	1.2992	2,3,4,7,8-PeCDF

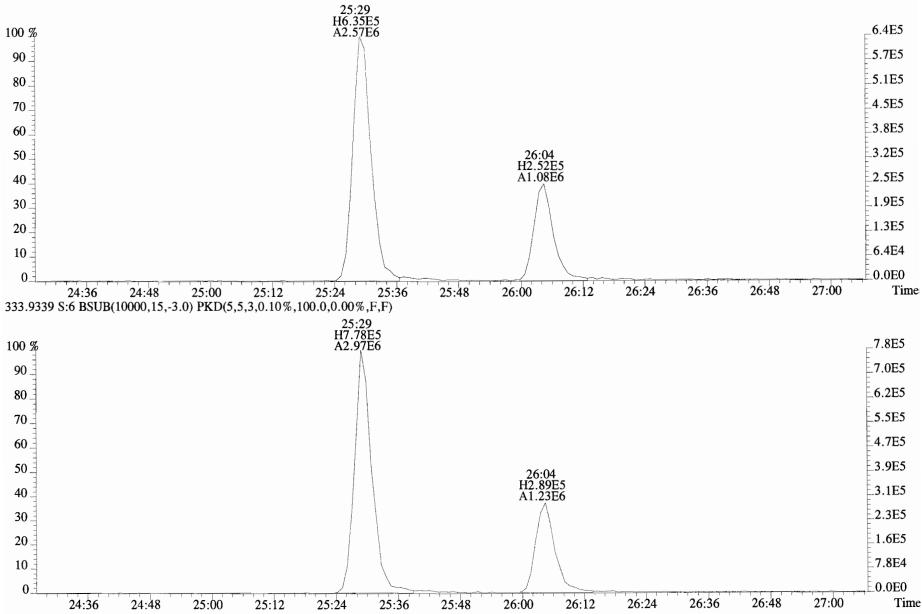
Totals class: HxCDF EMPC	Entry #: 33
--------------------------	-------------

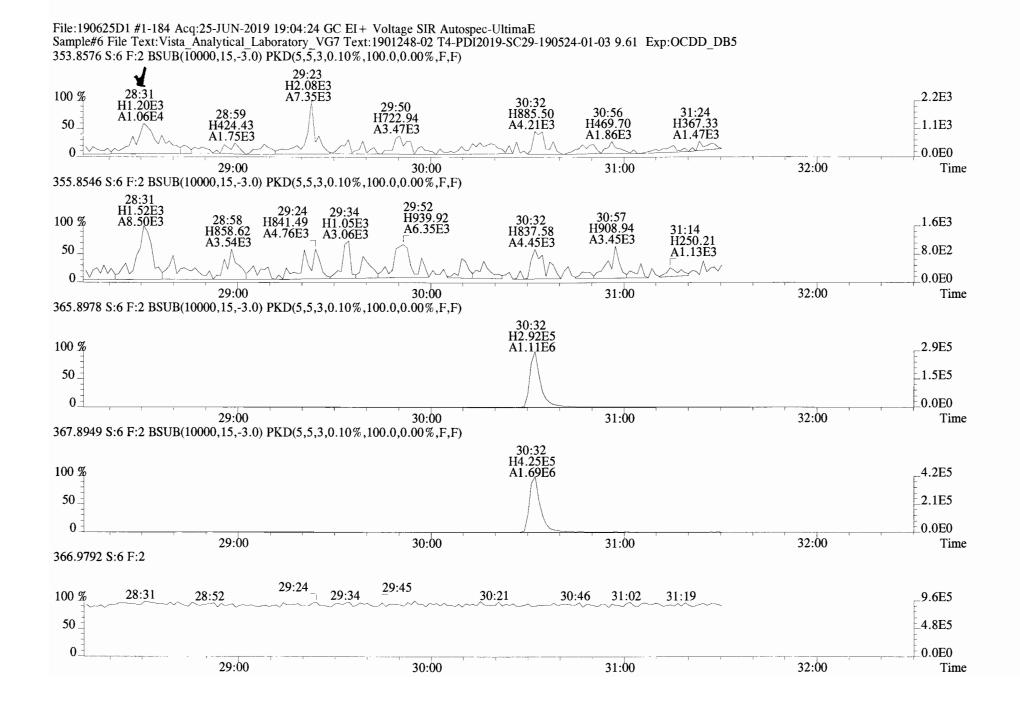

Run:	11	File: 19062	5D1	S: 6	${\tt I}:$	1	F: 3
Acquired:	25-JUN-19	19:04:24	Processed:	26-JUN-	19 (09:	27:38

Total Concentration: 26.418 Unnamed Concentration: 20.713

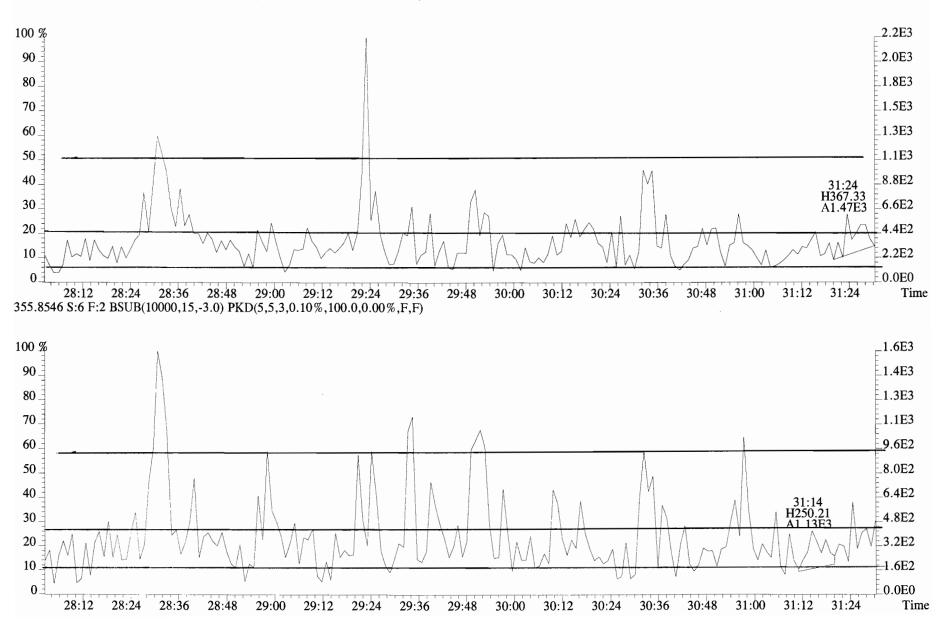

RT	m1 Resp	m2 Resp RA	Resp (Concentration	Name
31:47	1.597e+04	1.483e+04 1.08 y	3.080e+04	2.6150	
31:56	4.963e+04	4.130e+04 1.20 y	9.093e+04	7.7201	
32:29	6.482e+04	6.384e+04 1.02 n	1.171e+05	9.9423	
32:57	1.795e+04	1.555e+04 1.15 y	3.350e+04	3.0663	1,2,3,4,7,8-HxCDF
33:04	9.150e+03	8.318e+03 1.10 y	1.747e+04	1.3771	1,2,3,6,7,8-HxCDF
33:42	8.570e+03	7.530e+03 1.14 y	1.610e+04	1.2618	2,3,4,6,7,8-HxCDF
34:41	2.876e+03	2.255e+03 1.28 y	5.131e+03	0.43566	

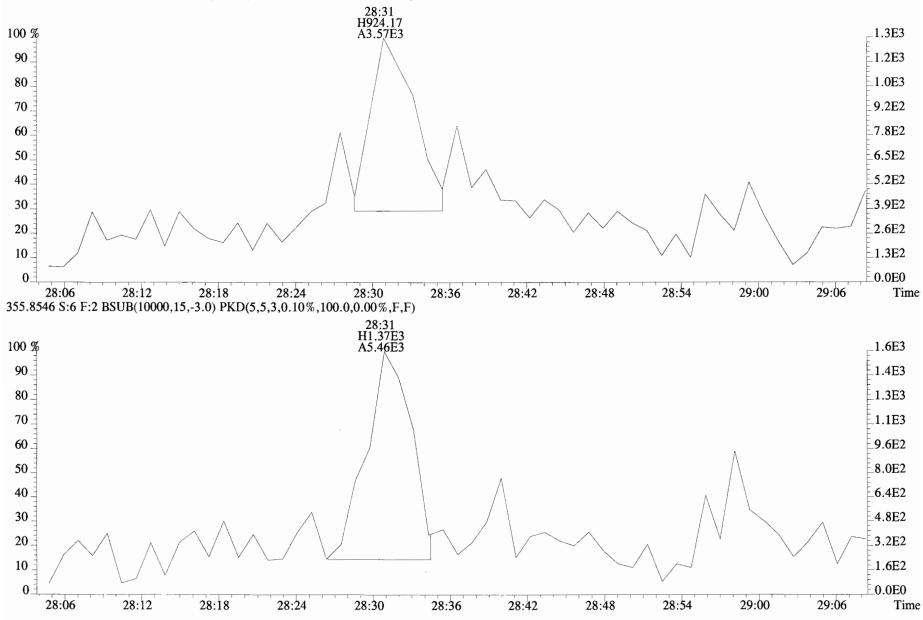

Totals class: HpCDF	EMPC	Entry #: 35	
Run: 11 Acquired: 25-JU		5D1 S: 6 I: 1 H Processed: 26-JUN-19 09:27	
Total Concentration:	44.868	Unnamed Concentration: 25	9.950
RT ml Resp	m2 Resp RA	Resp Concentration	Name

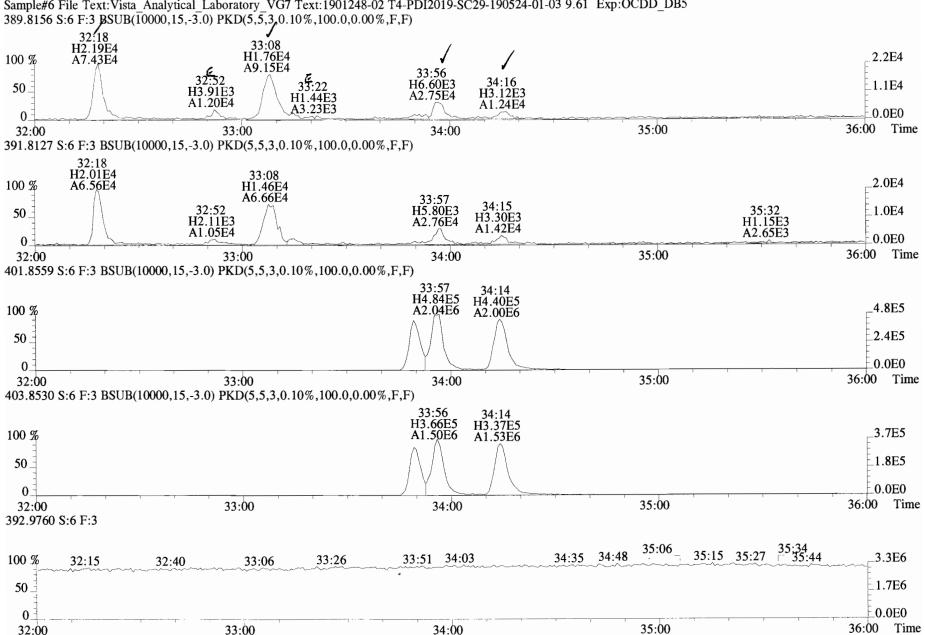

36:28	4.086e+04	4.592e+04 0.89 y	8.678e+04	12.879	1,2,3,4,6,7,8-HpCDF
37:03	1.021e+05	1.181e+05 0.86 n	2.003e+05	29.950	
38:16	6.641e+03	6.990e+03 0.95 y	1.363e+04	2.0389	1,2,3,4,7,8,9-HpCDF



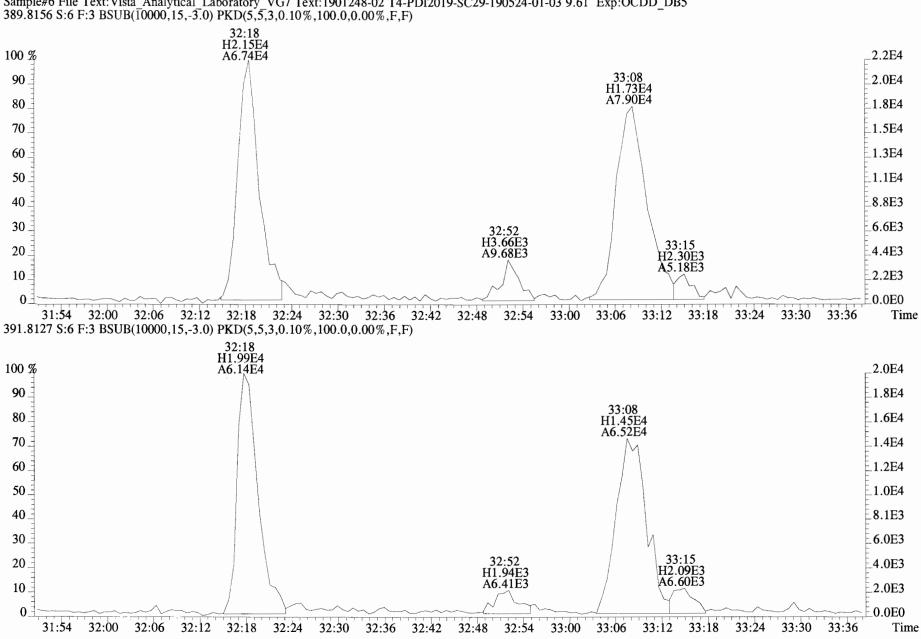
File:190625D1 #1-513 Acq:25-JUN-2019 19:04:24 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista_Analytical_Laboratory_VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 319.8965 S:6 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



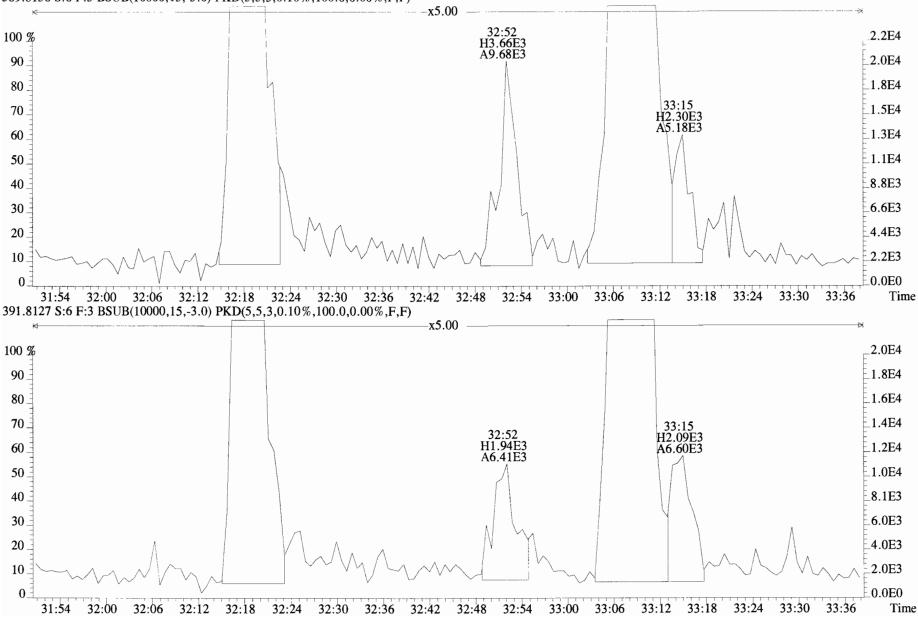




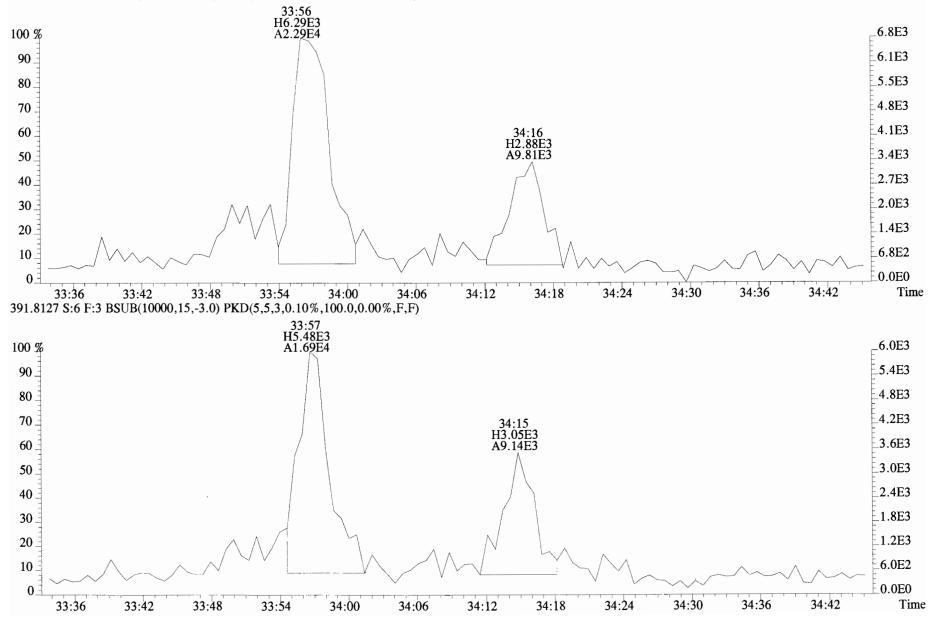
File:190625D1 #1-184 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 353.8576 S:6 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



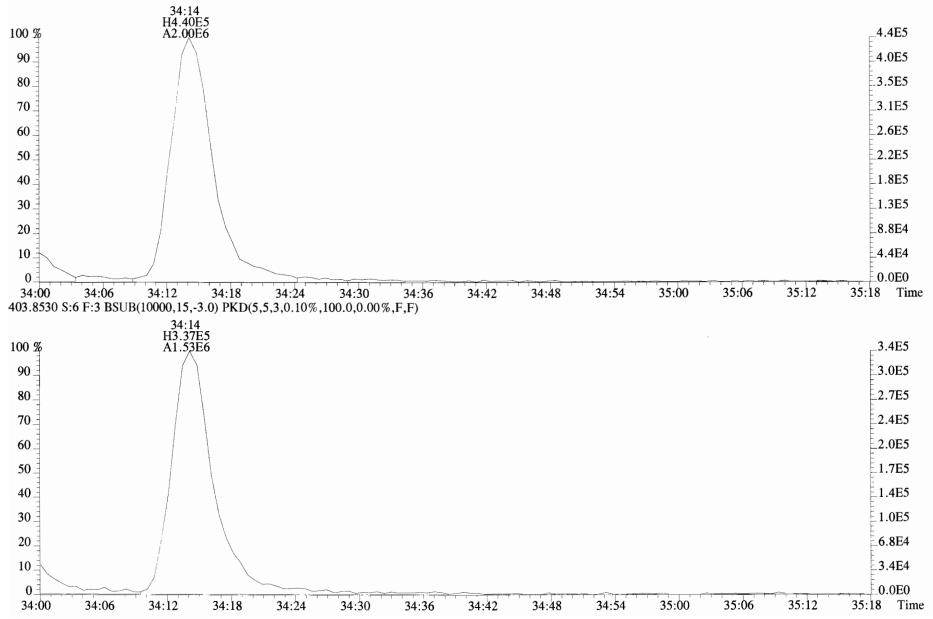
File:190625D1 #1-184 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 353.8576 S:6 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

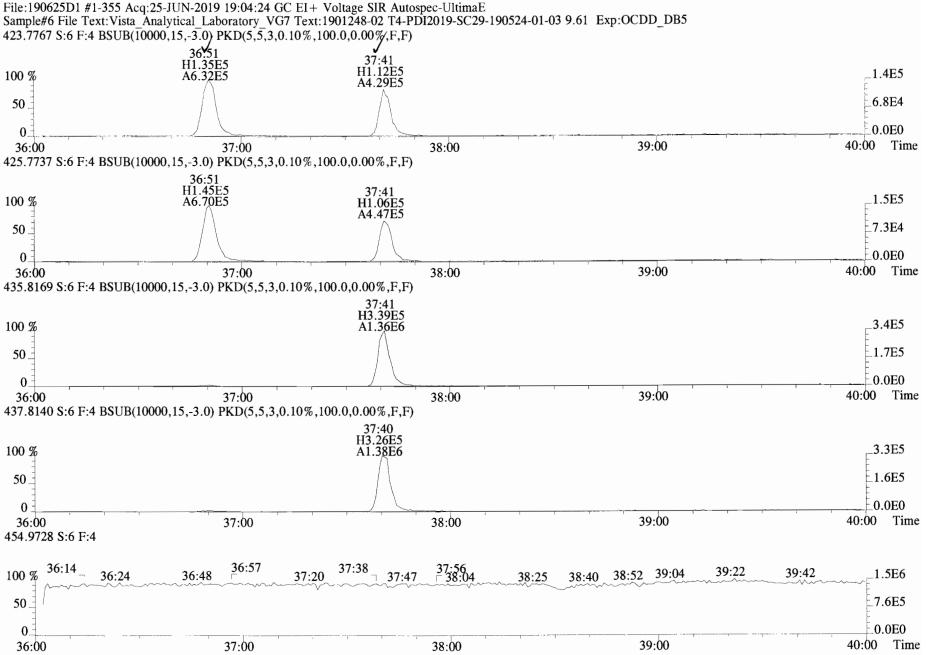


File:190625D1 #1-400 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text: Vista Analytical Laboratory VG7 Text: 1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5

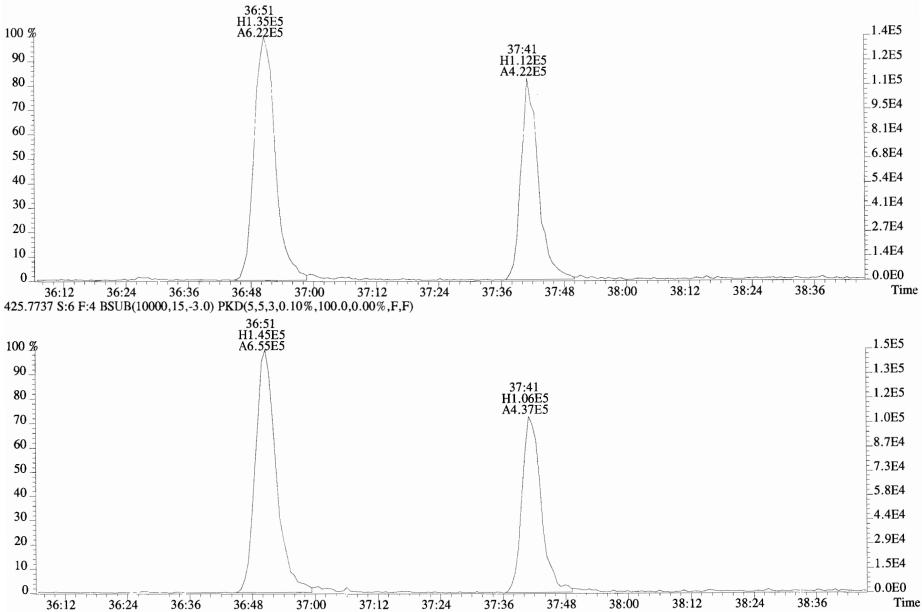


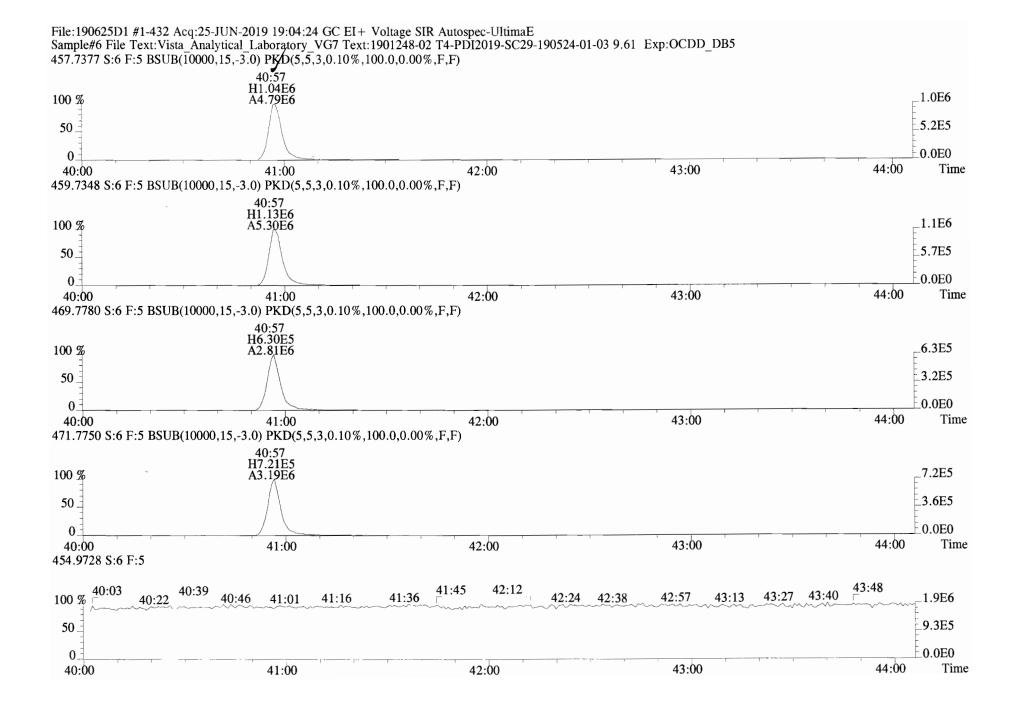
File:190625D1 #1-400 Acq:25-JUN-2019 19:04:24 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text: Vista Analytical Laboratory VG7 Text: 1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5

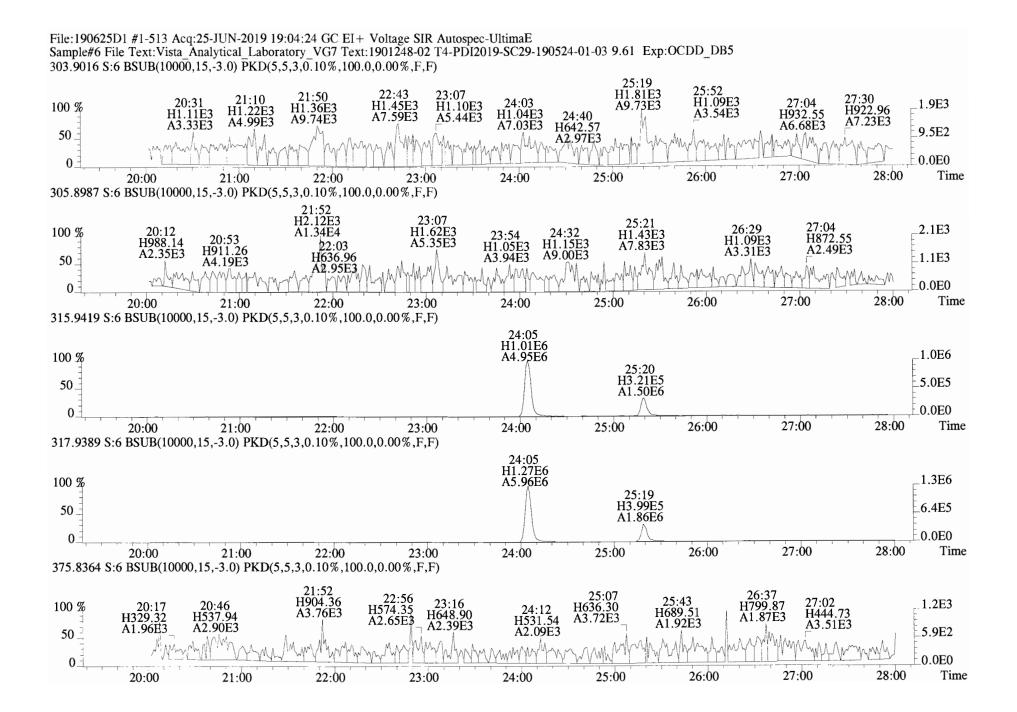

File:190625D1 #1-400 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 389.8156 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

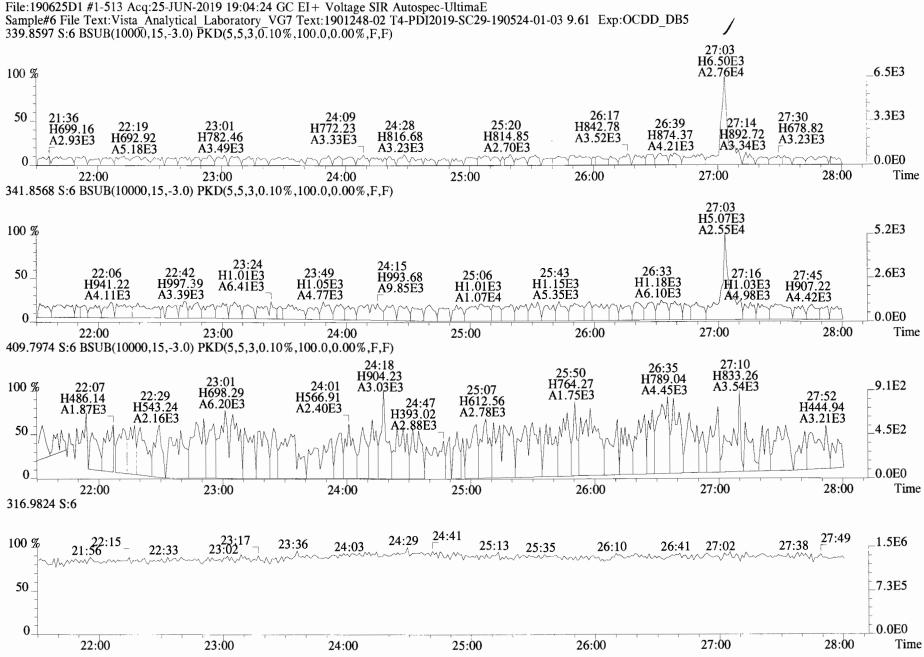


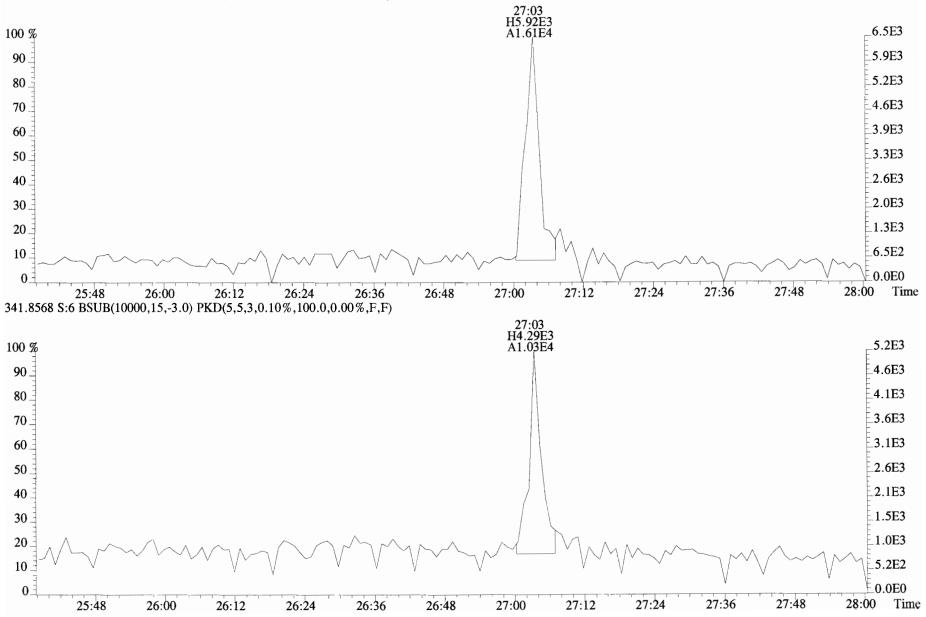
File:190625D1 #1-400 Acq:25-JUN-2019 19:04:24 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 389.8156 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

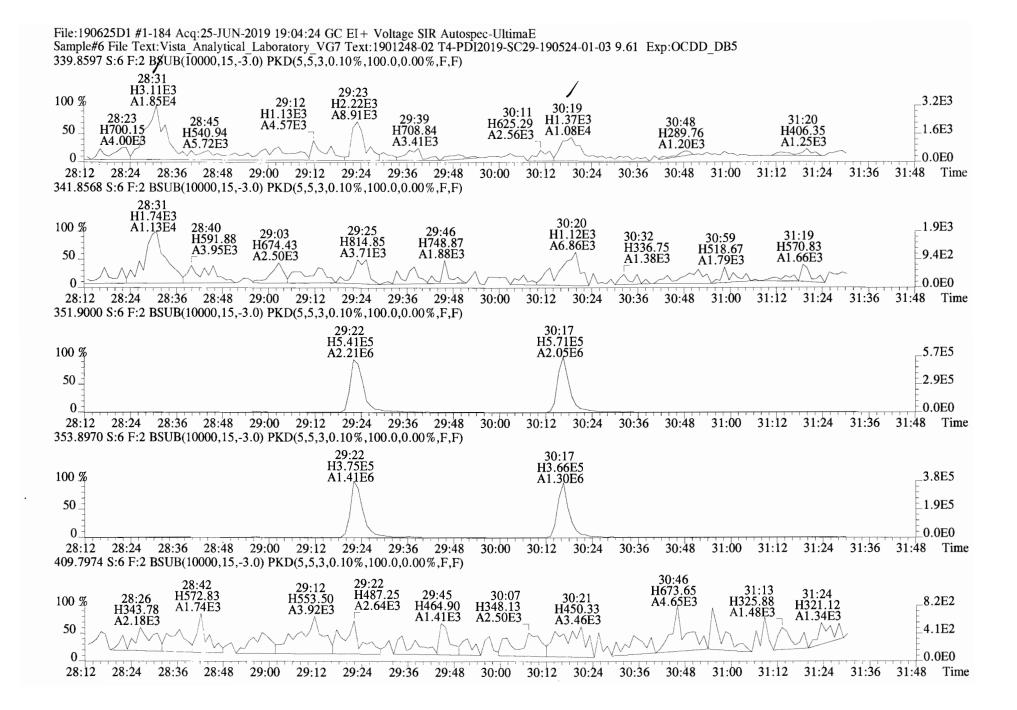


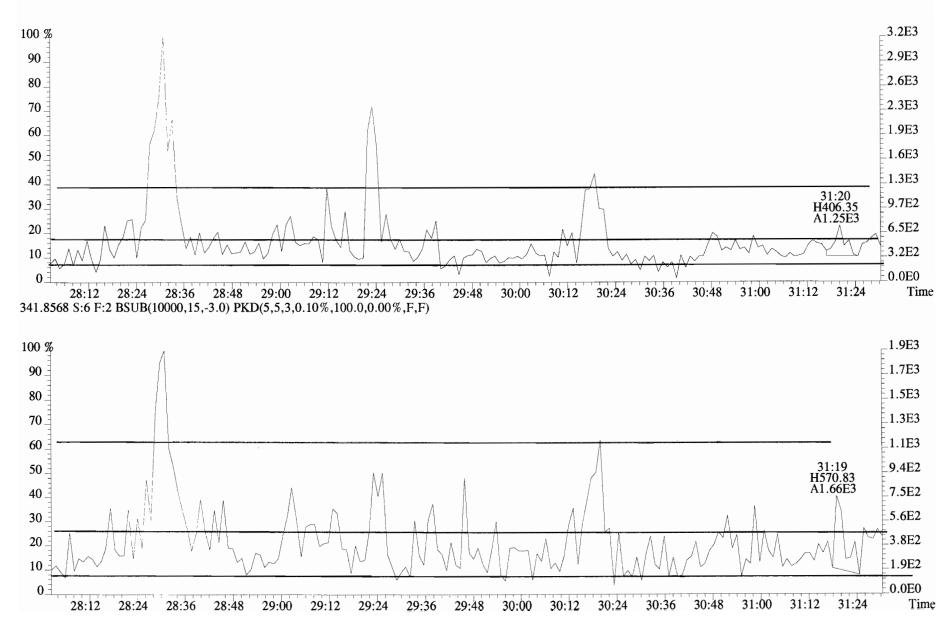

File:190625D1 #1-400 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 401.8559 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

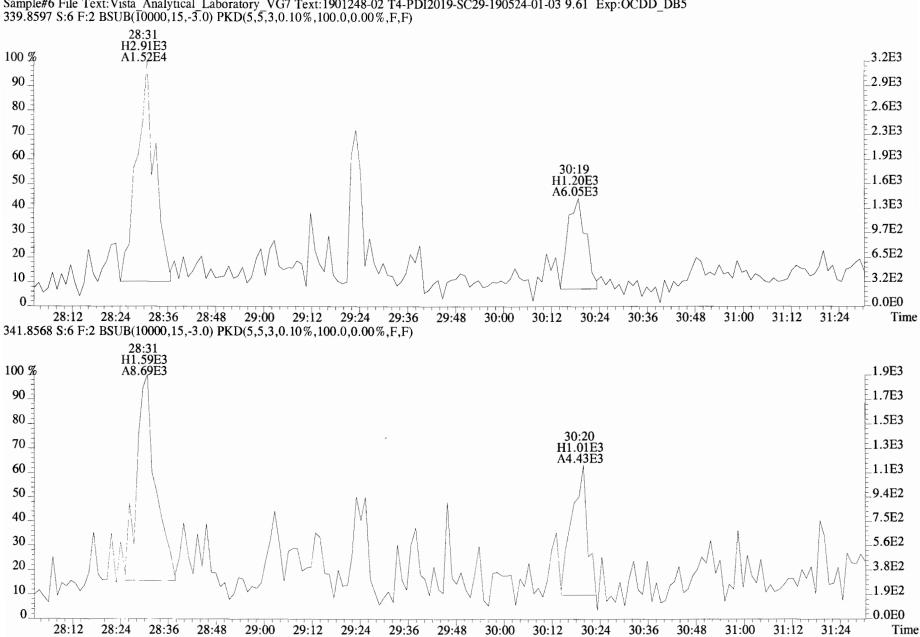


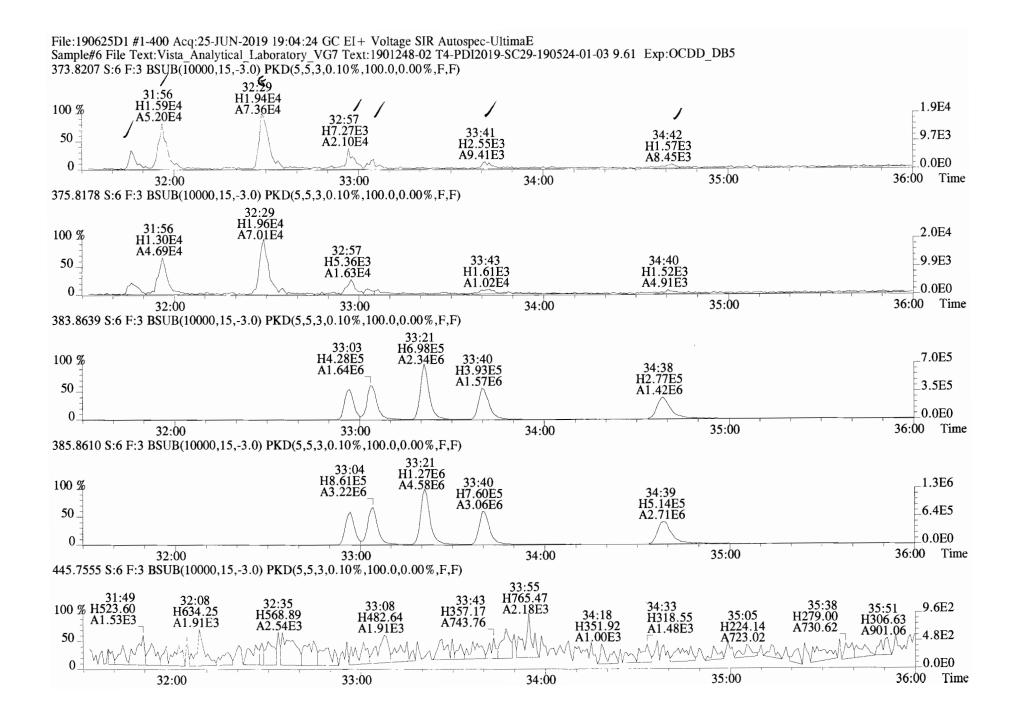

File:190625D1 #1-355 Acq:25-JUN-2019 19:04:24 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 423.7767 S:6 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

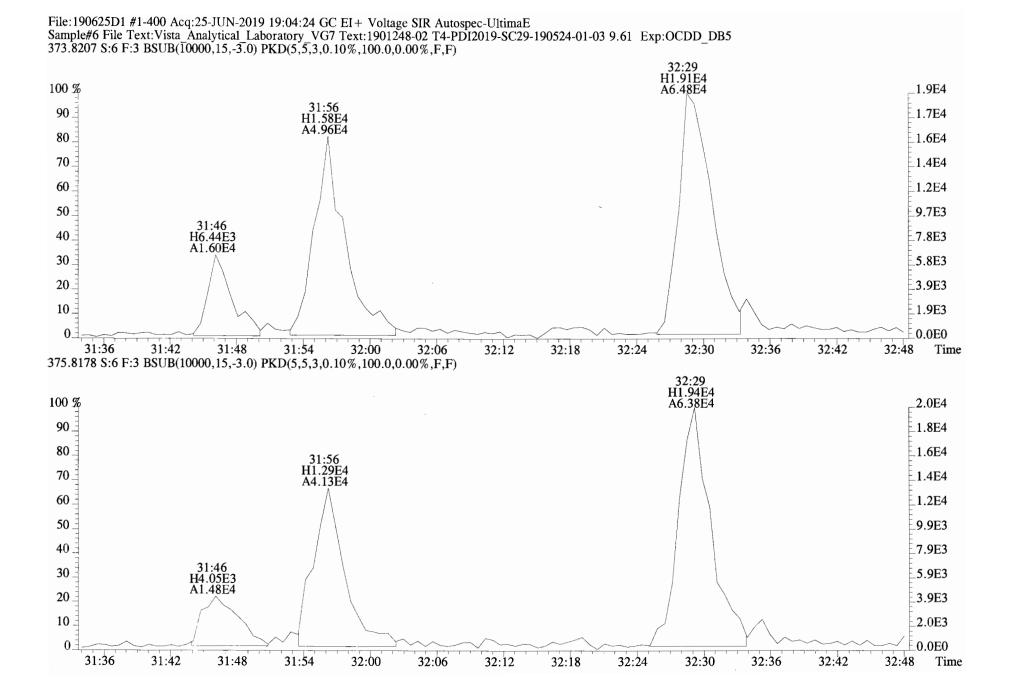


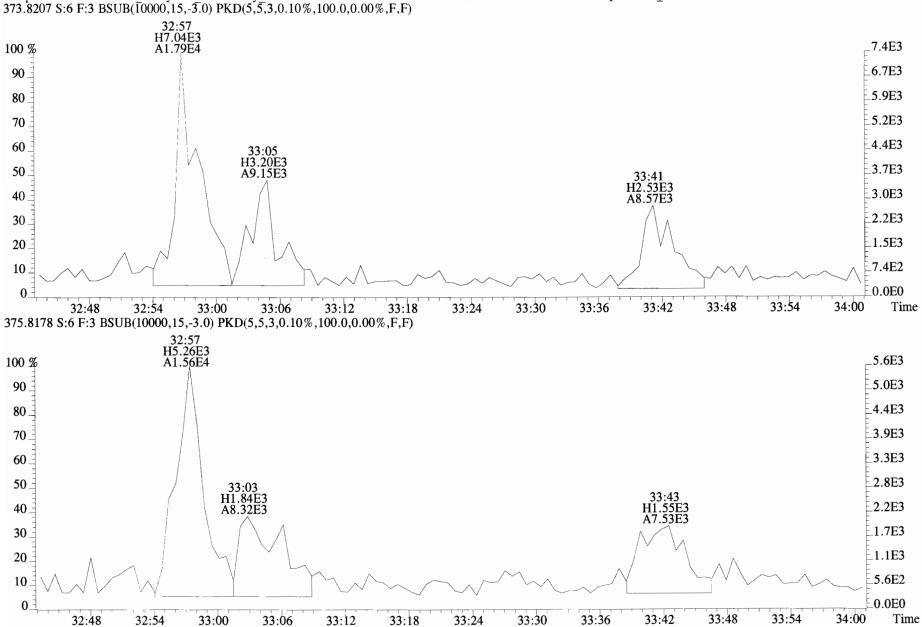

Work Order 1901248



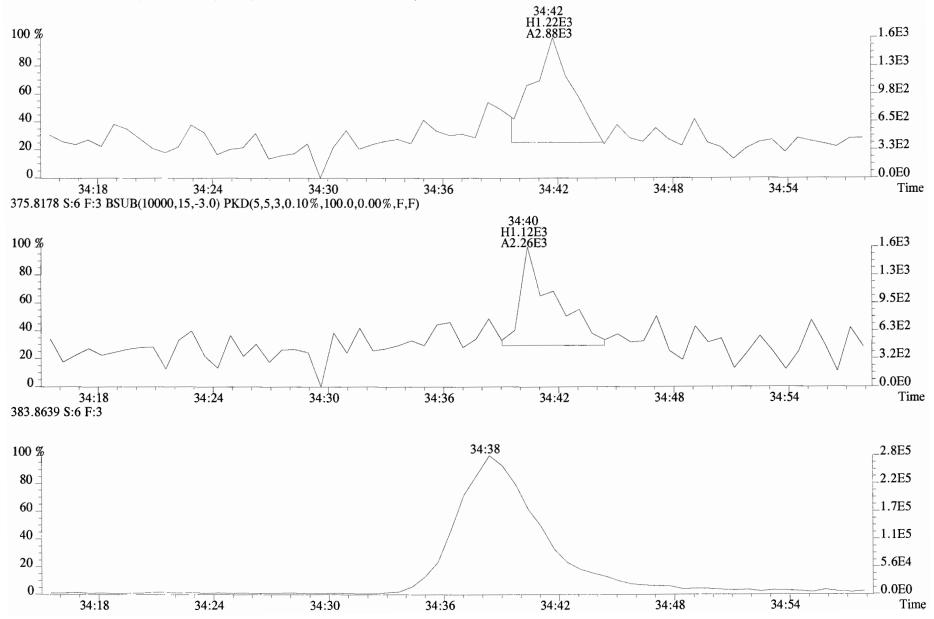

File:190625D1 #1-513 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 339.8597 S:6 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

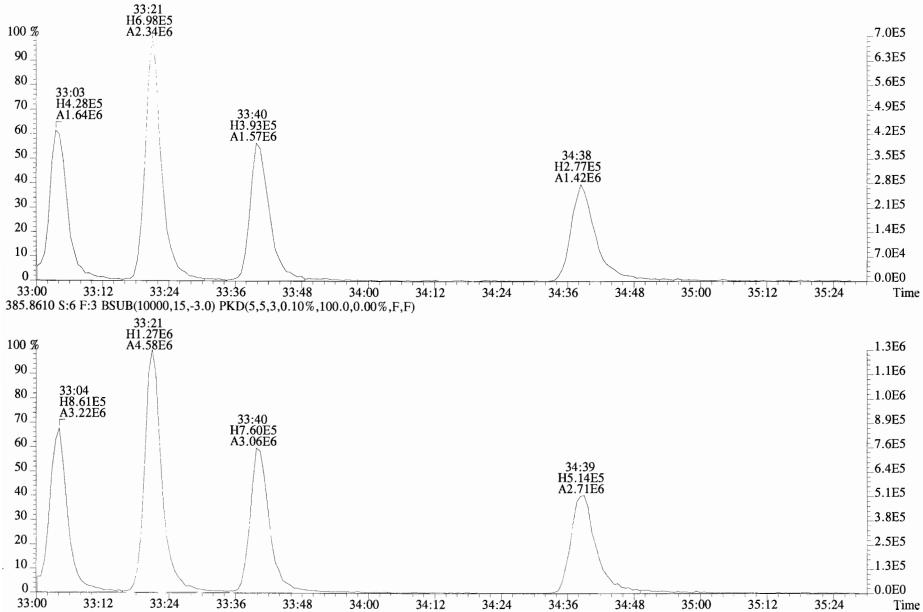


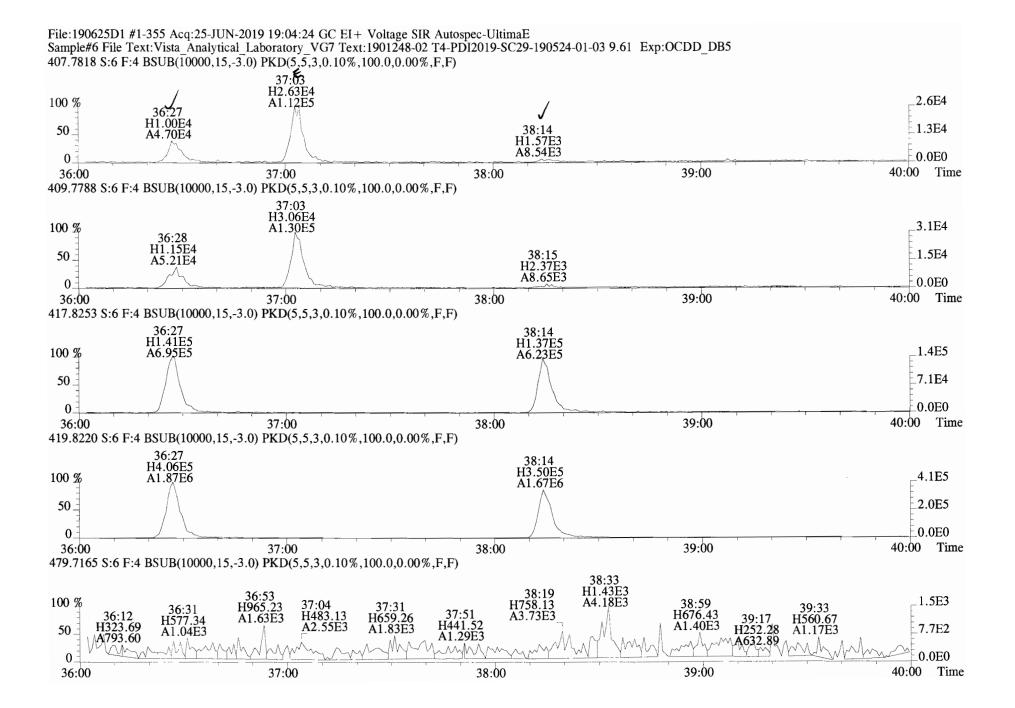

File:190625D1 #1-184 Acq:25-JUN-2019 19:04:24 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 339.8597 S:6 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



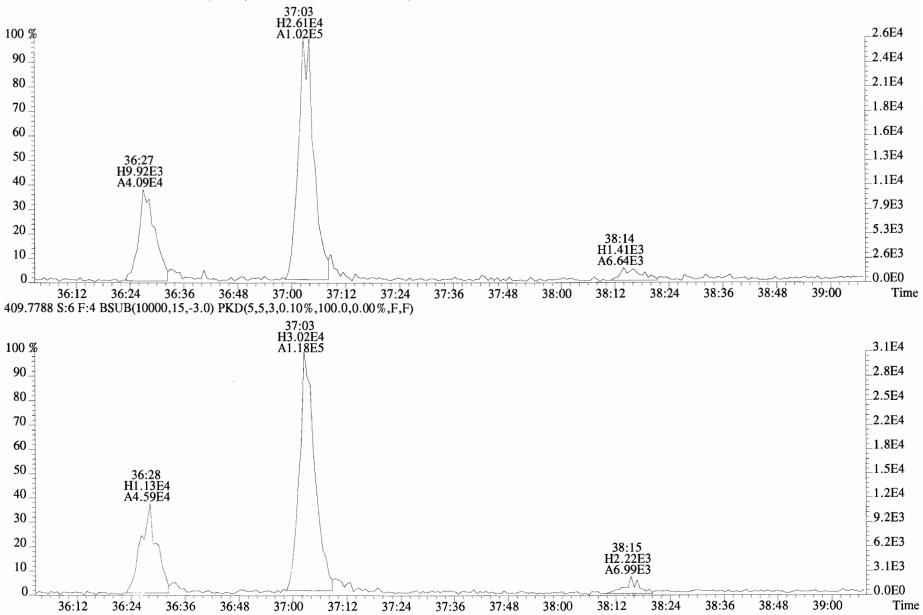
File:190625D1 #1-184 Acq:25-JUN-2019 19:04:24 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text: Vista Analytical Laboratory VG7 Text: 1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD DB5

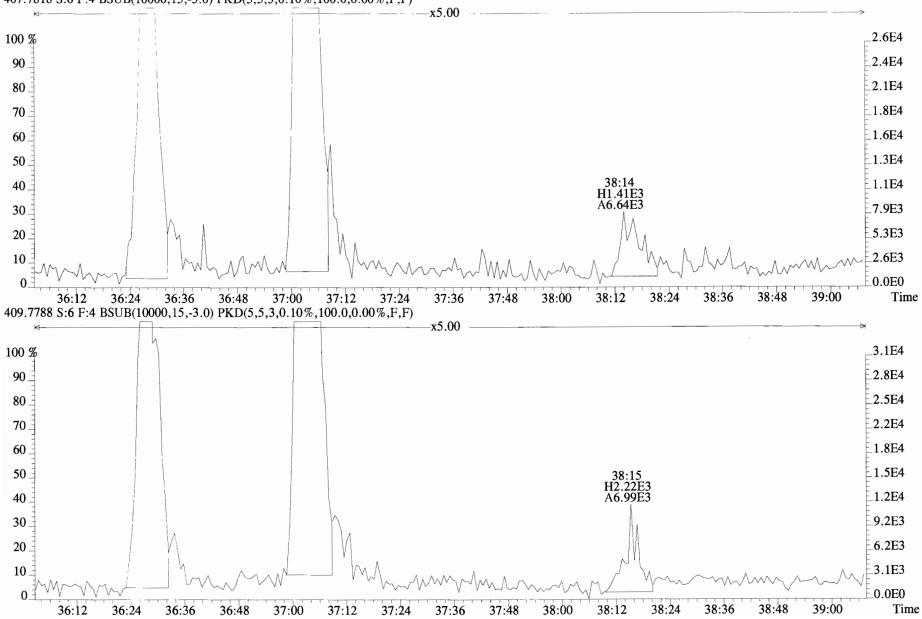


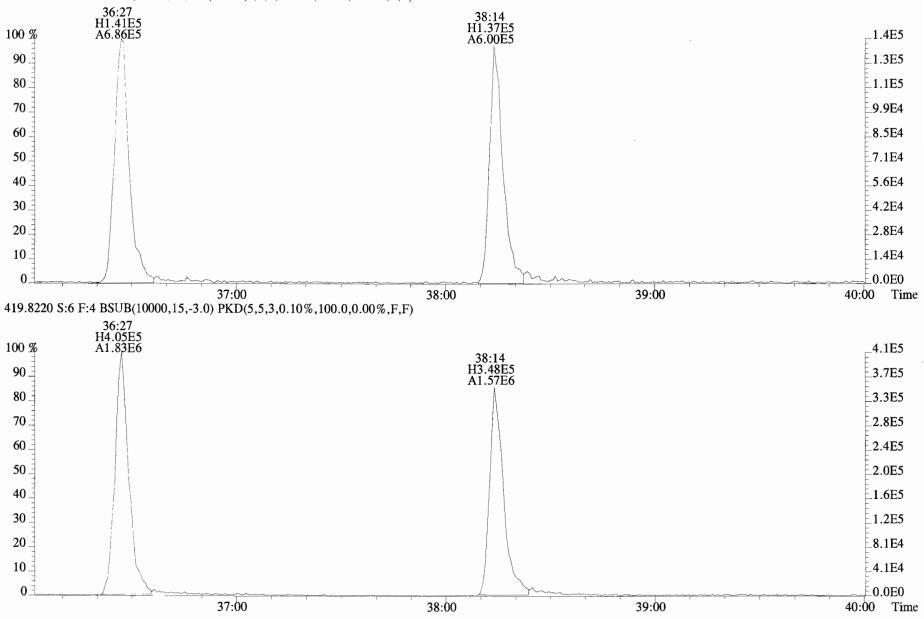


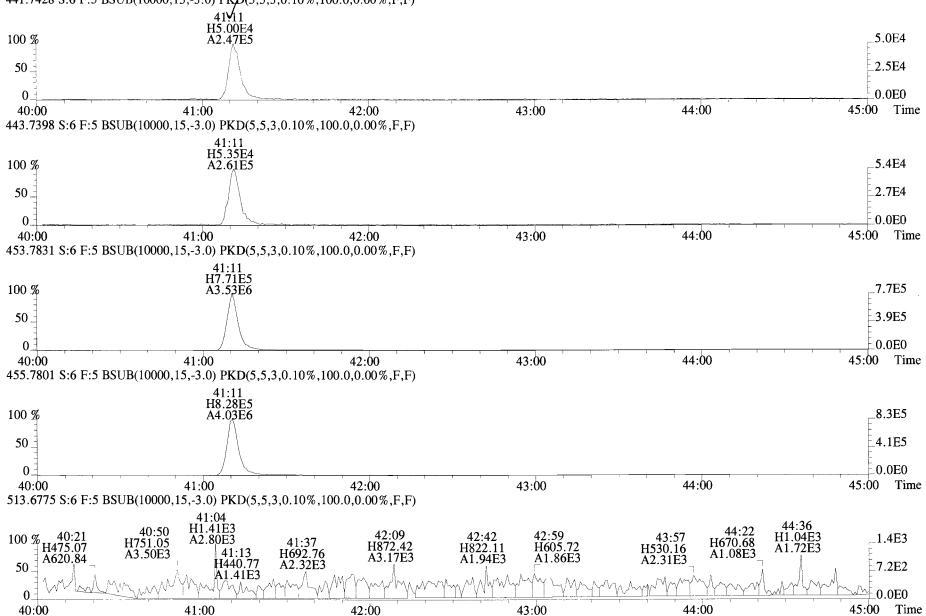

File:190625D1 #1-400 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory_VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 373.8207 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

File:190625D1 #1-400 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 373.8207 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

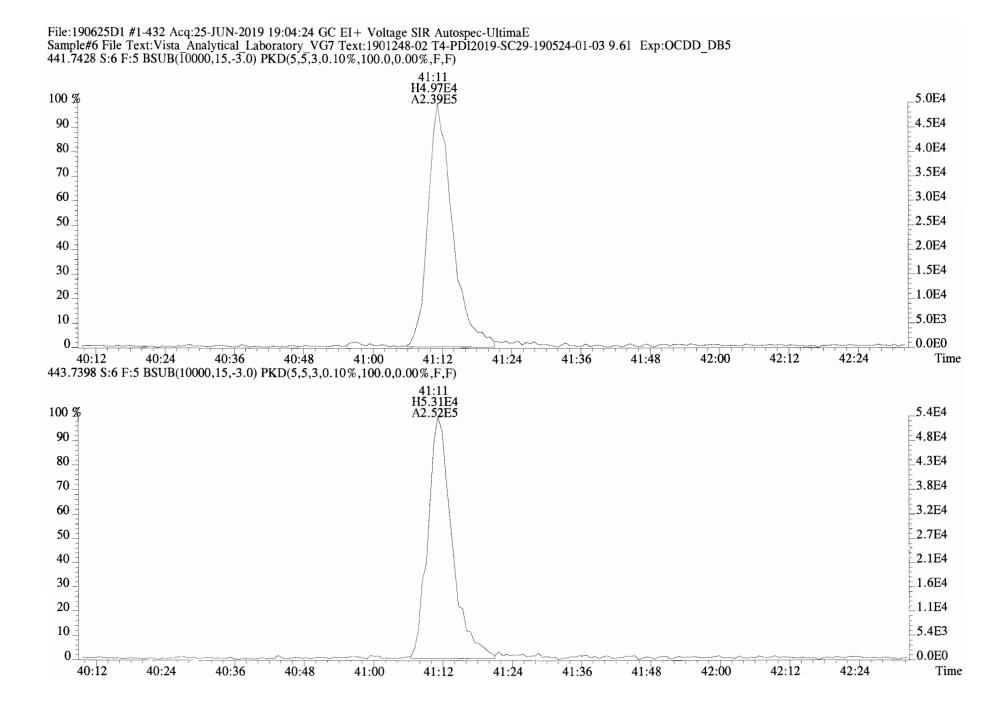



File:190625D1 #1-400 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 383.8639 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)


File:190625D1 #1-355 Acq:25-JUN-2019 19:04:24 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista_Analytical_Laboratory_VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 407.7818 S:6 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



File:190625D1 #1-355 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 407.7818 S:6 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



File:190625D1 #1-355 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 417.8253 S:6 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

File:190625D1 #1-432 Acq:25-JUN-2019 19:04:24 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista_Analytical_Laboratory_VG7 Text:1901248-02 T4-PDI2019-SC29-190524-01-03 9.61 Exp:OCDD_DB5 441.7428 S:6 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

	T4-PDI2019-SC29- 1248-03	P1				Acq:28-J 1613VG7-		1:54:49 wt/vc	ol: 5.308 🗸		al: ST190627D1 AL: NA	1			Page 1	LO of
	Name	Resp	RA	RRF	RT	Conc	Qual	noise Fac	DL	Name		Conc	EMPC	Qual	noise	D
	2,3,7,8-TCDD	*	* n	0.90	Not F ₁	*		185 2.5	0.150	Total 7	Tetra-Dioxins	*	*		185	0.15
:	1,2,3,7,8-PeCDD	*	* n	0.87	Not F _l	*		298 2.5	0.218	Total 1	Penta-Dioxins	0.499	0.884		*	
1,3	2,3,4,7,8-HxCDD	*	* n	1.05	Not F _{il}	*		218 2.5	0.205	Total H	Hexa-Dioxins	11.6	11.6		*	
1,3	2,3,6,7,8-HxCDD	4.14e+04	1.30 y	0.93	33:56	1.8535		* 2.5	*	Total H	Hepta-Dioxins	83.7	83.7		*	
1,	2,3,7,8,9-HxCDD	1.75e+04	1.24 y	0.96	34:15	0.75857		* 2.5	*	Total 7	letra-Furans	1.06	1.06		*	
1,2,	3,4,6,7,8-HpCDD	8.96e+05	1.02 y	0.99	37:41	37.405		* 2.5	*	Total 1	Penta-Furans	2.3605	2.7695		*	
	OCDD	1.13e+07	0.90 y	0.99	40:57	573.02		* 2.5	*	Total I	Hexa-Furans	8.45	9.26		*	
										Total I	Hepta-Furans	13.7	13.7		*	
	2,3,7,8-TCDF	1.19e+04	0.77 y	0.94	25:18	0.37580		* 2.5	*							
	1,2,3,7,8-PeCDF	*	* n	0.92	NotFi	*		328 2.5	0.239							
:	2,3,4,7,8-PeCDF	1.19e+04	2.04 n	0.96	30:16	0.40899		* 2.5	*							
1,	2,3,4,7,8-HxCDF	3.89e+04	1.06 y	1.15	32:56	1.2582		* 2.5	*							
1,	2,3,6,7,8-HxCDF	1.41e+04	1.12 y	1.04	33:04	0.42458		* 2.5	*							
2,	3,4,6,7,8-HxCDF	1.09e+04	1.34 y	1.10	33:41	0.32245		* 2.5	*							
1,	2,3,7,8,9-HxCDF	1.03e+04	1.23 y	1.03	34:39	0.35472		* 2.5	*							
1,2,	3,4,6,7,8-HpCDF	1.18e+05	1.01 y	1.06	36:27	4.0744		* 2.5	*							
1,2,	3,4,7,8,9-HpCDF	9.86e+03	0.90 y	1.23	38:14	0.34081		* 2.5	*							
	OCDF	2.02e+05	0.80 y	0.94	41:11	8.5386		* 2.5	*							
			-							Rec	Qual					
1	3C-2,3,7,8-TCDD	9.38e+06	0.77 y	1.11	26:03	290.68				77.1						
13C-	1,2,3,7,8-PeCDD	7.98e+06	0.63 y	0.98	30:32	280.49				74.4						
3C-1,	2,3,4,7,8-HxCDD	7.66e+06	1.29 y	0.68	33:49	317.39				84.2						
3C-1,	2,3,6,7,8-HxCDD	9.05e+06	1.27 y	0.84	33:56	301.02				79.9						
3C-1,	2,3,7,8,9-HxCDD	9.02e+06	1.25 y	0.81	34:14	310.96				82.5						
2-1,2,	3,4,6,7,8-HpCDD	9.13e+06	1.07 y	0.69	37:41	372.75				98.9						
	13C-OCDD	1.51e+07	0.92 y	0.62	40:57	675.58				89.6						
1	3C-2,3,7,8-TCDF	1.26e+07	0.81 y	1.05	25:18	256.11				68.0						
13C-	1,2,3,7,8-PeCDF	1.22e+07	1.63 y	0.95	29:23	271.91				72.2						
13C-	2,3,4,7,8-PeCDF	1.14e+07	1.60 y	0.94	30:16	260.51				69.1						
3C-1,	2,3,4,7,8-HxCDF	1.01e+07	0.53 y	0.86	32:56	330.30				87.7						
3C-1,	2,3,6,7,8-HxCDF	1.21e+07	0.52 y	1.02	33:04	330.63				87.7						
3C-2,	3,4,6,7,8-HxCDF	1.17e+07	0.52 y	0.95	33:40	342.48				90.9						
3C-1,	2,3,7,8,9-HxCDF	1.07e+07	0.52 y	0.87	34:39	343.72				91.2						
2-1,2,	3,4,6,7,8-HpCDF	1.02e+07	0.45 y	0.81	36:27	353.66				93.9						
2-1,2,	3,4,7,8,9-HpCDF	8.89e+06	0.44 y	0.63	38:15	393.83				105						
	13C-OCDF	1.89e+07	0.91 y	0.78	41:11	677.10				89.8						
37	Cl-2,3,7,8-TCDD	3.92e+06		1.22	26:05	110.43				73.3		ations		lewed		
											by	72	by		2-1	
	3C-1,2,3,4-TCDD		0.79 y	1.00	25:29	376.82					Analyst:_		Anal	lyst:	-1	_
	3C-1,2,3,4-TCDF		0.80 Y	1.00	24:04	376.82						().				
.3C-1,	2,3,4,6,9-HxCDF	1.35e+07	0.53 y	1.00	33:21	376.82					F	128/19		~	6/20	la

Totals class:	PeCDD EMPC	Entry #: 21
---------------	------------	-------------

Run:	16	File: 19062	7D1	S: 11 I	: 1 F: 2
Acquired:	28-JUN-19	00:54:49	Processed:	28-JUN-19	08:58:12

Total Concentration: 0.88353 Unnamed Concentration: 0.884

RT	ml Resp	m2 Resp RA	Resp Concentration	Name
28:30	3.254e+03	5.960e+03 0.55 y	9.213e+03 0.49860	
29:22	4.116e+03	4.364e+03 0.94 n	7.113e+03 0.38493	

.

-

Total	s class: HxC	DD EMPC	Entry	#: 23			
A	Run: 16 cquired: 28-	File: 19062 JUN-19 00:54:49		S: 11 I: 1 1 8-JUN-19 08:58			
Total Concentration: 11.570 Unnamed Concentration: 8.957							
RT	ml Resp	m2 Resp RA	Resp Co	ncentration	Name		
32:17	4.427e+04	3.548e+04 1.25 y	7.974e+04	3.5903			
32:51	6.340e+03	4.568e+03 1.39 y	1.091e+04	0.49112			
33:07	6.114e+04	4.716e+04 1.30 y	1.083e+05	4.8760			
33:56	2.338e+04	1.801e+04 1.30 y	4.139e+04	1.8535	1,2,3,6,7,8-HxCDD		
34:15	9.658e+03	7.814e+03 1.24 y	1.747e+04	0.75857	1,2,3,7,8,9-HxCDD		

Totals class: HpCDD EMPCEntry #: 25Run: 16File: 190627D1S: 11 I: 1 F: 4Acquired: 28-JUN-19 00:54:49Processed: 28-JUN-19 08:58:12Total Concentration: 83.673Unnamed Concentration: 46.268RTml Respm2 Resp RAResp Concentration

36:50	5.662e+05	5.426e+05 1.04 y	1.109e+06	46.268	
37:41	4.526e+05	4.438e+05 1.02 y	8.964e+05	37.405	1,2,3,4,6,7,8-HpCDD

Page 10 of 18

Total	s class: TCI	OF EMPC	Entr	ry #: 27				
A	Run: 16 cquired: 28	File: 19062 -JUN-19 00:54:49		S: 11 I: 1 F 28-JUN-19 08:58				
Total	Total Concentration: 1.0611 Unnamed Concentration: 0.685							
RT	ml Resp	m2 Resp RA	Resp (Concentration	Name			
21:48	5.458e+03	7.737e+03 0.71 y	1.320e+04	0.41768				
24:31	3.391e+03	5.063e+03 0.67 y	8.454e+03	0.26759				
25:18	5.148e+03	6.72 4 e+03 0.77 y	1.187e+04	0.37580	2,3,7,8-TCDF			

Totals class: 1st Func. PeCDF EMPC Entry #: 29

 Run: 16
 File: 190627D1
 S: 11 I: 1
 F: 1

 Acquired: 28-JUN-19
 00:54:49
 Processed: 28-JUN-19
 08:58:12

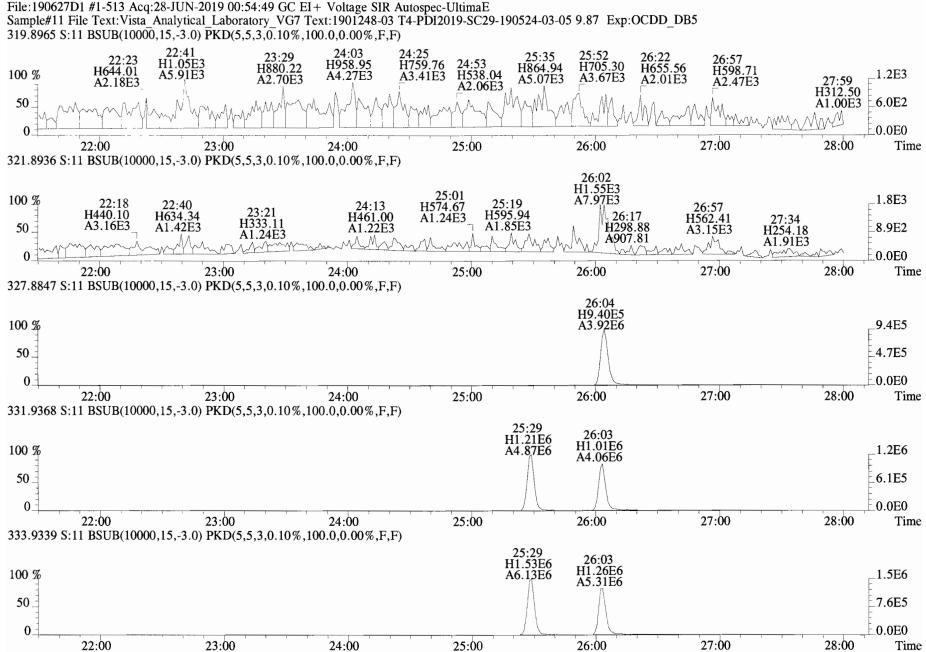
Total Concentration: 1.3659 Unnamed Concentration: 1.366

RT m1 Resp m2 Resp RA Resp Concentration Name

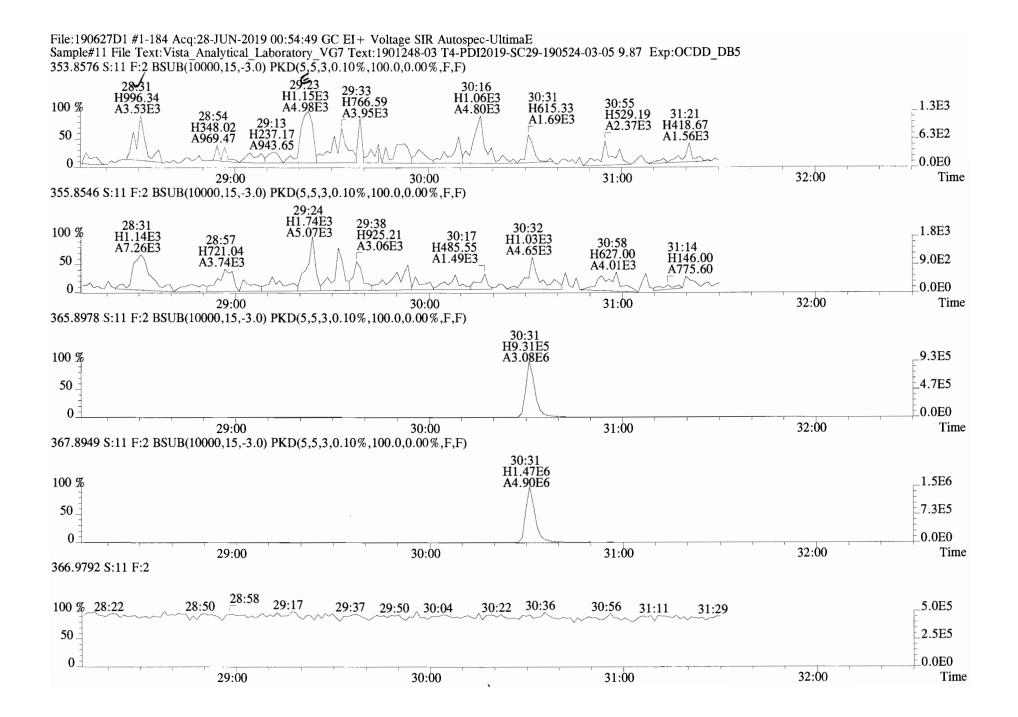
27:02 2.459e+04 1.558e+04 1.58 y 4.017e+04 1.3659

Totals class:	PeCDF EMPC	Entry #: 31	
	16 File: 1906 28-JUN-19 00:54:49	27D1 S: 11 I: 1 F Processed: 28-JUN-19 08:58	
Total Concentr	ation: 1.4036	Unnamed Concentration: 0.	.995
R T ml Re	sp m2 Resp RA	Resp Concentration	Name
28:28 1.758e+ 30:16 9.498e+	04 1.167e+04 1.51 y 03 4.655e+03 2.04 n		2,3,4,7,8-PeCDF

Totals class: HxCDF EMPC Entry #: 33

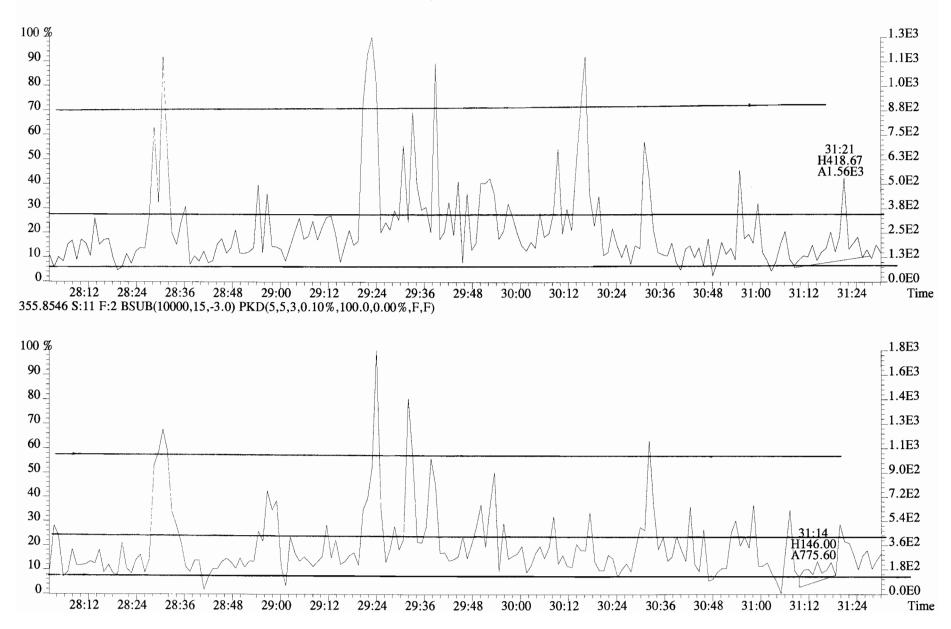

 Run:
 16
 File:
 190627D1
 S:
 11
 I:
 1
 F:
 3

 Acquired:
 28-JUN-19
 00:54:49
 Processed:
 28-JUN-19
 08:58:12

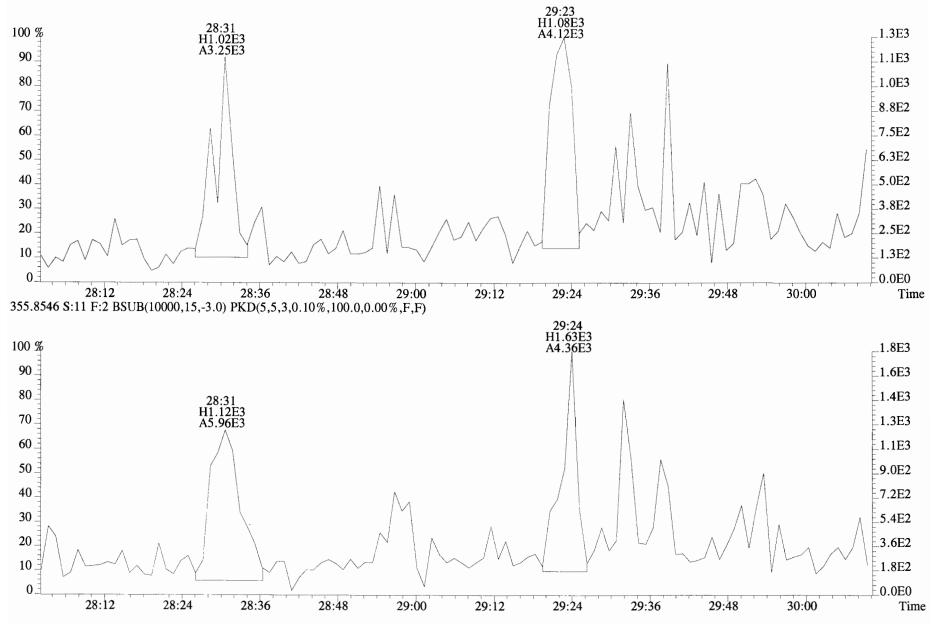

Total Concentration: 9.2570 Unnamed Concentration: 6.897

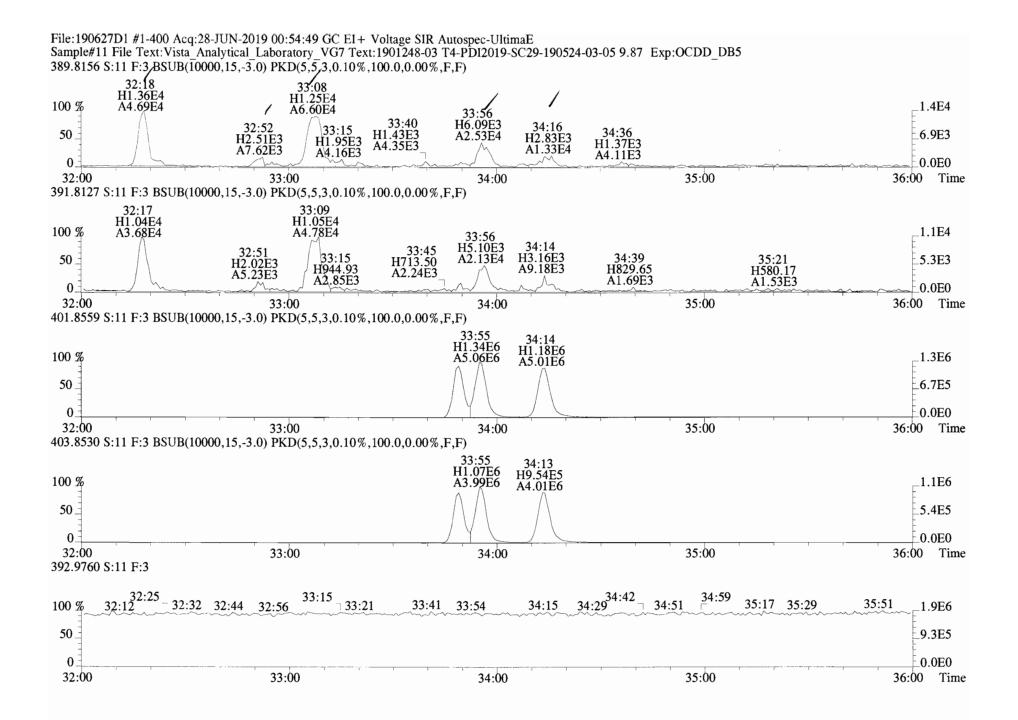
RT	ml Resp	m2 Resp RA	Resp C	oncentration	Name
31:46	1.892e+04	1.141e+04 1.66 n	2.555e+04	0.80350	
31:55	4.471e+04	3.370e+04 1.33 y	7.841e+04	2.4655	
32:28	6.591e+04	4.948e+04 1.33 y	1.154e+05	3.6280	
32:56	2.003e+04	1.891e+04 1.06 y	3.894e+04	1.2582	1,2,3,4,7,8-HxCDF
33:04	7.448e+03	6.671e+03 1.12 y	1.412e+04	0.42458	1,2,3,6,7,8-HxCDF
33:41	6.256e+03	4 .675e+03 1.34 y	1.093e+04	0.32245	2,3,4,6,7,8-HxCDF
34:39	5.688e+03	4.641e+03 1.23 y	1.033e+04	0.35472	1,2,3,7,8,9-HxCDF

Total	s class:	HpCDF EMPC		Ent	ry #: 3 5			
A			e: 19062 54:49		S: 11 I: 1 28-JUN-19 08:			
Total Concentration: 13.728 Unnamed Concentration: 9.313								
RT	ml Res	sp m2 Resp	RA	Resp	Concentration	Name		
36:27	5.912e+(04 5.843e+04	1.01 y	1.176e+05	4.0744	1,2,3,4,6,7,8-HpCDF		
37:04	1.388e+0	05 1.291e+05	1.07 Y	2.679e+05	9.3132	· · · · · · •		
38:14	4.667e+0	03 5.190e+03	0.90 Y	9.856e+03	0.34081	1,2,3,4,7,8,9-HpCDF		

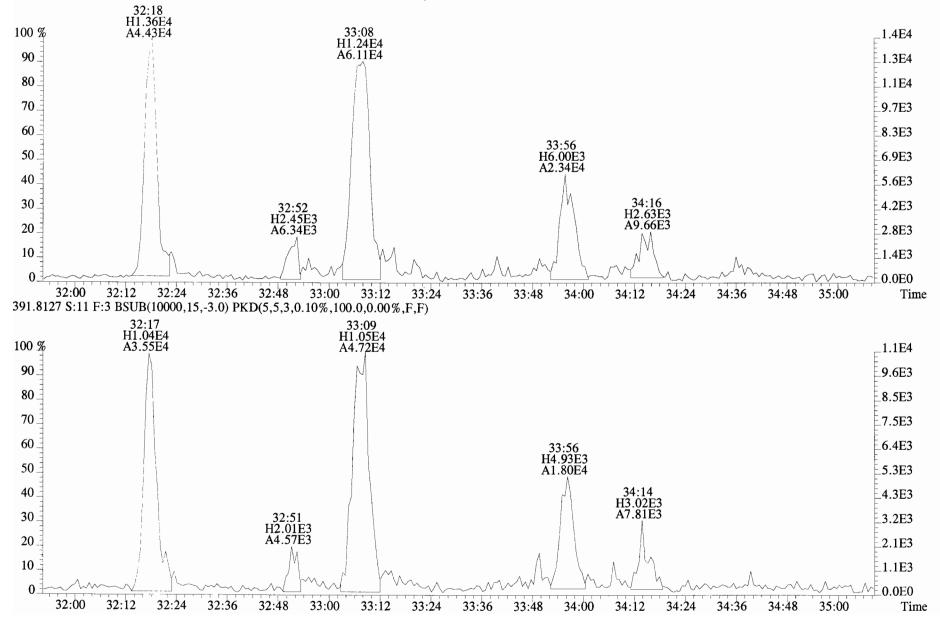


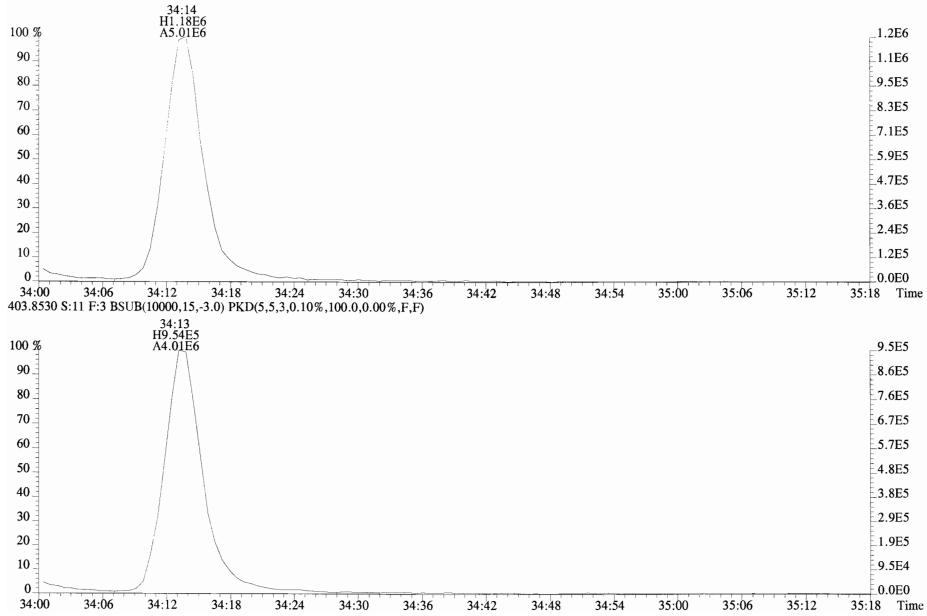
Work Order 1901248

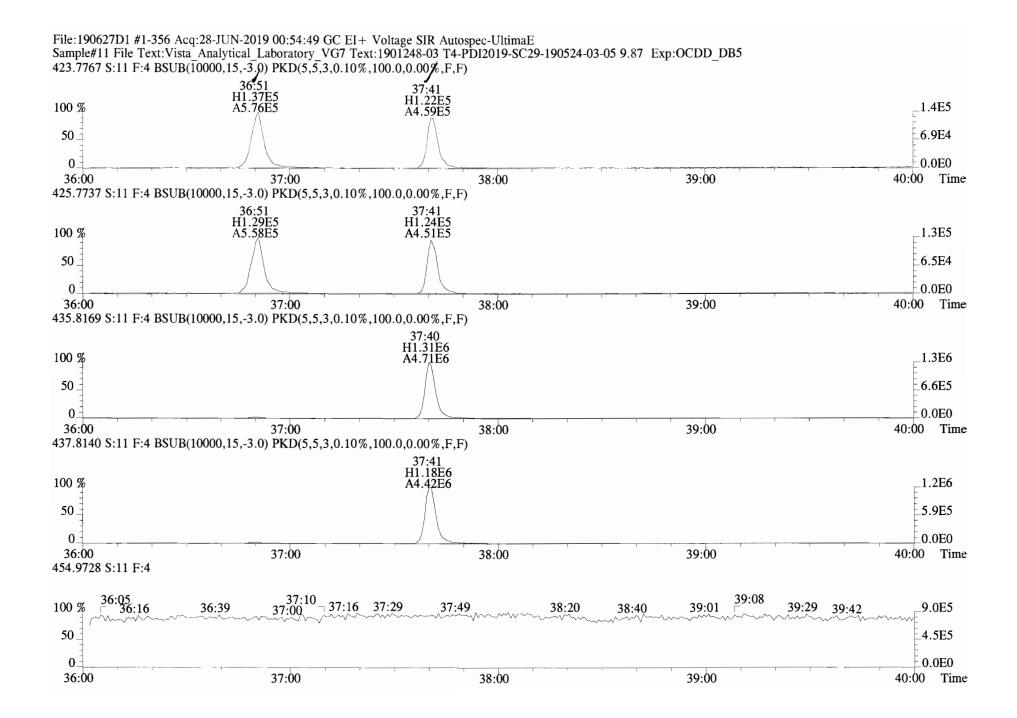



Work Order 1901248

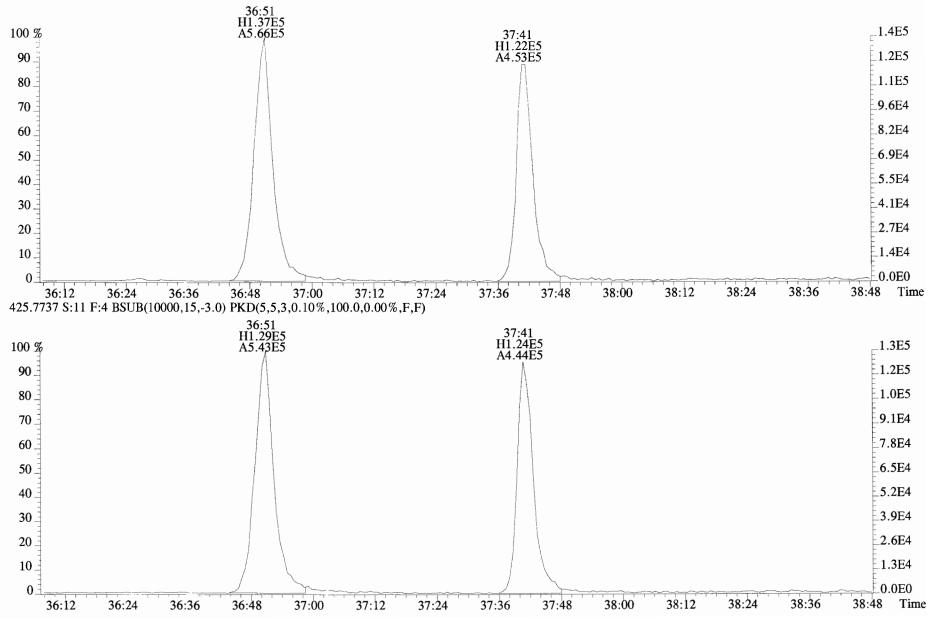
File:190627D1 #1-184 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 353.8576 S:11 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

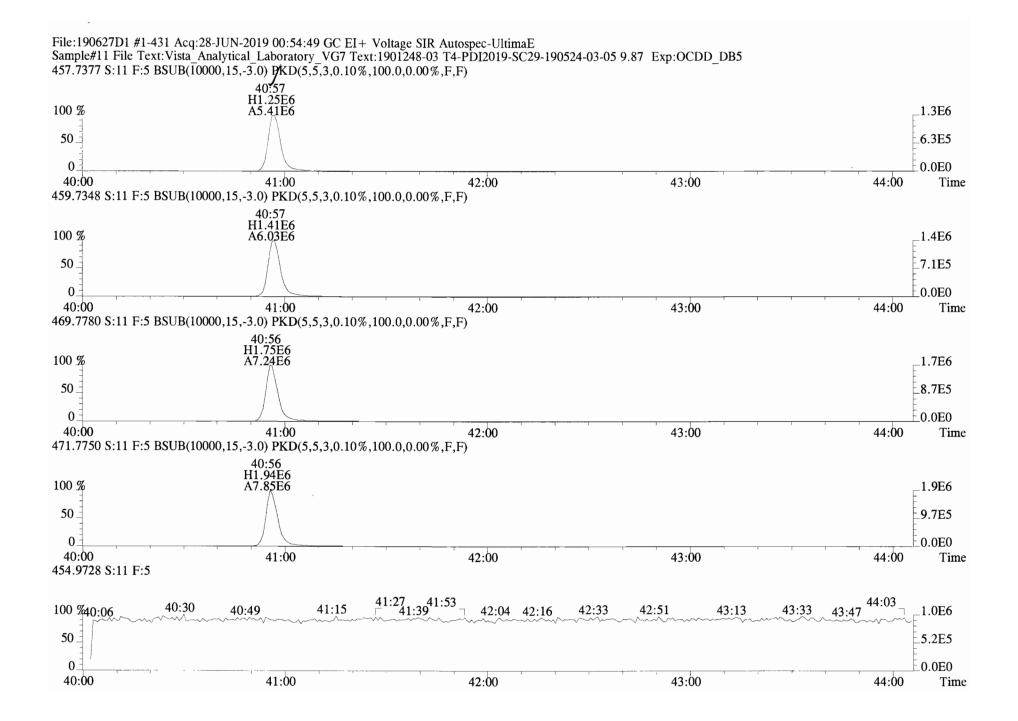

File:190627D1 #1-184 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory_VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 353.8576 S:11 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

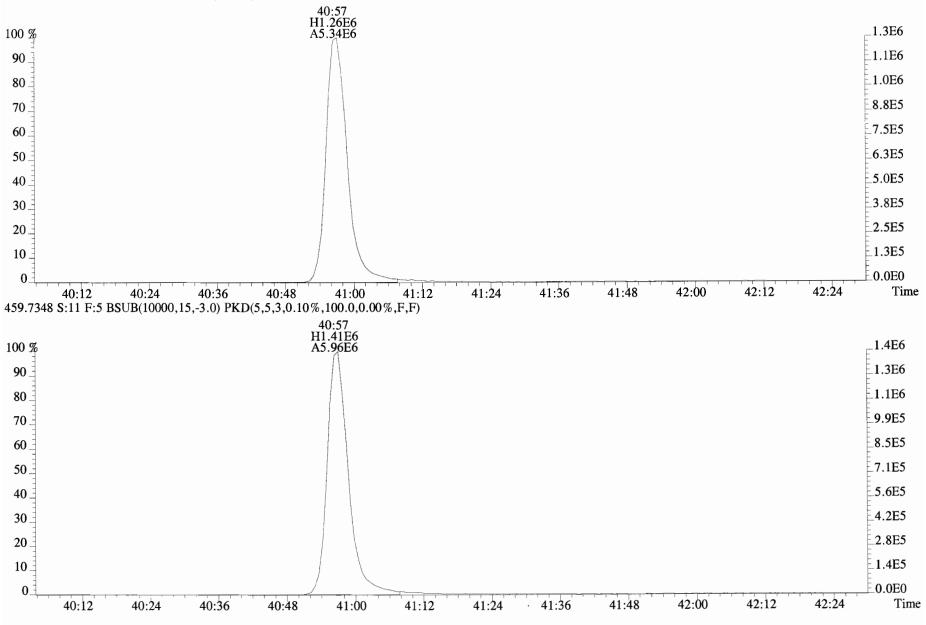


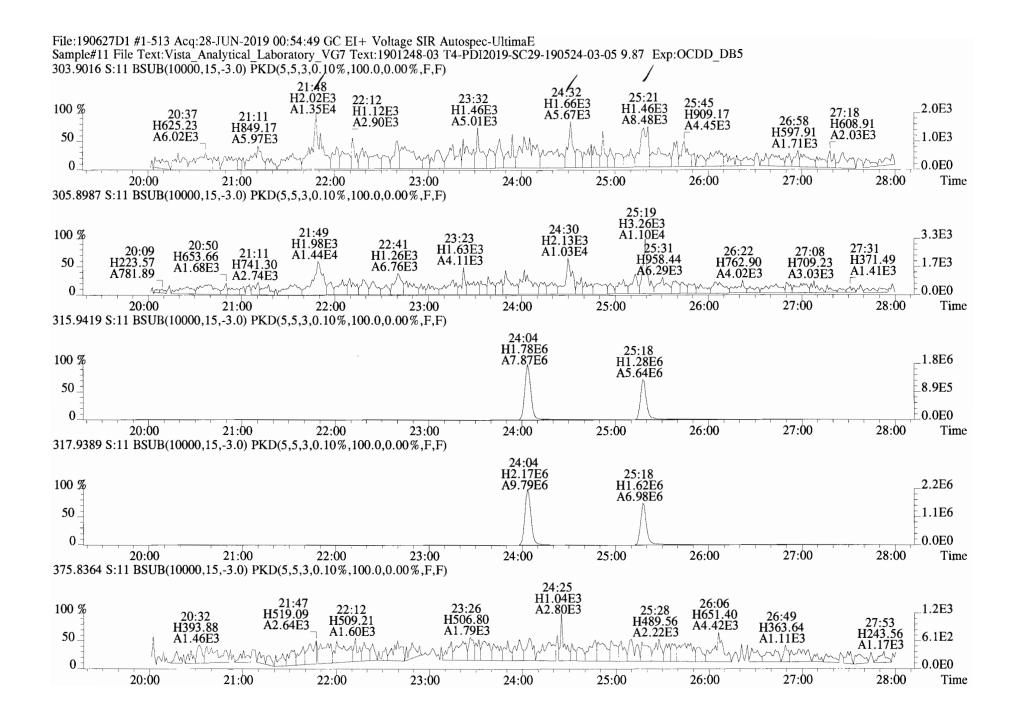

Work Order 1901248

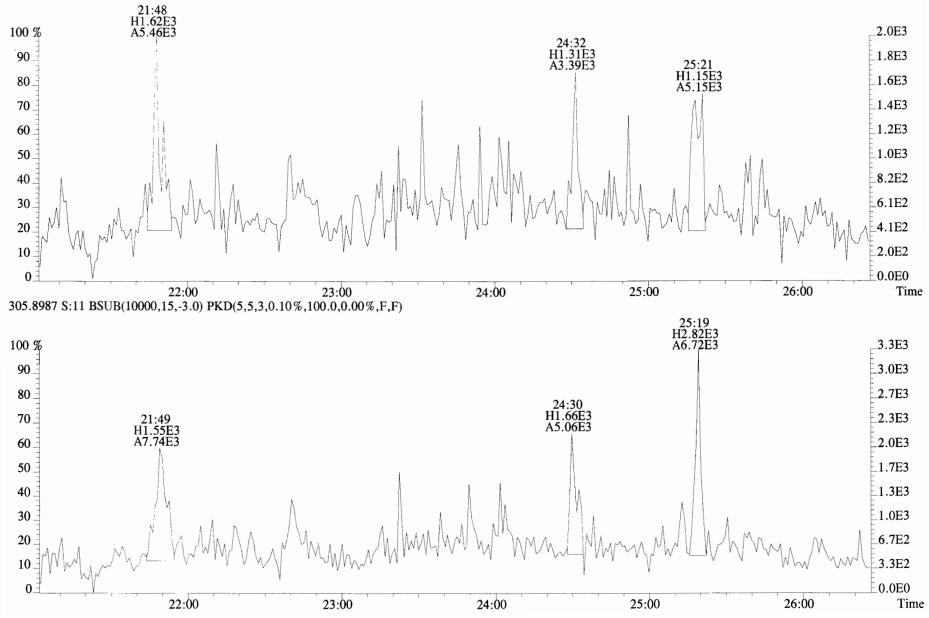
File:190627D1 #1-400 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory_VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 389.8156 S:11 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

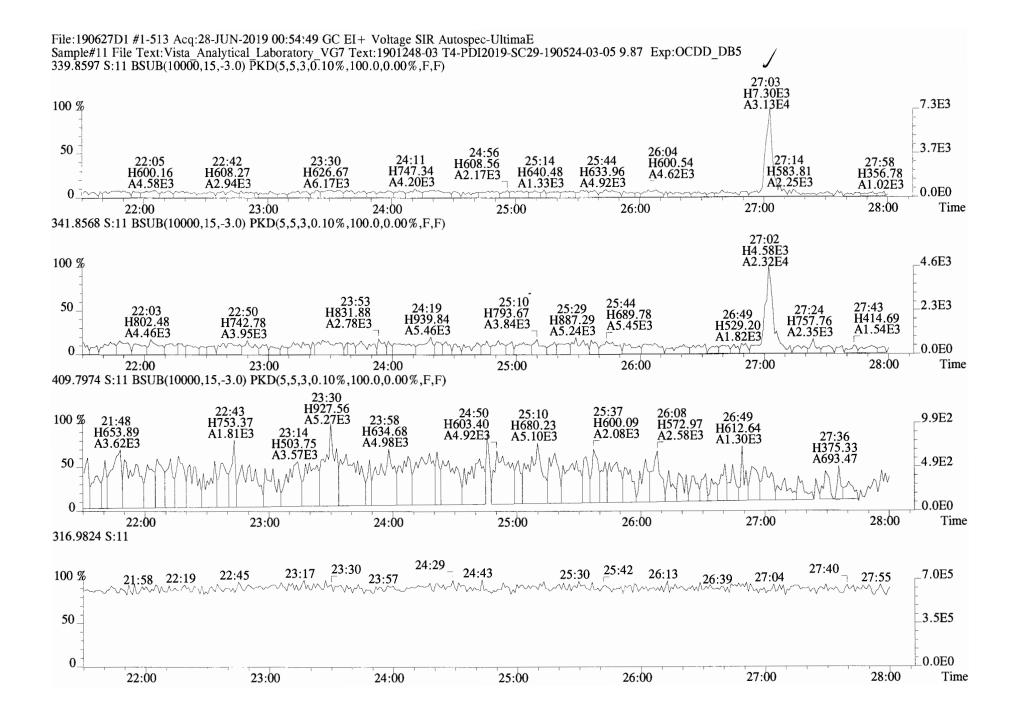


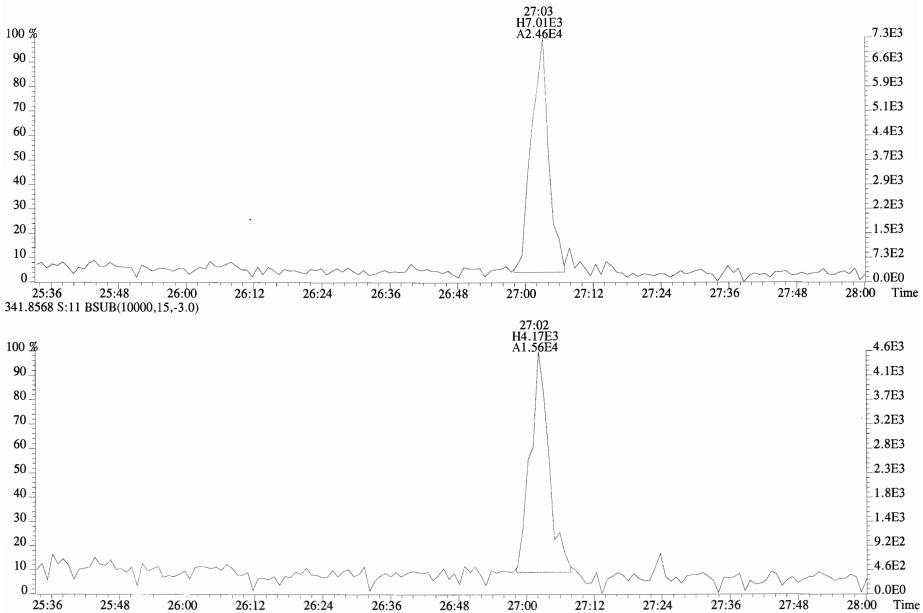

File:190627D1 #1-400 Acq:28-JUN-2019 00:54:49 GC EI + Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytica1 Laboratory VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 401.8559 S:11 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

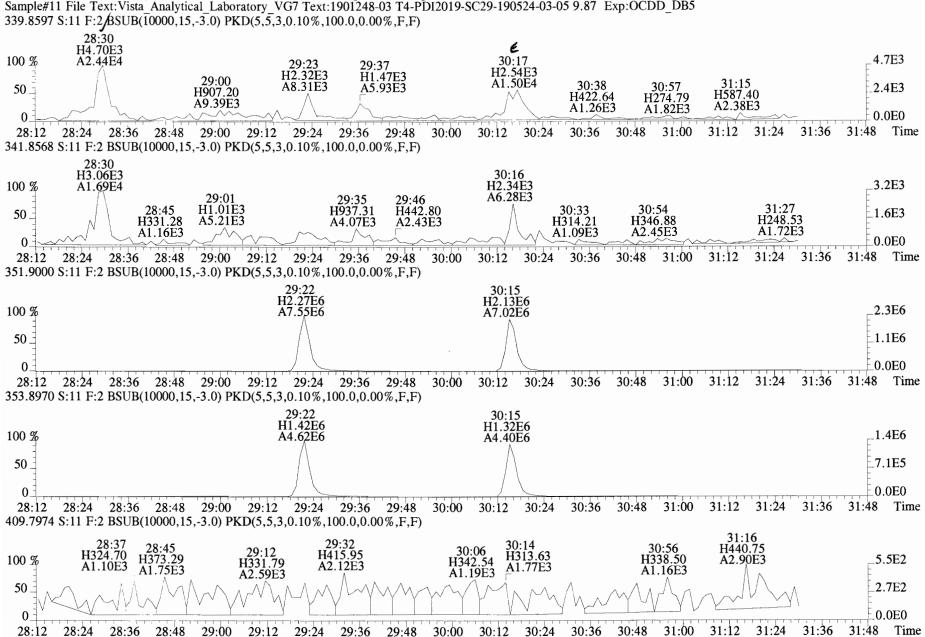


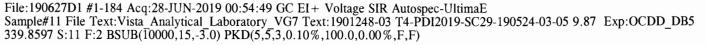

File:190627D1 #1-356 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 423.7767 S:11 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

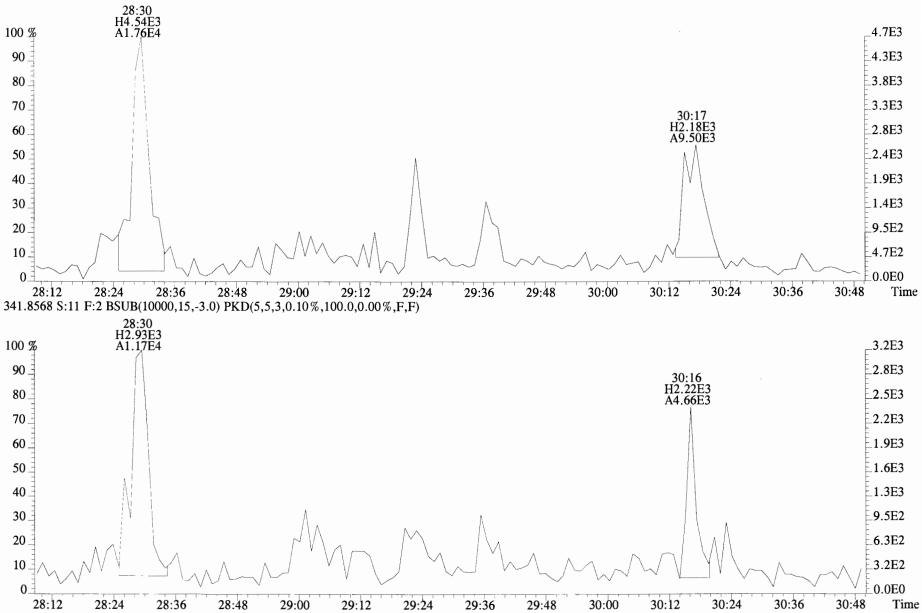


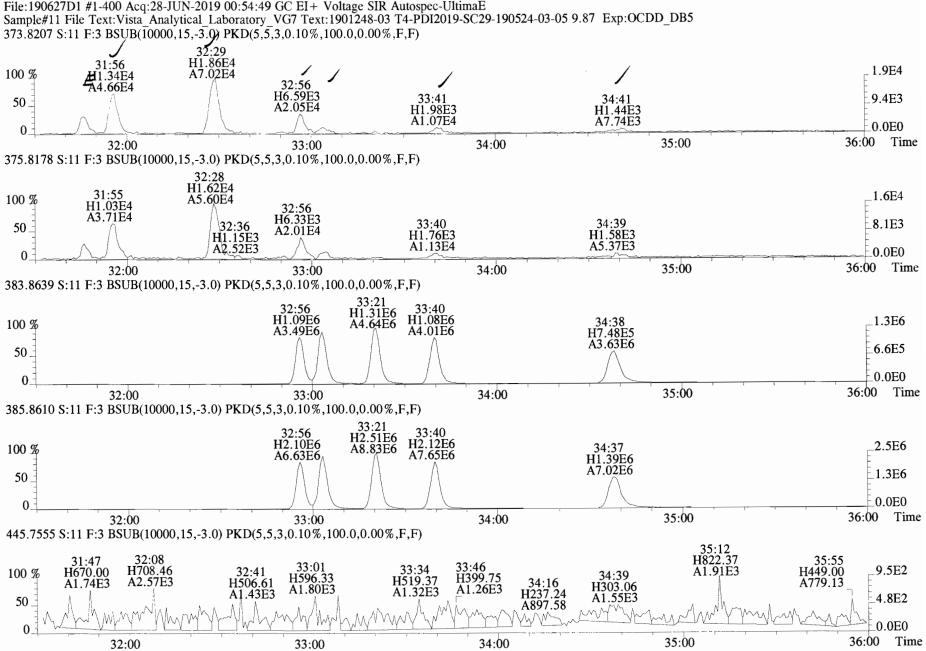

File:190627D1 #1-431 Acq:28-JUN-2019 00:54:49 GC EI + Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista_Analytical_Laboratory_VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 457.7377 S:11 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

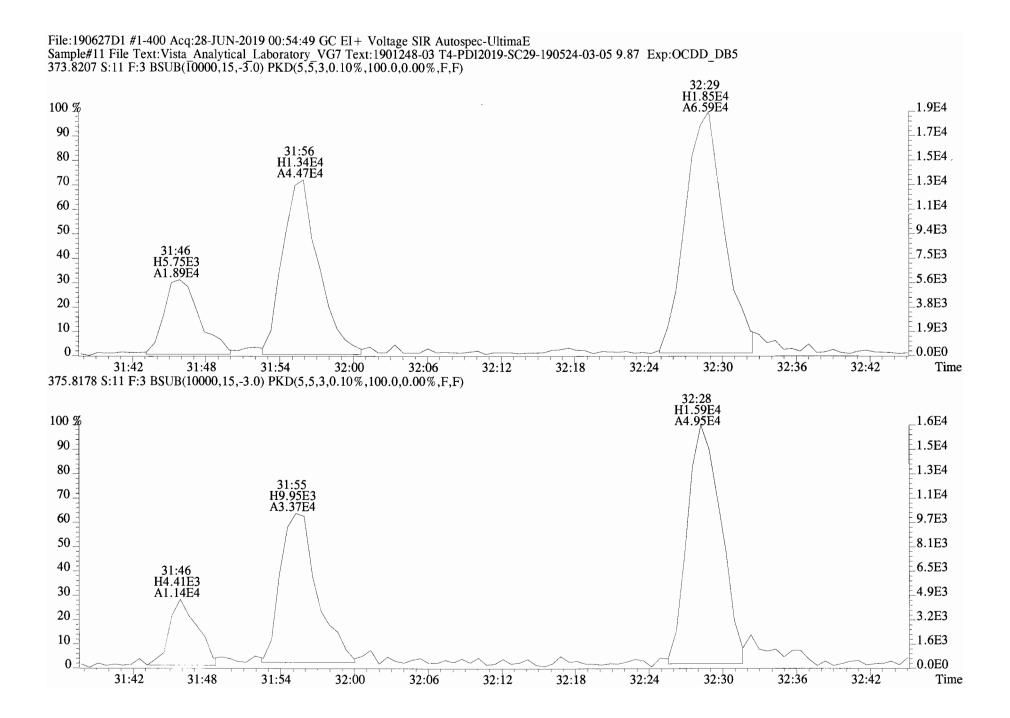

File:190627D1 #1-513 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory_VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 303.9016 S:11 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

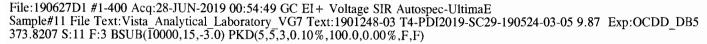


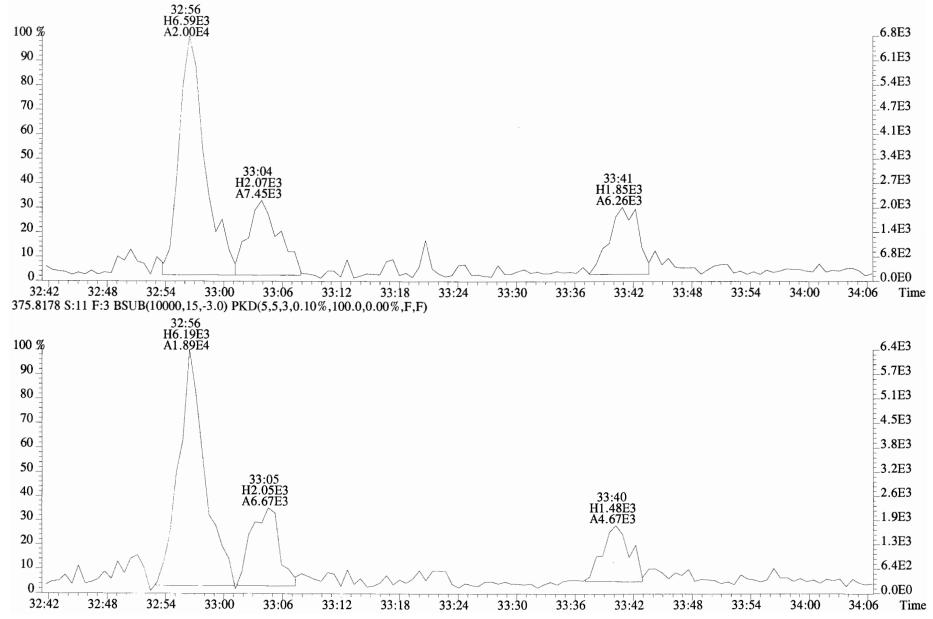

Work Order 1901248

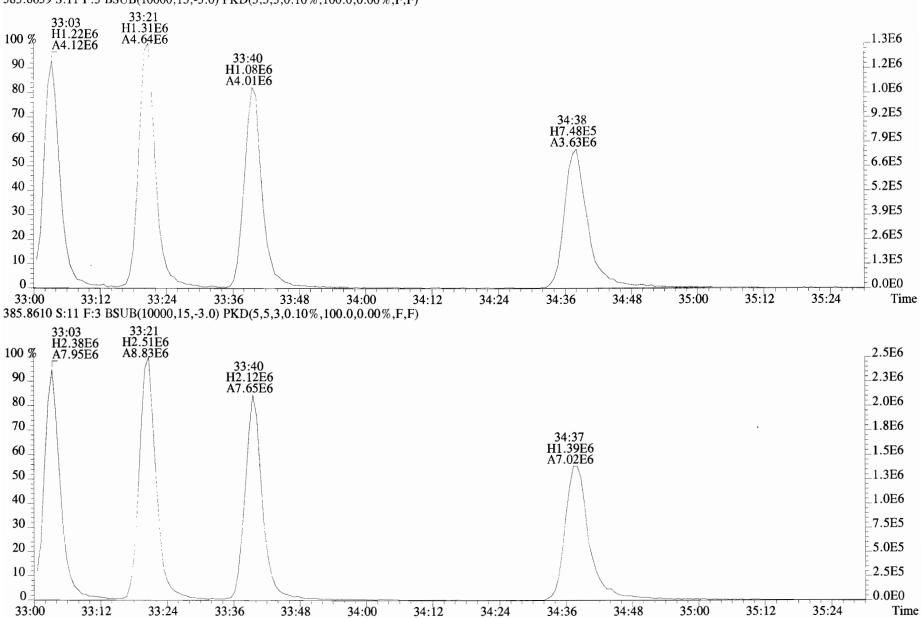

File:190627D1 #1-513 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical_Laboratory_VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 339.8597 S:11 BSUB(10000,15,-3.0)

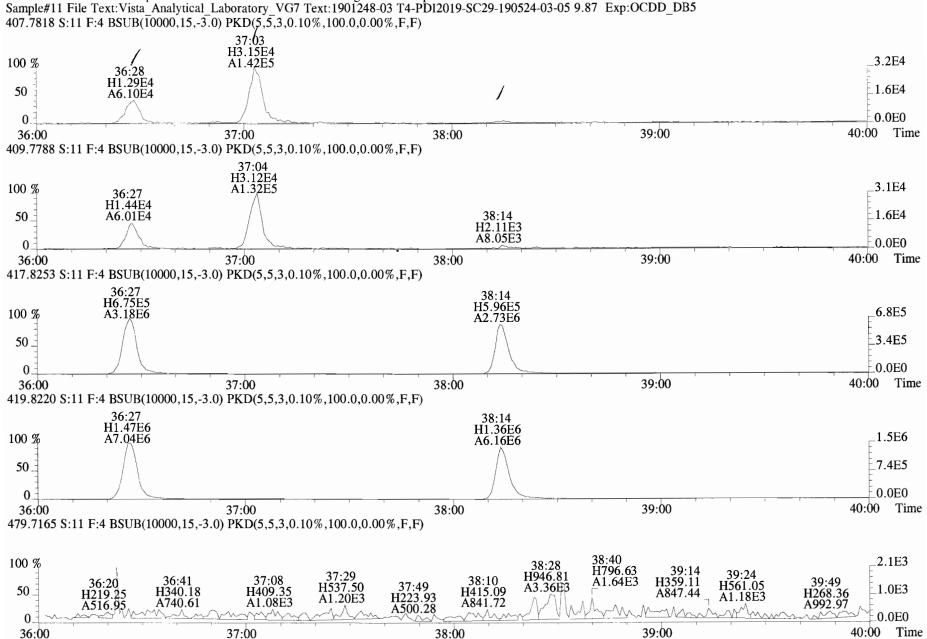




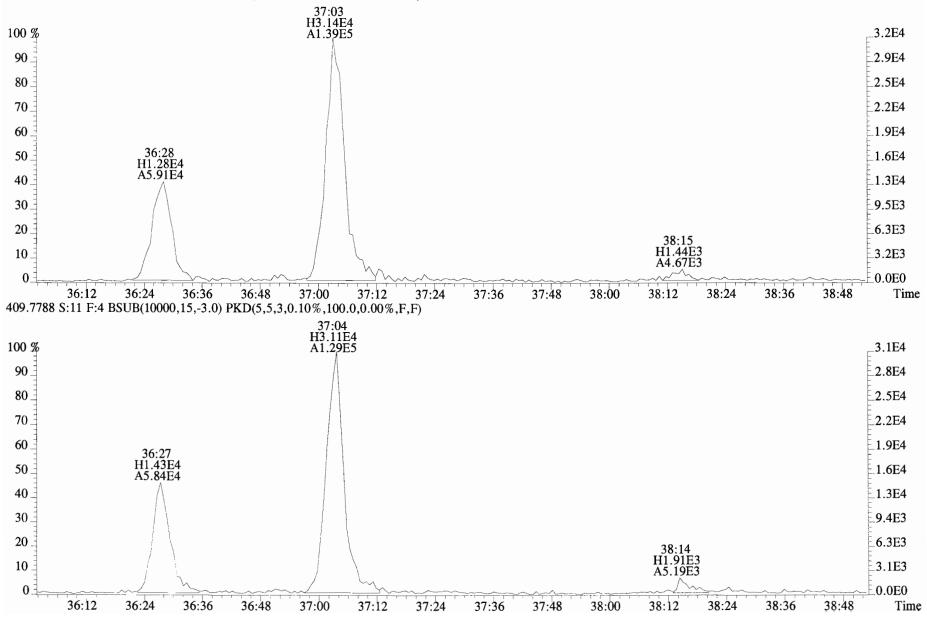

File:190627D1 #1-184 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text: Vista Analytical Laboratory VG7 Text: 1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5



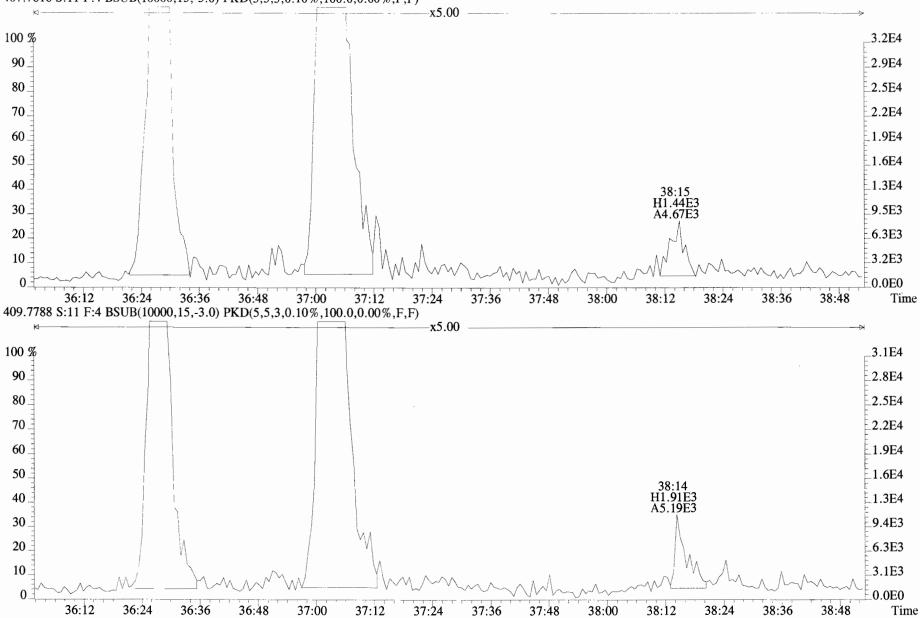


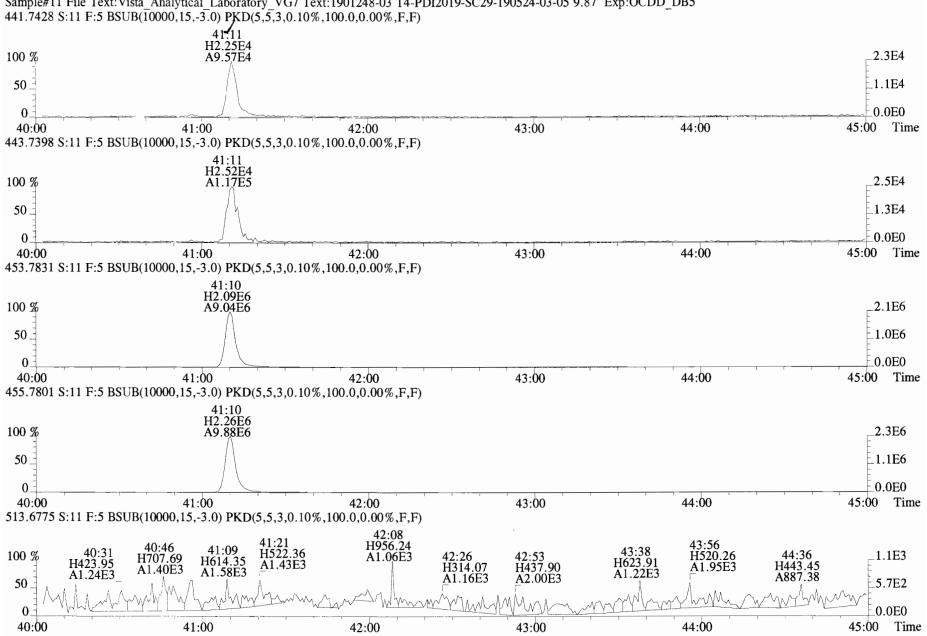


File:190627D1 #1-400 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 373.8207 S:11 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F) 34:41 H1.30E3 A5.69E3 100 % __1.5E3 80 _1.2E3 60 9.0E2 40 6.0E2 20. 3.0E2 0.0E0 0. 34:18 34:42 34:48 34:54 35:00 34:24 34:36 34:30 Time 375.8178 S:11 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F) 34:39 H1.34E3 A4.64E3 100 % _1.6E3 80 _1.3E3 60 _ 9.5E2 40 _6.3E2 20 _3.2E2 0 _0.0E0 34:18 34:24 34:30 34:36 34:42 34:48 34:54 35:00 Time 383.8639 S:11 F:3 100 % 34:38 _7.5E5 80. 6.0E5 60 4.5E5 40 _3.0E5 20 1.5E5 0... 0.0E0 34:18 34:24 34:30 34:36 34:42 34:48 34:54 35:00 Time

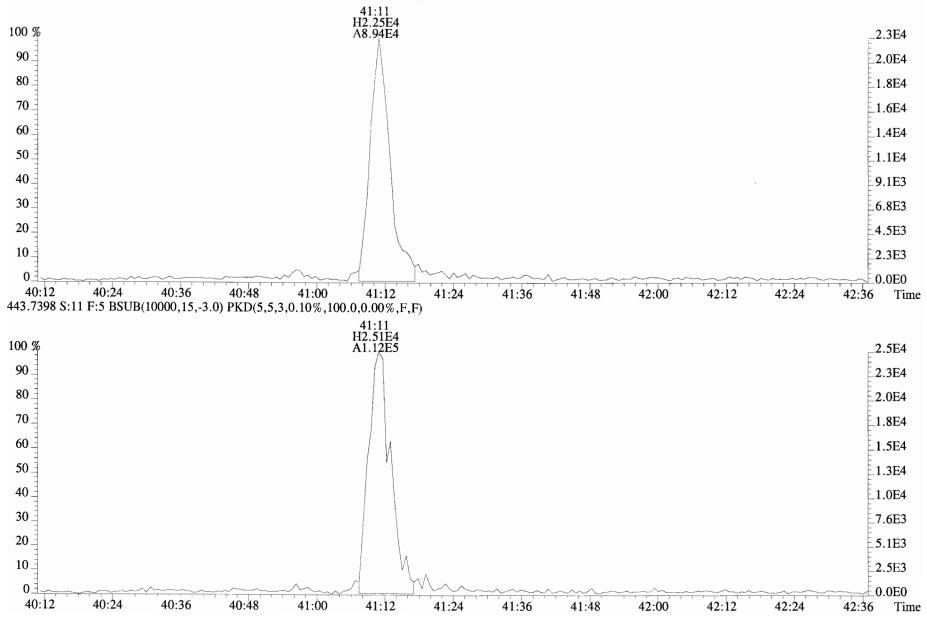


File:190627D1 #1-400 Acq:28-JUN-2019 00:54:49 GC EI + Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 383.8639 S:11 F:3 BSUB(T0000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)




File:190627D1 #1-356 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE

File:190627D1 #1-356 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory_VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 407.7818 S:11 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)


File:190627D1 #1-356 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 407.7818 S:11 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

File:190627D1 #1-431 Acq:28-JUN-2019 00:54:49 GC EI + Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista_Analytical_Laboratory_VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 441 7428 S:11 E:5 BSUB(10000 15 -3 0) PKD(5 5 3 0 10% 100 0 0 00% E E)

File:190627D1 #1-431 Acq:28-JUN-2019 00:54:49 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory VG7 Text:1901248-03 T4-PDI2019-SC29-190524-03-05 9.87 Exp:OCDD_DB5 441.7428 S:11 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

Cl	ient ID: T4-PDI2019-SC29-	190524 _ח F	ilename	: 1906251	D1 S:8	Acq:25-J	UN-19 20	0:39:50		,
La	b ID: 1901248-04	G	C Columr	n ID: ZB	-5MS ICal	l: 1613VG7-	5-10-19		wt/vo	pl: 5.124 🖊
	Name	Resp	RA	RR	F RT	Conc	Oual	noise	Fac	DL
	2,3,7,8-TCDD	*		n 0.9		*	Quui		2.5	0.544
	1,2,3,7,8-PeCDD	*		n 0.8		*			2.5	0.547
	1,2,3,4,7,8-HxCDD	*		n 1.0		*			2.5	0.923
	1,2,3,6,7,8-HxCDD	1.50e+04				1.6474			2.5	*
	1,2,3,7,8,9-HxCDD	*		n 0.9		*			2.5	0.978
	1,2,3,4,6,7,8-HpCDD	3.06e+05	0.94	y 0.9		36.763		*	2.5	*
	OCDD	2.84e+06	0.90	y 0.9	9 40:57	361.51		*	2.5	*
	2,3,7,8-TCDF	*	*	n 0.9	4 NotF _l	*		183	2.5	0.372
	1,2,3,7,8-PeCDF	4.46e+03	1.14	n 0.9	2 29:24	0.44877		*	2.5	*
	2,3,4,7,8-PeCDF	*	*	n 0.9	6 NotF _l	*		204	2.5	0.526
	1,2,3,4,7,8-HxCDF	1.12e+04	0.94	n 1.1	5 32:58	0.89167		*	2.5	*
	1,2,3,6,7,8-HxCDF	*	*	n 1.0	4 NotF _l	*		310	2.5	0.299
	2,3,4,6,7,8-HxCDF	*	*	n 1.1	0 NotF _l	*		310	2.5	0.316
	1,2,3,7,8,9-HxCDF	*	*	n 1.0	3 NotFi	*		310	2.5	0.531
	1,2,3,4,6,7,8-HpCDF	2.13e+04	0.82	n 1.0	6 36:28	2.9975		*	2.5	*
	1,2,3,4,7,8,9-HpCDF	*	*	n 1.2	3 NotFi	*		212	2.5	0.437
	OCDF	1.01e+05	0.88	y 0.9	4 41:11	10.380		*	2.5	*
IS	13C-2,3,7,8-TCDD	2.57e+06	0.88	y 1.1	1 26:05	165.14				
IS	13C-1,2,3,7,8-PeCDD	3.00e+06	0.62	у 0.9	8 30:33	217.80				
IS	13C-1,2,3,4,7,8-HxCDD	2.80e+06	1.38	у 0.6	8 33:49	218.10				
IS	13C-1,2,3,6,7,8-HxCDD	3.82e+06	1.35	у 0.8	4 33:56	238.33				
IS	13C-1,2,3,7,8,9-HxCDD	3. 7 6e+06	1.35	у 0.8	1 34:15	243.31				
IS	13C-1,2,3,4,6,7,8-HpCDD	3.29e+06	0.99	у 0.6	9 37:41	251.65				
IS	13C-OCDD	6.23e+06		-	2 40:57	523.64				
IS	13C-2,3,7,8-TCDF	4.22e+06		-		144.64				
IS	13C-1,2,3,7,8-PeCDF	4.21e+06		-		159.12				
IS	13C-2,3,4,7,8-PeCDF	3.70e+06		-		142.90				
IS	13C-1,2,3,4,7,8-HxCDF	4.24 e +06		-						
IS	13C-1,2,3,6,7,8-HxCDF	5.28e+06		-						
IS	13C-2,3,4,6,7,8-HxCDF	5.09e+06		-						
IS	13C-1,2,3,7,8,9-HxCDF	4.28e+06		-						
IS	13C-1,2,3,4,6,7,8-HpCDF	2.60e+06		-						
IS	13C-1,2,3,4,7,8,9-HpCDF	2.37e+06		-						
IS	13C-OCDF	8.08e+06	0.86	у 0.7	8 41:11	542.58				
C/U	37C1-2,3,7,8-TCDD	1.51e+06	5	1.2	2 26:06	88.065				
RS/H	د ۲۰۰۵ م سرم	5.51e+06	. 0.04	y 1.0	0 25:30	200 20				
RS/1	RT 13C-1,2,3,4-TCDD 13C-1,2,3,4-TCDF	1.08e+0		-						
RS/I		7.43e+0		-						
K0/1	13C-1,2,3,4,0,5-ACDr	1.436+06	. 0.52	у т.U	0 33:22	370.20				

ConCal: ST190625D1-1 EndCAL: NA

Page 7 of 7

Name	Conc	EMPC	Qual	noise	DL	
Total Tetra-Dioxins	*	*		160	0.544	
Total Penta-Dioxins	*	*		248	0.547	
Total Hexa-Dioxins	15.5	15.5		*	*	
Total Hepta-Dioxins	78.7	78.7		*	*	
Total Tetra-Furans	*	*		183	0.372	
Total Penta-Furans	1.2499	1.6986		*	*	
Total Hexa-Furans	5.55	6.98		*	*	
Total Hepta-Furans	*	9.84		*	*	

42.3 55.8 55.9 61.1 62.3 64.5 67.1 37.1 40.8 36.6 66.6 69.6 71.9

Qual

Rec

66.4 43.3

50.5

69.5

56.4

Integrations

Reviewed

 $\frac{by}{Analyst:} \xrightarrow{B} B \qquad by \\ Analyst:} \xrightarrow{B} B \qquad by \\ Analyst:} \xrightarrow{C7} Date: \underline{6/27/19} \qquad Date: \underline{66/28/19}$

Totals class: Hx(CDD EMPC	Entry #: 23	
	File: 19062 -JUN-19 20:39:50	5D1 S: 8 I: 1 Processed: 26-JUN-19 09	
Total Concentratio	on: 15.513	Unnamed Concentration:	13.865
RT ml Resp	m2 Resp RA	Resp Concentration	Name
32:18 3.473e+04	2.682e+04 1.29 y	6.155e+04 7.1129	1
32:52 3.245e+03	2.904e+03 1.12 y	6.149e+03 0.71055	i
33:08 2.912e+04	2.316e+04 1.26 y	5.228e+04 6.0416	
33:57 7.888e+03	7.097e+03 1.11 y	1.499e+04 1.6474	1,2,3,6,7,8-HxCDD

Totals class: HpCDD EMPC Entry #: 25

 Run: 13
 File: 190625D1
 S: 8
 I: 1
 F: 4

 Acquired: 25-JUN-19
 20:39:50
 Processed: 26-JUN-19
 09:27:40

Total Concentration: 78.655 Unnamed Concentration: 41.892

RT	m1 Resp	m2 Resp RA	Resp	Concentration	Name
36:51	1.675e+05	1.811e+05 0.93 y	3.487e+05	41.892	
37:42	1.482e+05	1.577e+05 0.94 y	3.060e+05	36.763	1,2,3,4,6,7,8-HpCDD

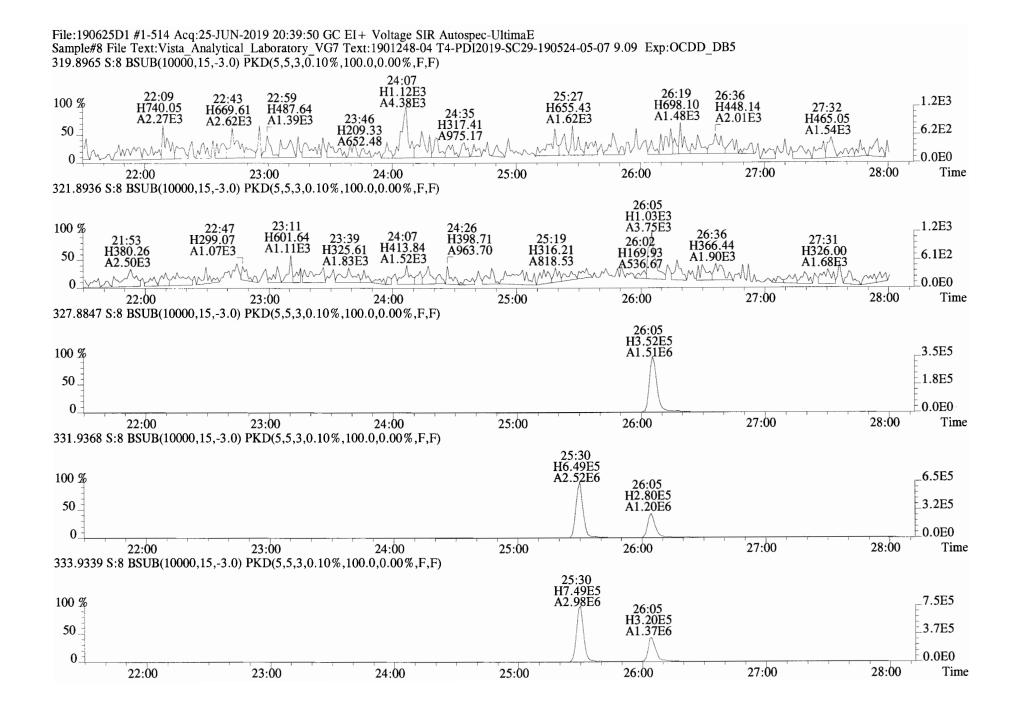
Totals class: 1st Func. PeCDF EMPC Entry #: 29

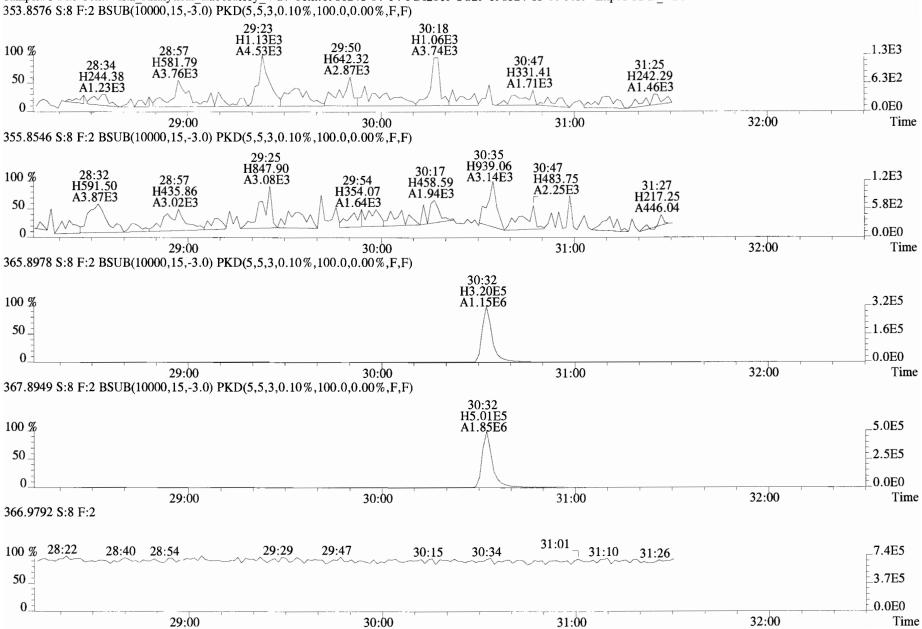
 Run: 13
 File: 190625D1
 S: 8
 I: 1
 F: 1

 Acquired: 25-JUN-19
 20:39:50
 Processed: 26-JUN-19
 09:27:40

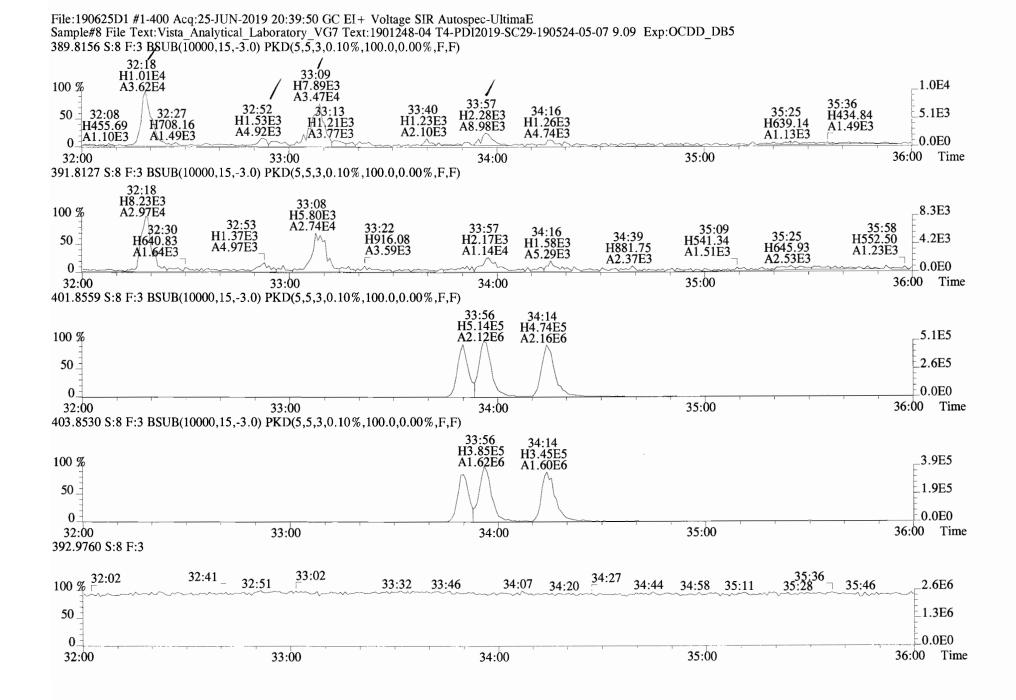
Total Concentration: 1.2499 Unnamed Concentration: 1.250

RT m1 Resp m2 Resp RA Resp Concentration Name

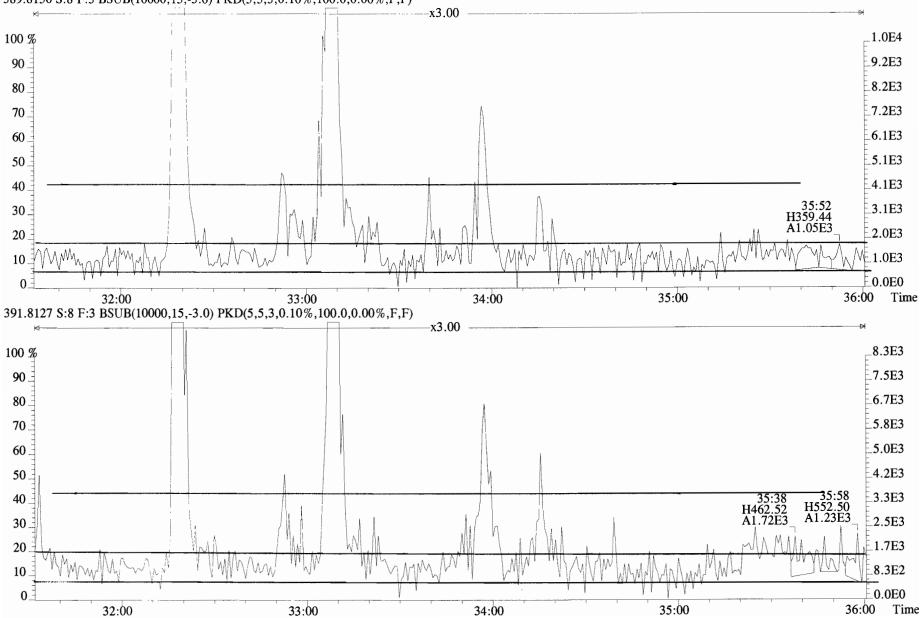

27:03 7.564e+03 4.342e+03 1.74 y 1.191e+04 1.2499

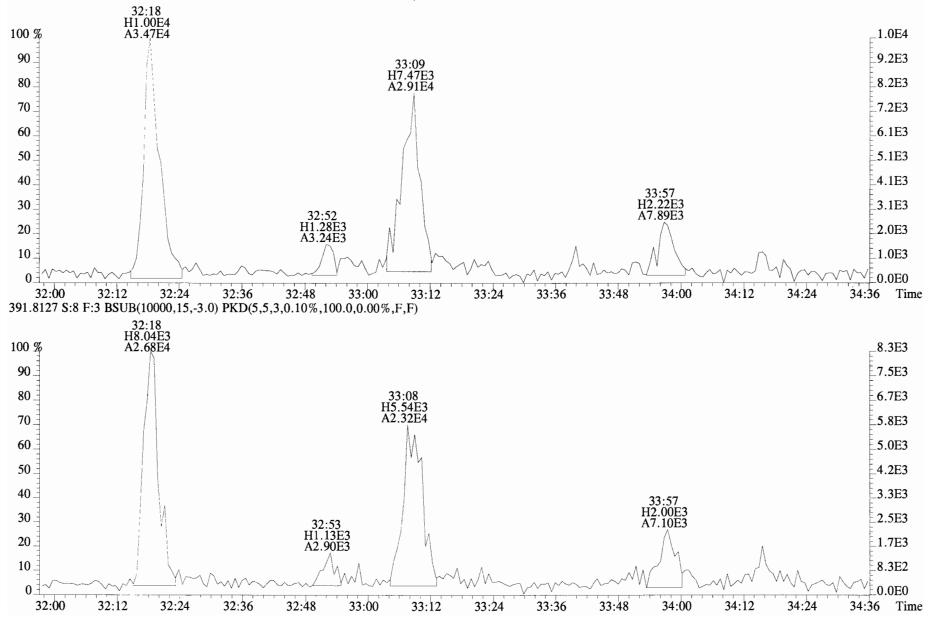

Page 14 of 18

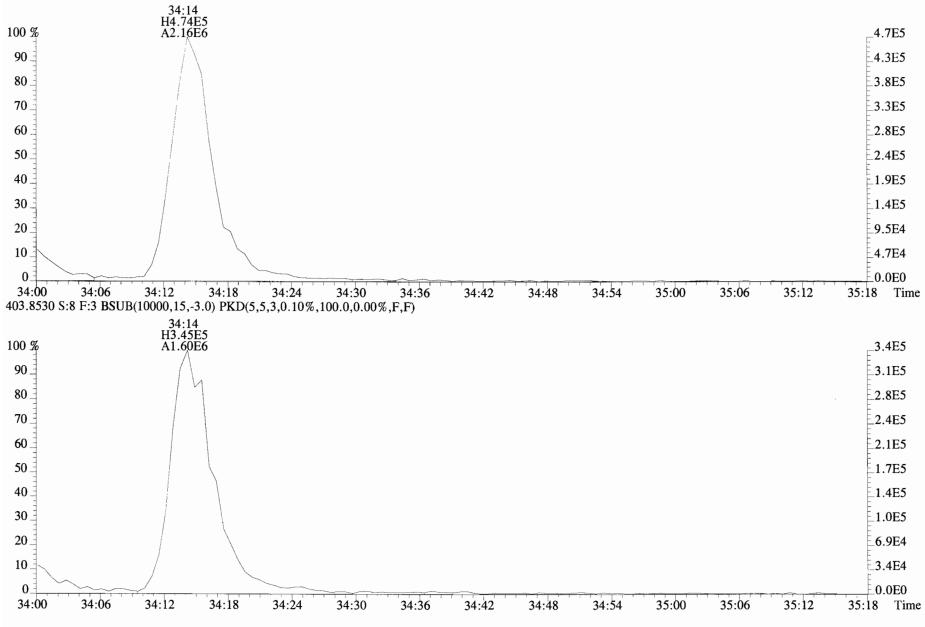
Totals class: PeCD	DF EMPC	Entry	#: 31		
Run: 13 Acquired: 25-J	File: 19062 TUN-19 20:39:50		S: 8 I: 1 E 5-JUN-19 09:27		
Total Concentration	a: 0.44877	Unnamed Cond	centration: *		
RT ml Resp	m2 Resp RA	Resp Cor	ncentration	Name	
29:24 2.712e+03	2.386e+03 1.14 n	4.462e+03	0.44877	1,2,3,7,8-PeCDF	

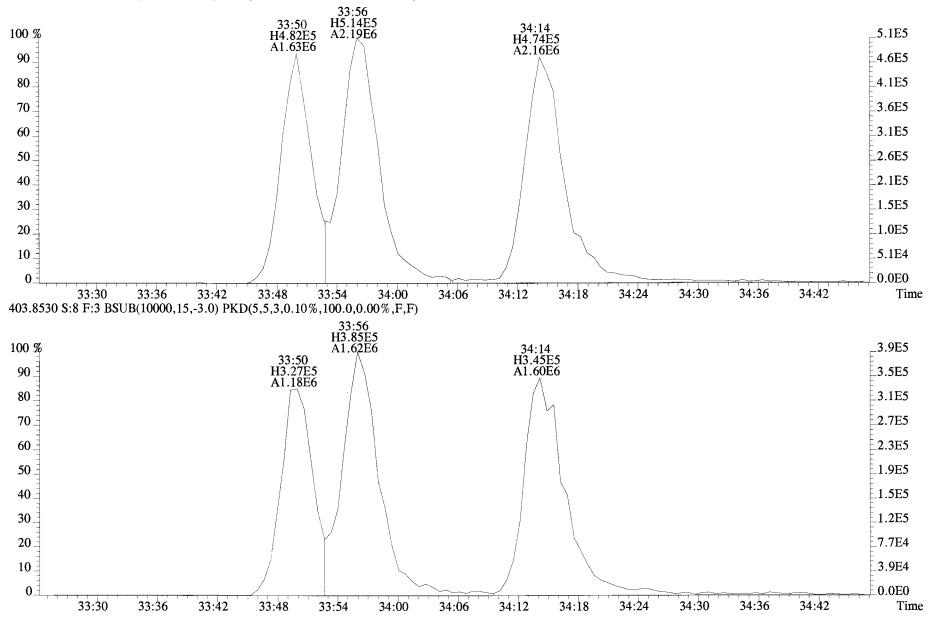

Total	s class: HxC	DF EMPC	Entry	#: 33	
А	Run: 13 cquired: 25-	File: 19062 JUN-19 20:39:50		S: 8 I: 1 3 5-JUN-19 09:27	-
Total	Concentratio	on: 6.9766	Unnamed Conc	centration: 6	.085
RT	ml Resp	m2 Resp RA	Resp Cor	ncentration	Name
31:47	6.088e+03	3.119e+03 1.95 n	6.986e+03	0.53575	
31:56	1.496e+04	1.257e+04 1.19 y	2.753e+04	2.1114	
32:29	2.461e+04	2.022e+04 1.22 y	4.483e+04	3.4378	
32:58	6.185e+03	6.558e+03 0.94 n	1.117e+04	0.89167	1,2,3,4,7,8-HxCDF

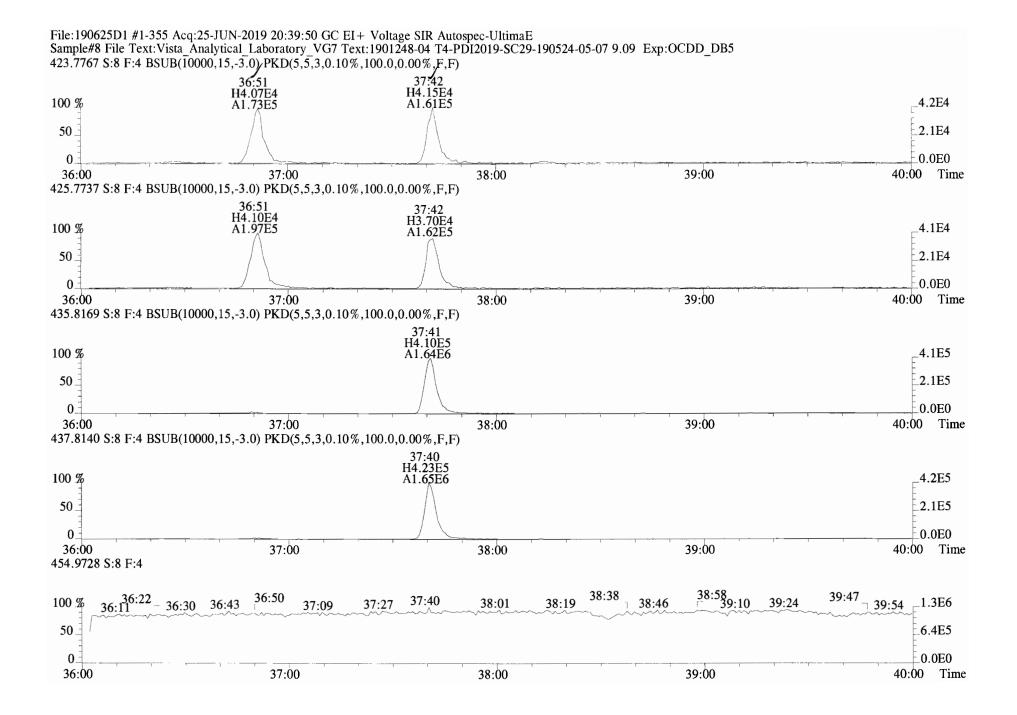
Totals class: HpC	CDF EMPC	Entry #: 35	
Run: 13 Acquired: 25-		5D1 S: 8 I: 1 Processed: 26-JUN-19 09:	
Total Concentratio	on: 9.8404	Unnamed Concentration:	6.843
RT ml Resp	m2 Resp RA	Resp Concentration	Name
36:28 1.084e+04 37:03 2.523e+04	1.316e+04 0.82 n 2.995e+04 0.84 n		1,2,3,4,6,7,8-HpCDF



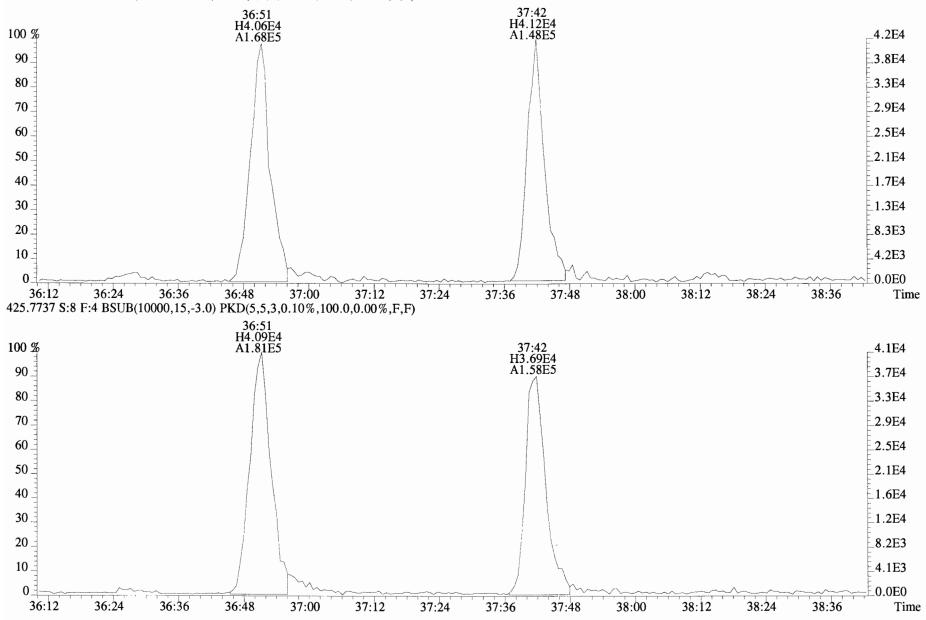

File:190625D1 #1-184 Acq:25-JUN-2019 20:39:50 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista_Analytical_Laboratory_VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 353.8576 S:8 F:2 BSUB(10000.15.-3.0) PKD(5.5.3.0.10%.100.0.0.00%.F.F)

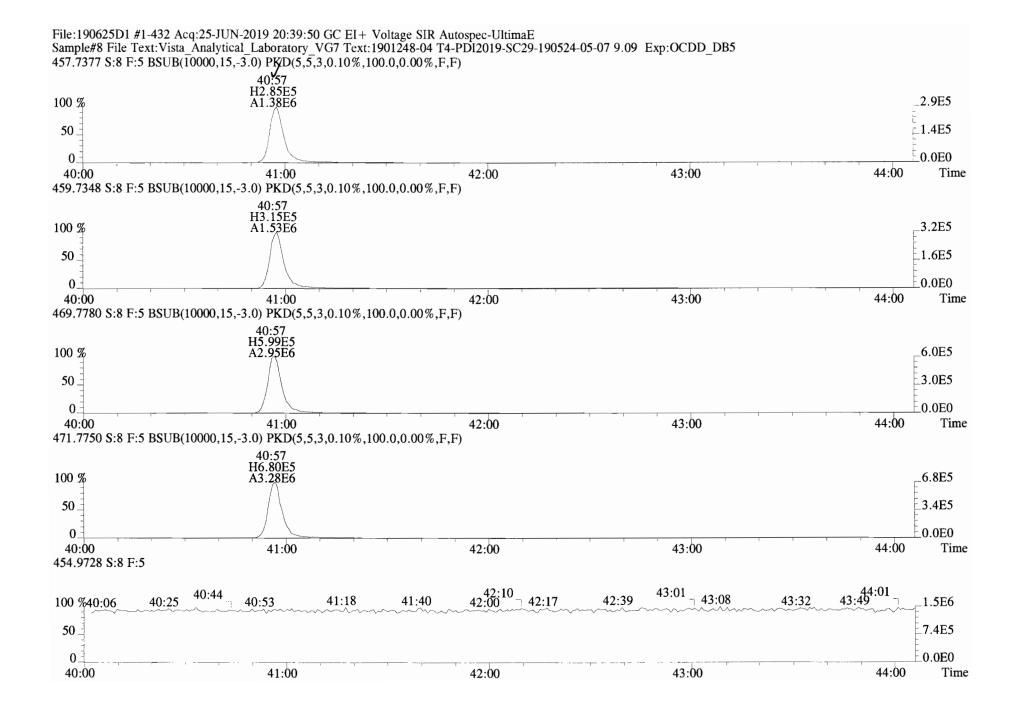

File:190625D1 #1-400 Acq:25-JUN-2019 20:39:50 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 389.8156 S:8 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

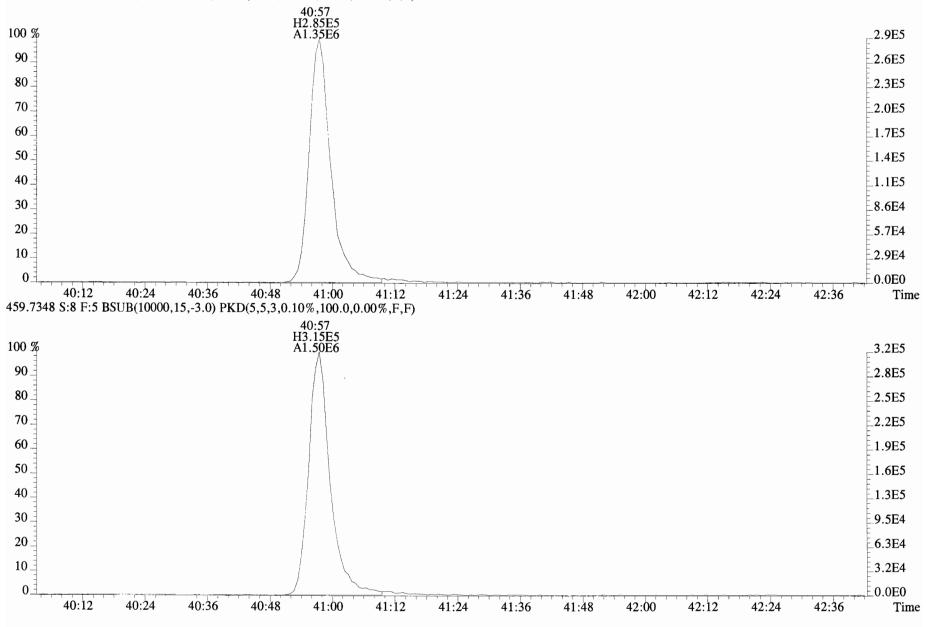

File:190625D1 #1-400 Acq:25-JUN-2019 20:39:50 GC EI+ Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista_Analytical_Laboratory_VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 389.8156 S:8 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

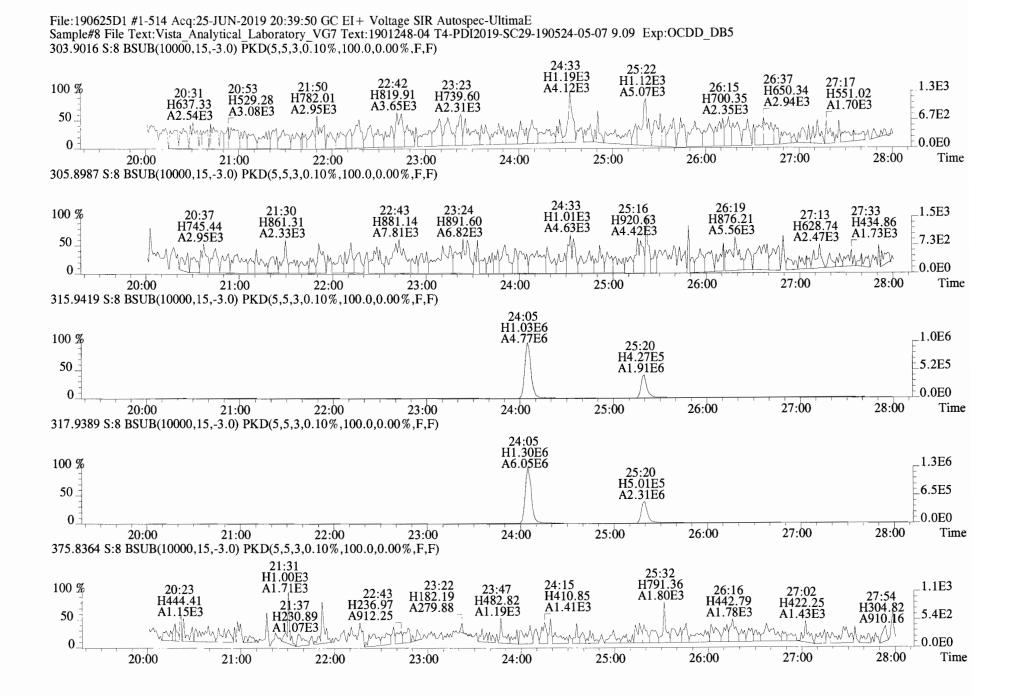


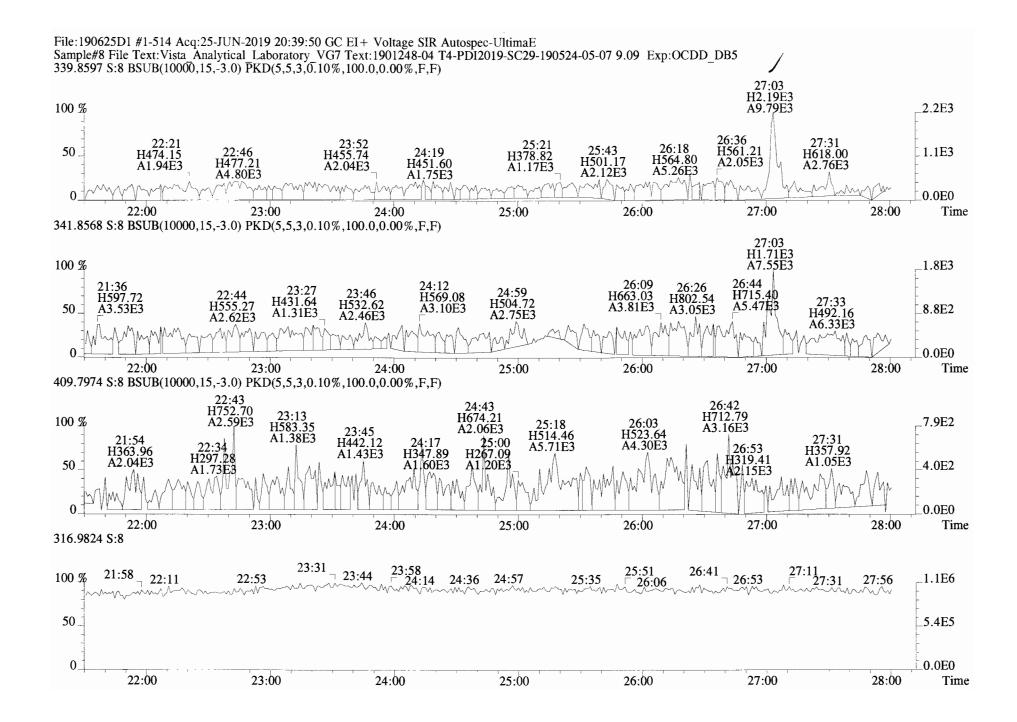
File:190625D1 #1-400 Acq:25-JUN-2019 20:39:50 GC EI+ Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 401.8559 S:8 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

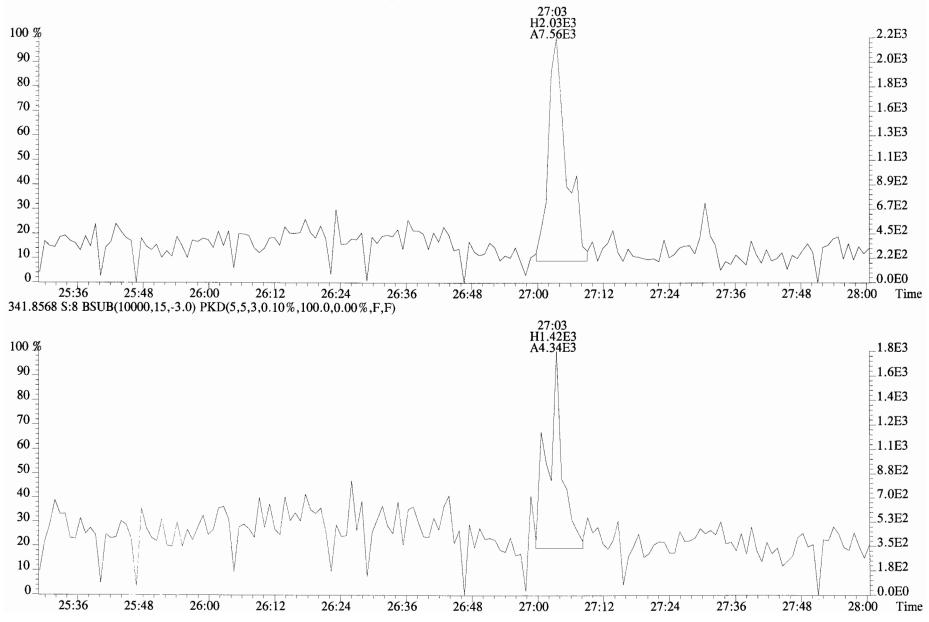

File:190625D1 #1-400 Acq:25-JUN-2019 20:39:50 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 401.8559 S:8 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

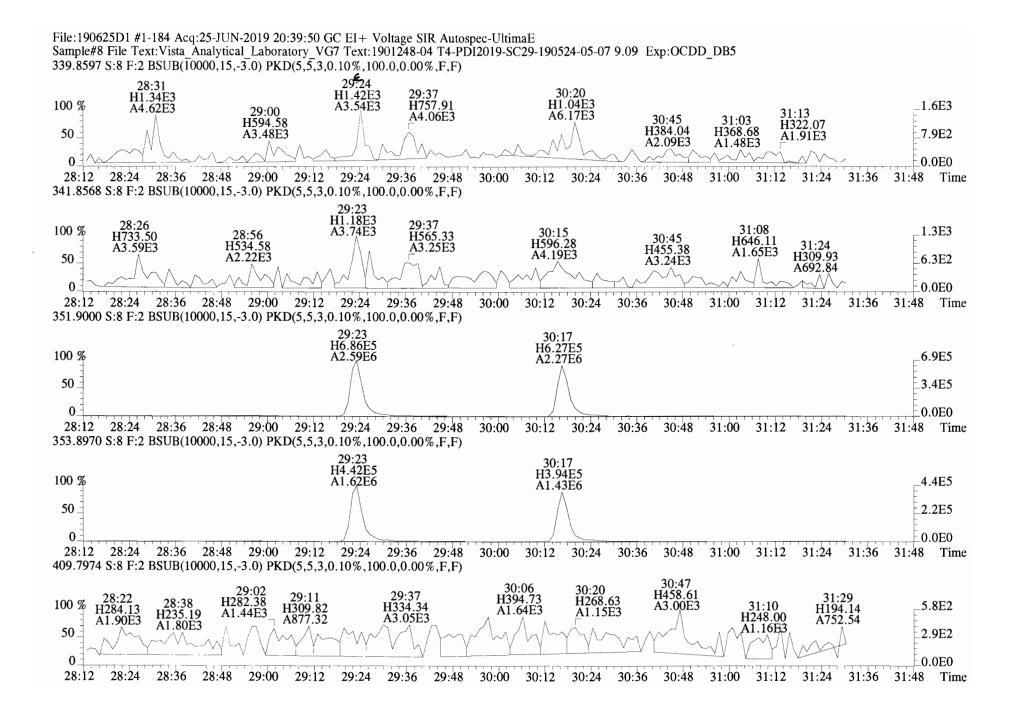


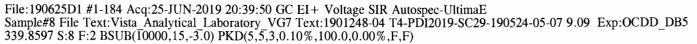

Work Order 1901248

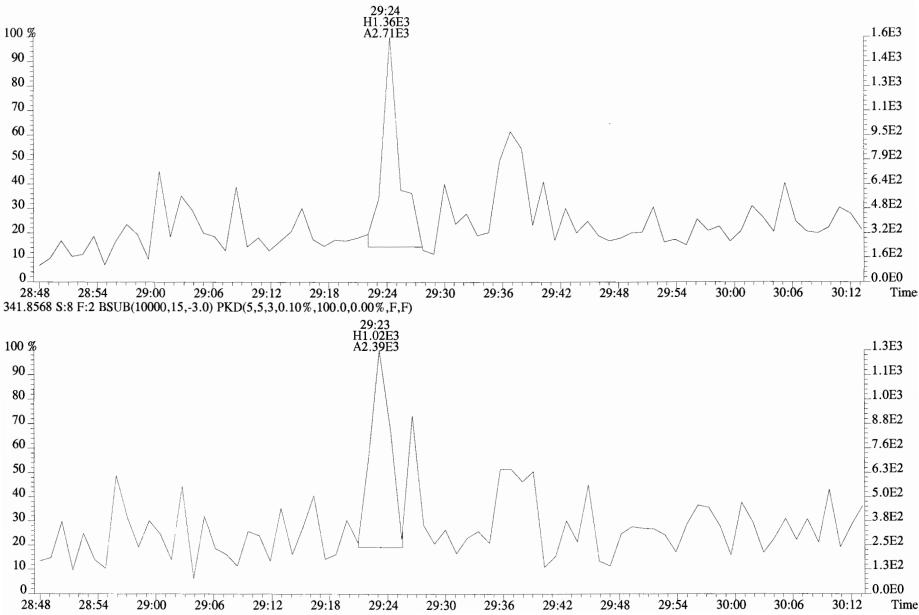

File:190625D1 #1-355 Acq:25-JUN-2019 20:39:50 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 423.7767 S:8 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

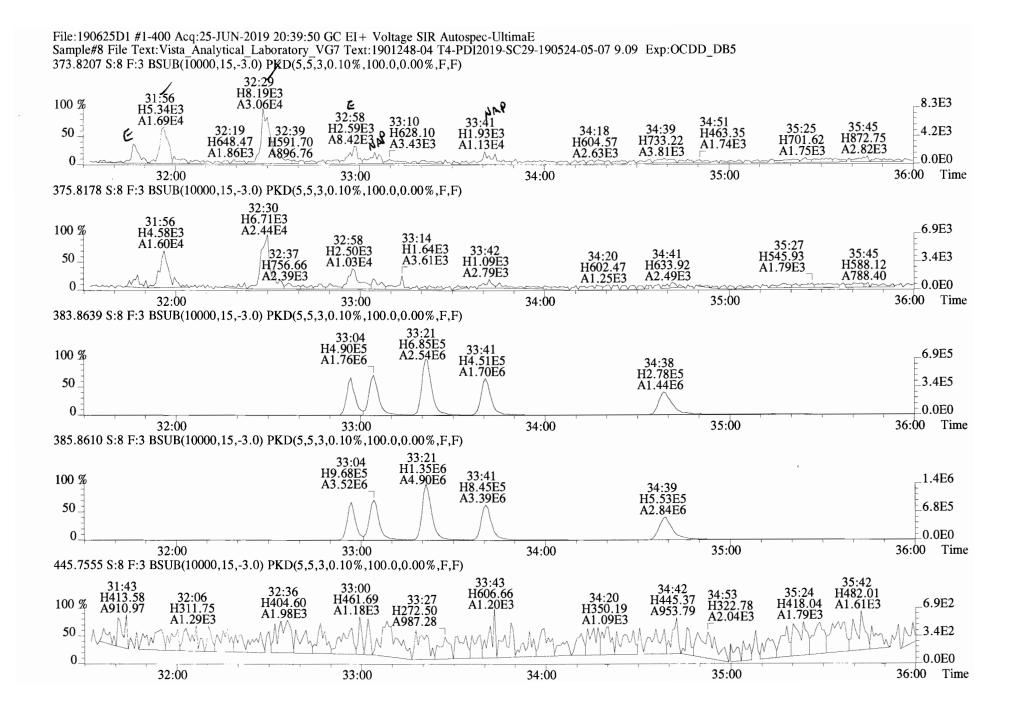


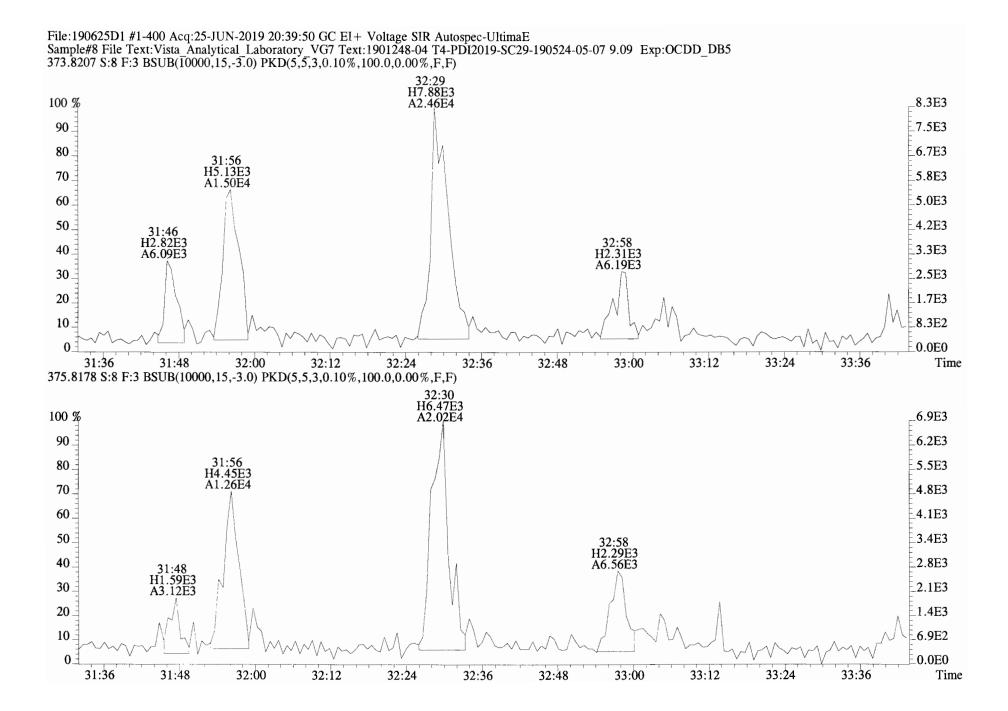

File:190625D1 #1-432 Acq:25-JUN-2019 20:39:50 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 457.7377 S:8 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

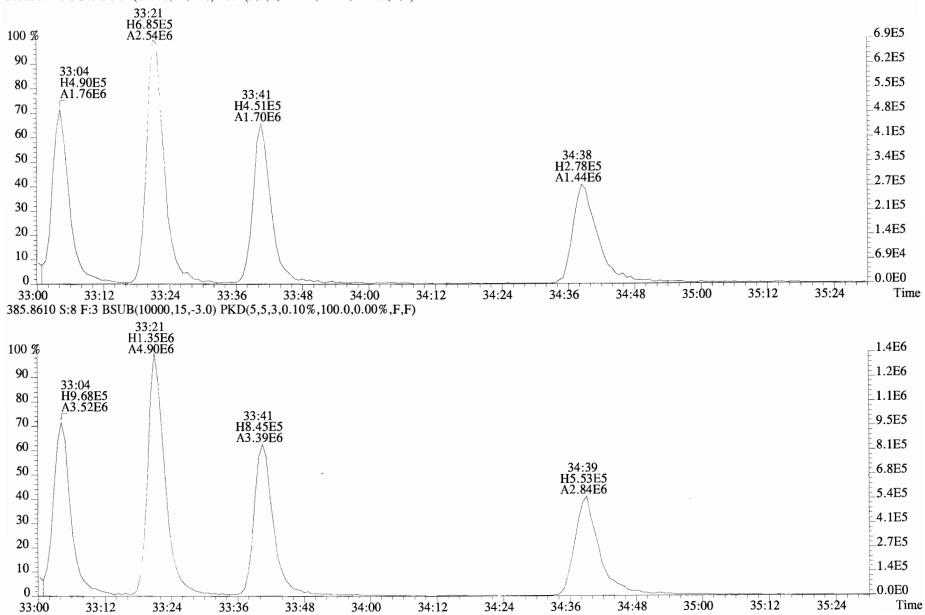


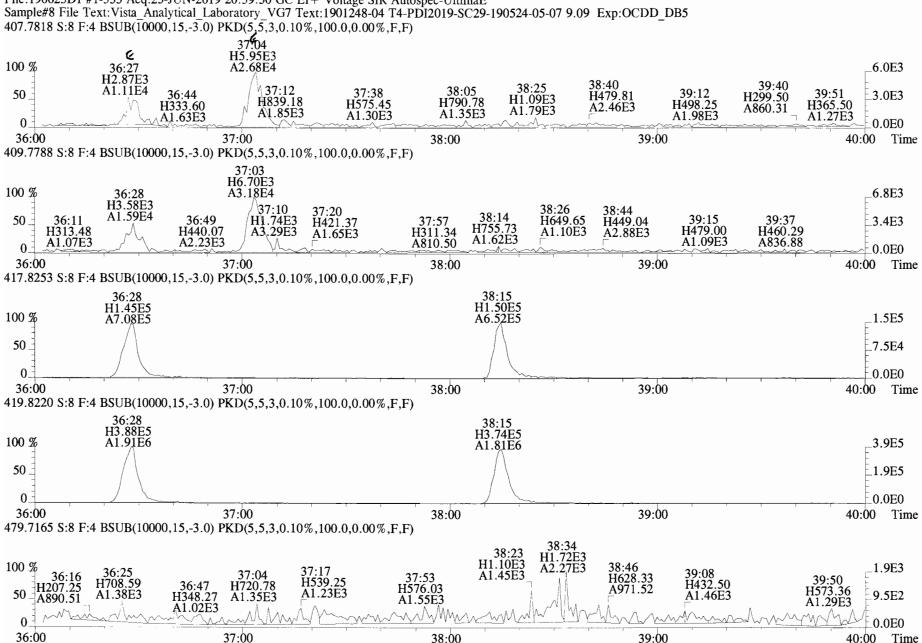




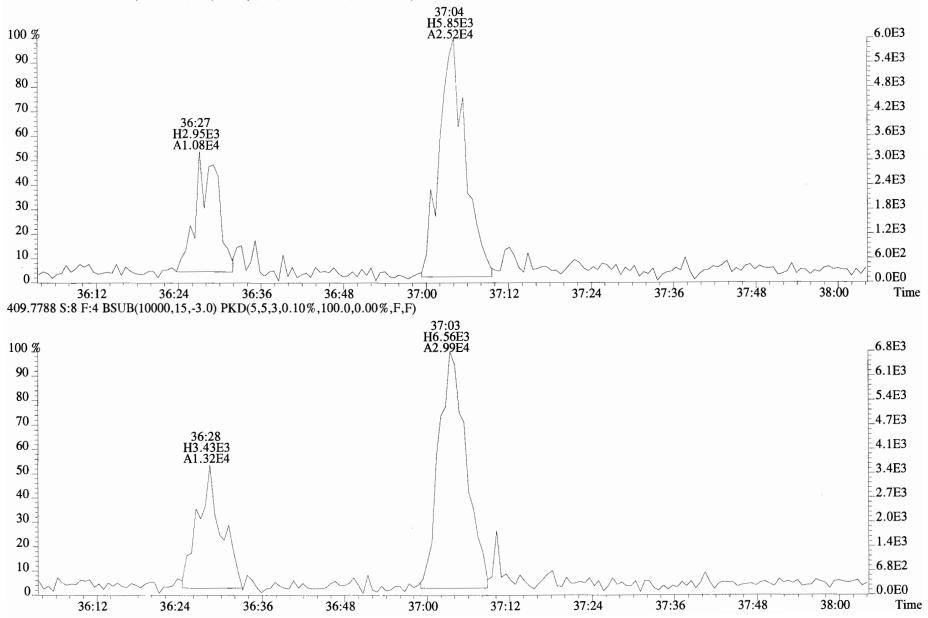

File:190625D1 #1-514 Acq:25-JUN-2019 20:39:50 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 339.8597 S:8 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

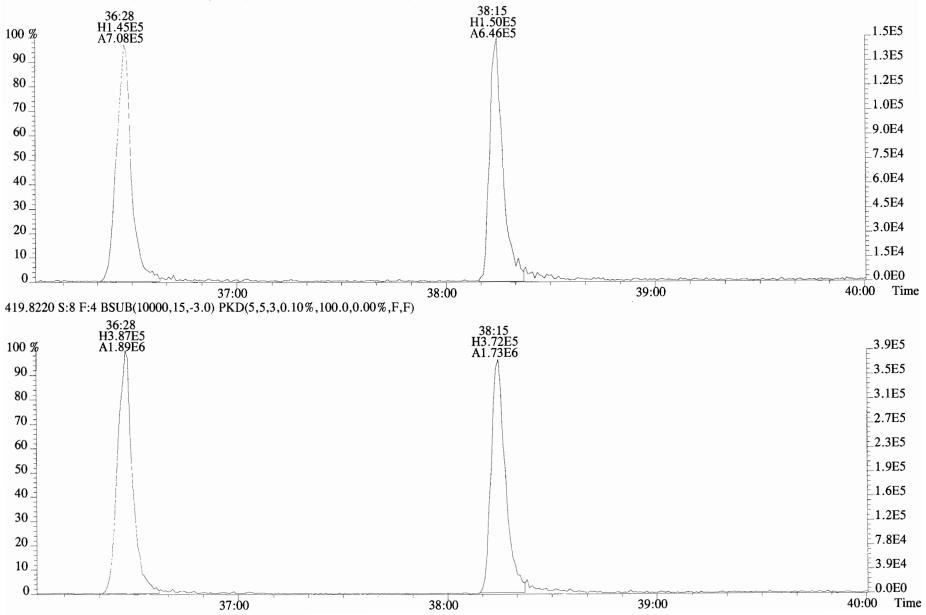


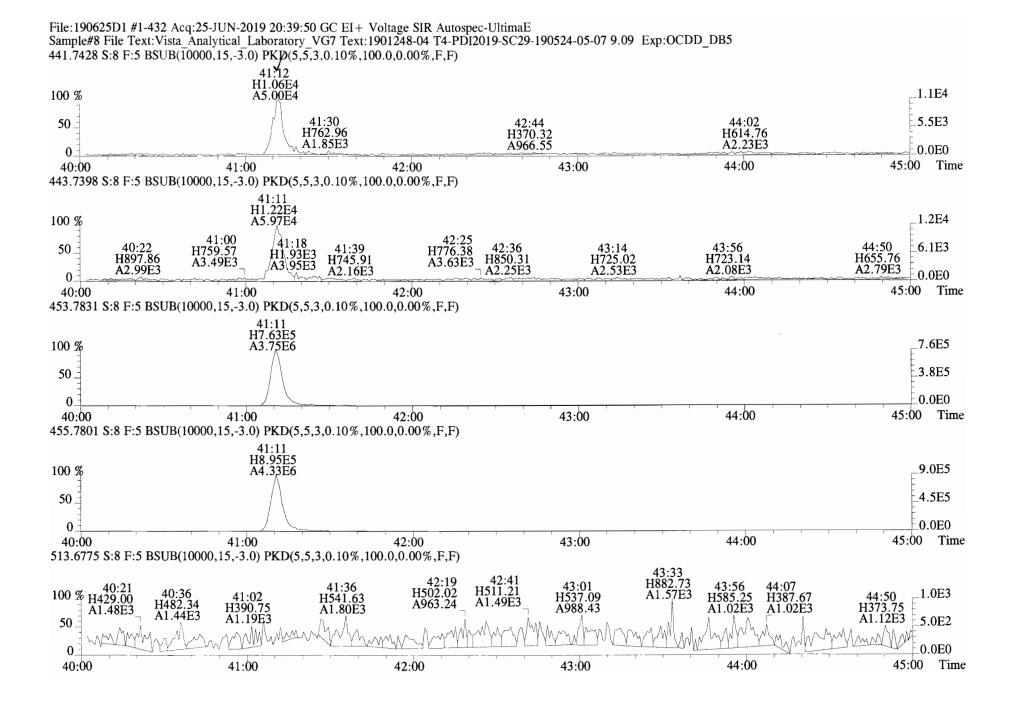




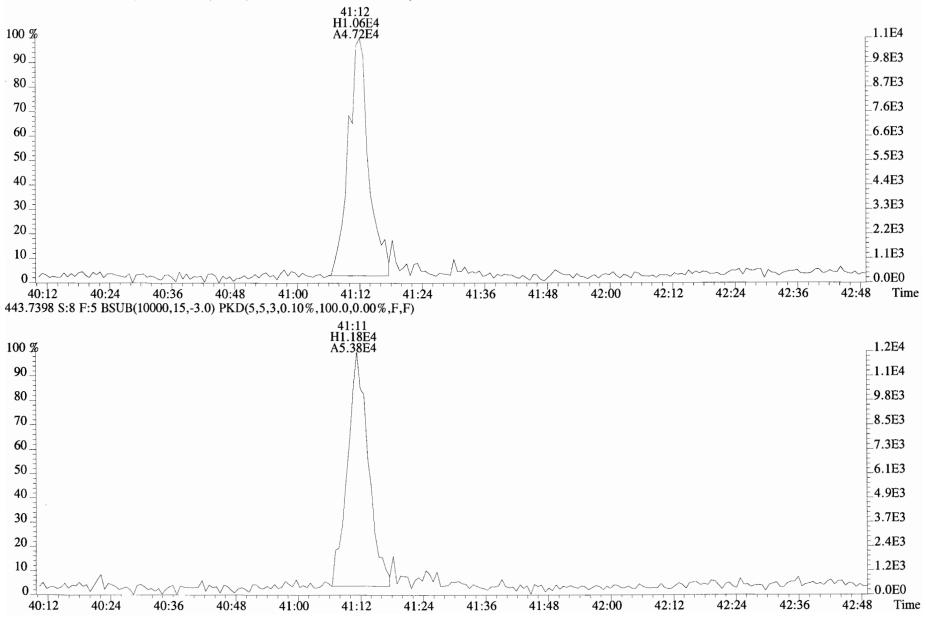
Work Order 1901248




File:190625D1 #1-400 Acq:25-JUN-2019 20:39:50 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 383.8639 S:8 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



File:190625D1 #1-355 Acq:25-JUN-2019 20:39:50 GC EI+ Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 407.7818 S:8 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)


File:190625D1 #1-355 Acq:25-JUN-2019 20:39:50 GC EI+ Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 417.8253 S:8 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

Work Order 1901248

File:190625D1 #1-432 Acq:25-JUN-2019 20:39:50 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:1901248-04 T4-PDI2019-SC29-190524-05-07 9.09 Exp:OCDD_DB5 441.7428 S:8 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

Client ID: Duplicate Lab ID: B9F0172-DUP3		lename: 19 Column II			Acq:25-J : 1613VG7-			: 5.000 🖊	ConCal: ST190625D EndCAL: NA	1-1			Page	8 of
Name	Resp	RA	RRF	RT	Conc	Qual	noise Fac	DL	Name	Conc	EMPC	Qual	noise	DI
2,3,7,8-TCDD	-	0.71 y	0.90	26:05	1.3622	Quur	* 2.5	*	Total Tetra-Dioxins	9.64	12.7	Quar	*	*
1,2,3,7,8-PeCDD	2.81e+04	0.87 n	0.87	30:32	2.9969		* 2.5	*	Total Penta-Dioxins	22.6	32.7		*	*
1,2,3,4,7,8-HxCDD	6.42e+04	1.09 y	1.05	33:50	6.6339		* 2.5	*	Total Hexa-Dioxins	297	297		*	*
1,2,3,6,7,8-HxCDD	5.38e+05	1.26 y	0.93	33:57	47.330		* 2.5	*	Total Hepta-Dioxins	1390	1390		*	*
1,2,3,7,8,9-HxCDD		1.24 y	0.96	34:14	16.681		* 2.5	*	Total Tetra-Furans	46.1	54.3		*	*
1,2,3,4,6,7,8-HpCDD		0.95 y	0.99	37:40	662.52		* 2.5	*	Total Penta-Furans	94.970	134.01		*	*
OCDD		0.89 y	0.99	40:57	8987.5		* 2.5	*	Total Hexa-Furans	266	266		*	
		•							Total Hepta-Furans	266	266		*	
2,3,7,8-TCDF	1.90e+05	0.76 y	0.94	25:20	12.438	(11.94)	* 2.5	*	-					
1,2,3,7,8-PeCDF		1.57 y	0.92	29:23	31.676		* 2.5	*						
2,3,4,7,8-PeCDF		1.68 y	0.96	30:17	13.284		* 2.5	*						
1,2,3,4,7,8-HxCDF		1.20 y	1.15	32:57	50.181		* 2.5	*						
1,2,3,6,7,8-HxCDF		1.18 y	1.04	33:04	17.842		* 2.5	*						
2,3,4,6,7,8-HxCDF		1.13 y	1.10	33:41	9.4194		* 2.5	*						
1,2,3,7,8,9-HxCDF		1.23 y	1.03	34:40	8.1428		* 2.5	*						
1,2,3,4,6,7,8-HpCDF		0.89 y	1.06	36:27	84.716		* 2.5	*						
1,2,3,4,7,8,9-HpCDF		1.01 y	1.23	38:15	8.4838		* 2.5	*						
	2.96e+06	0.89 y	0.94	41:11	228.64		* 2.5	*						
		4							Rec Qual					
13C-2,3,7,8-TCDD	4.06e+06	0.87 y	1.11	26:04	261.38				65.4					
13C-1,2,3,7,8-PeCDD	4.30e+06	0.60 y	0.98	30:32	313.40				78.4					
13C-1,2,3,4,7,8-HxCDD	3.69e+06	1.37 y	0.68	33:49	283.15				70.8					
13C-1,2,3,6,7,8-HxCDD	4.89e+06	1.39 y	0.84	33:56	301.41				75.4					
13C-1,2,3,7,8,9-HxCDD	4.66e+06	1.37 y	0.81	34:14	297.75				74.4					
13C-1,2,3,4,6,7,8-HpCDD	4.34e+06	1.01 y	0.69	37:40	328.14				82.0					
13C-OCDD	8.66e+06	0.91 y	0.62	40:56	718.82				89.9					
13C-2,3,7,8-TCDF	6.48e+06	0.78 y	1.05	25:19	216.70				54.2					
13C-1,2,3,7,8-PeCDF	6.01e+06	1.53 y	0.95	29:23	221.42				55.4					
13C-2,3,4,7,8-PeCDF	5.24e+06	1.62 y	0.94	30:16	197.00				49.3					
13C-1,2,3,4,7,8-HxCDF	5.68e+06	0.50 y	0.86	32:56	343.88				86.0					
13C-1,2,3,6,7,8-HxCDF	7.02e+06	0.51 y	1.02	33:04	356.22				89.1					
13C-2,3,4,6,7,8-HxCDF	6.48e+06	0.51 y	0.95	33:40	352.67				88.2					
13C-1,2,3,7,8,9-HxCDF	5.57e+06	0.48 Y	0.87	34:38	332.71				83.2					
13C-1,2,3,4,6,7,8-HpCDF	3.69e+06	0.38 Y	0.81	36:26	237.02				59.3					
13C-1,2,3,4,7,8,9-HpCDF	3.24e+06	0.39 Y	0.63	38:14	265.58				66.4					
13C-OCDF	1.10e+07	0.88 Y	0.78	41:10	729.38				91.2					
Up 37Cl-2,3,7,8-TCDD	1.89e+06		1.22	26:05	110.76				-	rations		ewed		
/27 126 1 2 2 1									by	1)R	by		27	
/RT 13C-1,2,3,4-TCDD		0.88 y	1.00	25:29	399.96				Analyst:	·/·	Anal	yst:_(
13C-1,2,3,4-TCDF		0.82 y	1.00	24:05	399.96					1 1				
/RT 13C-1,2,3,4,6,9-HxCDF	/.72e+06	0.49 Y	1.00	33:21	399.96				Date: 6	1)1 <u>3</u> 27 19	_ Date	: 06	128/19	5

Totals	s class: TCI	DD EMPC	Entry	#: 19	
Ac		File: 1906: JUN-19 21:27:29		S: 9 I: 1 5-JUN-19 09:	
Total C	Concentratio	on: 12.653	Unnamed Conc	centration:	11.291
RT	m1 Resp	m2 Resp RA	Resp Cor	ncentration	Name
22:43	2.085e+04	2.532e+04 0.82 y	4.617e+04	5.0468	
23:05	1.003e+04	6.819e+03 1.47 n	1.207e+04	1.3192	
23:29	5.568e+03	6.840e+03 0.81 y	1.241e+04	1.3562	
24:38	7.782e+03	9.347e+03 0.83 y	1.713e+04	1.8722	
25:50	9.546e+03	8.769e+03 1.09 n	1.552e+04	1.6965	
26:05	5.187e+03	7.276e+03 0.71 y	1.246e+04	1.3622	2,3,7,8-TCDD

Totals class: Pe	CDD EMPC	Entry #: 21	
Run: 14 Acquired: 25		5D1 S: 9 I: 1 Processed: 26-JUN-19 09:	
Total Concentrati	on: 32.651	Unnamed Concentration:	29.655
RT ml Resp	m2 Resp RA	Resp Concentration	Name
28:30 3.869e+04	6.365e+04 0.61 y	1.023e+05 10.920	
28:57 6.494e+03	1.315e+04 0.49 n	1.680e+04 1.7929	
29:23 2.408e+04	2.513e+04 0.96 n	4.097e+04 4.3715	
29:33 1.494e+04	2.080e+04 0.72 y	3.574e+04 3.8138	
29:38 8.294e+03	1.177e+04 0.70 y	2.006e+04 2.1410	
29:50 1.502e+04	2.747e+04 0.55 y	4.249e+04 4.5337	
30:32 1.495e+04	1.723e+04 0.87 n	2.809e+04 2.9969	1,2,3,7,8-PeCDD
30:37 4.221e+03	6.987e+03 0.60 y	1.121e+04 1.1959	
30:54 3.210e+03	6.361e+03 0.50 n	8.305e+03 0.88620	

Page 6 of 18

Totals class: HxCDD EMPC	Entry #: 23	
	0625D1 S: 9 I: 1 F: 3 Processed: 26-JUN-19 09:27:41	
Total Concentration: 297.27	Unnamed Concentration: 226.622	
RT ml Resp m2 Resp RA	Resp Concentration Name	
32:18 5.357e+05 4.487e+05 1.19	y 9.844e+05 91.391	
32:51 5.979e+04 4.707e+04 1.27	y 1.069e+05 9.9209	
33:08 7.041e+05 5.527e+05 1.27	y 1.257e+06 116.69	
33:14 3.178e+04 2.375e+04 1.34	y 5.553e+04 5.1554	
33:50 3.353e+04 3.069e+04 1.09	y 6.423e+04 6.6339 1,2,3,4,7,8-HxCDD	
33:57 2.999e+05 2.384e+05 1.26	y 5.383e+05 47.330 1,2,3,6,7,8-HxCDD	
34:08 2.165e+04 1.569e+04 1.38	y 3.734e+04 3.4664	
34:14 1.034e+05 8.367e+04 1.24	y 1.871e+05 16.681 1,2,3,7,8,9-HxCDD	

 Totals class: HpCDD EMPC
 Entry #: 25

 Run: 14
 File: 190625D1
 S: 9 I: 1 F: 4

 Acquired: 25-JUN-19 21:27:29
 Processed: 26-JUN-19 09:27:41

 Total Concentration: 1392.1
 Unnamed Concentration: 729.605

 RT
 m1 Resp
 m2 Resp RA

 Resp Concentration
 Name

 36:50
 3.843e+06
 3.985e+06
 0.96 y

 37:40
 3.464e+06
 3.644e+06
 0.95 y

TOCUTO CIUDO, TODI Mino	Totals	class:	TCDF	EMPC	
-------------------------	--------	--------	------	------	--

Entry #: 27

*

 Run: 14
 File: 190625D1
 S: 9
 I: 1
 F: 1

 Acquired: 25-JUN-19
 21:27:29
 Processed: 26-JUN-19
 09:27:41

Total Concentration: 54.289 Unnamed Concentration: 41.851

RT	ml Resp	m2 Resp RA	Resp	Concentration	Name
21:10	1.277e+04	1.481e+04 0.86 y	2 7580+04	1.8049	
	3.935e+04	4.263e+04 0.92 n			
22:20		3.527e+04 0.74 y			
	4.972e+04	5.852e+04 0.85 y			
23:07	2.644e+04	3.278e+04 0.81 y	5.922e+04	3.8754	
23:14	1.553e+04	1.932e+04 0.80 y	3.484e+04	2.2802	
23:25	1.910e+04	1.832e+04 1.04 n	3.243e+04	2.1225	
24:04	2.347e+04	3.489e+04 0.67 y	5.836e+04	3.8189	
24:32	5.674e+04	7.530e+04 0.75 y	1.320e+05	8.6412	
25:20	8.193e+04	1.081e+05 0.76 y			2,3,7,8-TCDF
25:40	1.35 1 e+04	1.931e+04 0.70 y			
27:04	9.255e+03	9.691e+03 0.95 n	1.715e+04	1.1226	

Totals class: 1st Func. PeCDF EMPC Entry #: 29

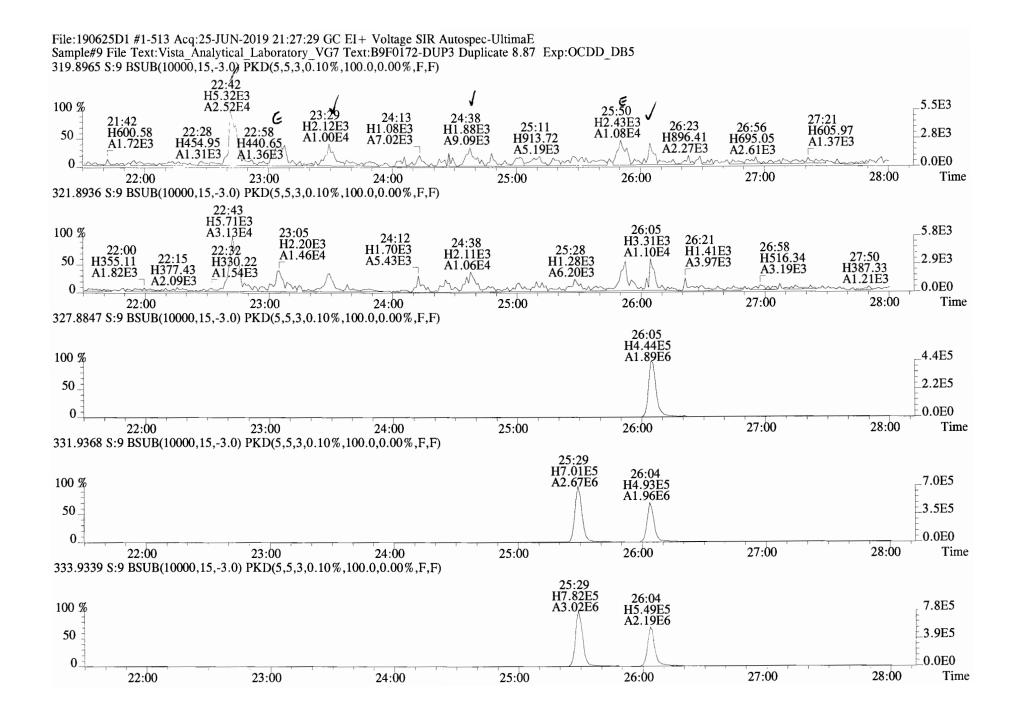
 Run:
 14
 File:
 190625D1
 S:
 9
 I:
 1
 F:
 1

 Acquired:
 25-JUN-19
 21:27:29
 Processed:
 26-JUN-19
 09:27:41

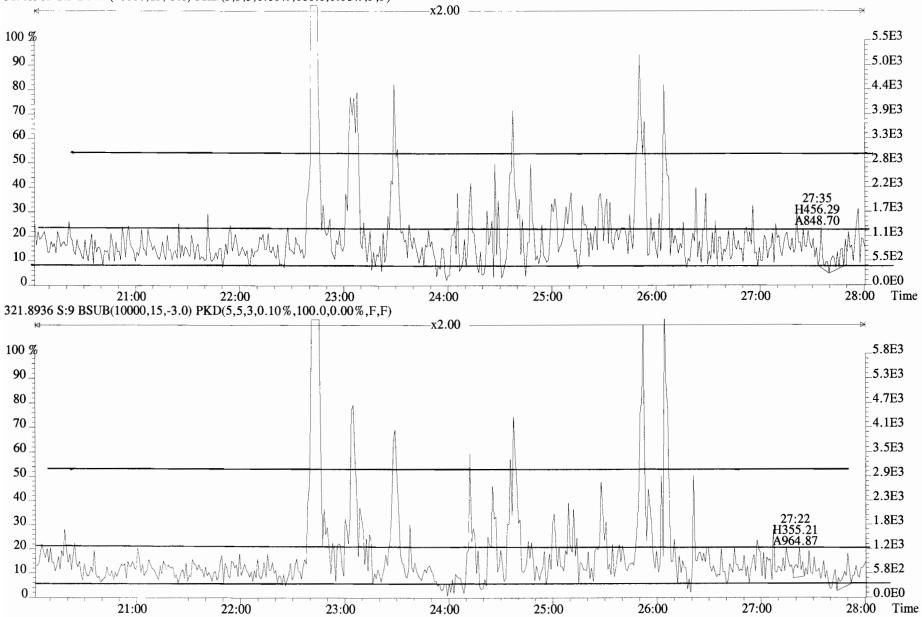
Total Concentration: 33.985 Unnamed Concentration: 33.985

RT m1 Resp m2 Resp RA Resp Concentration Name

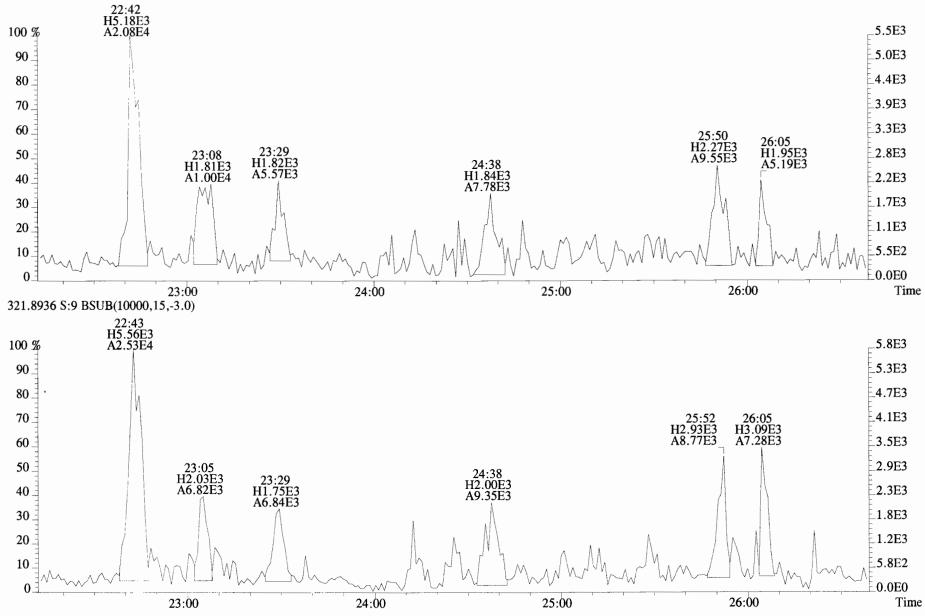
27:02 3.182e+05 1.761e+05 1.81 n 4.492e+05 33.985

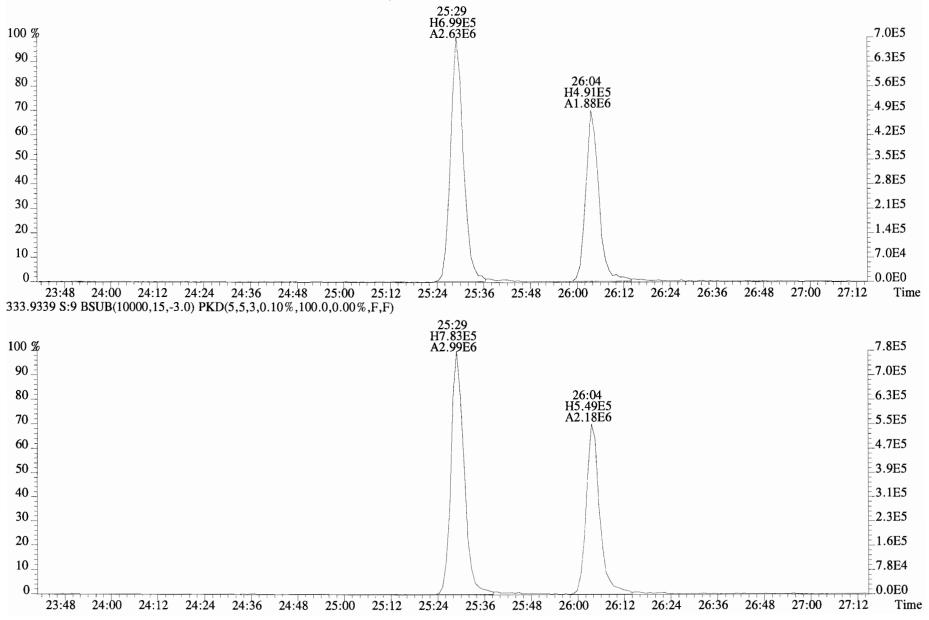

Totals class: Pe	CDF EMPC	Entry #: 31	
		5D1 S: 9 I: 1 Processed: 26-JUN-19 09::	
Total Concentration	on: 100.02	Unnamed Concentration:	55.062
RT ml Resp	m2 Resp RA	Resp Concentration	Name
28:21 2.211e+04	1.809e+04 1.22 n	3.638e+04 2.7526	
28:29 2.375e+05	1.476e+05 1.61 y	3.851e+05 29.139	
29:02 3.664e+04	2.220e+04 1.65 y	5.884e+04 4.4520	
29:13 1.847e+04	1.692e+04 1.09 n	3.039e+04 2.2992	
29:23 2.682e+05	1.707e+05 1.57 y	4.389e+05 31.676	1,2,3,7,8-PeCDF
29:37 9.114e+04	5.187e+04 1.76 y	1.430e+05 10.820	
30:17 1.045e+05	6.215e+04 1.68 y	1.667e+05 13.284	2,3,4,7,8-PeCDF
30:20 4.629e+04	2.771e+04 1.67 y	7.400e+04 5.5991	

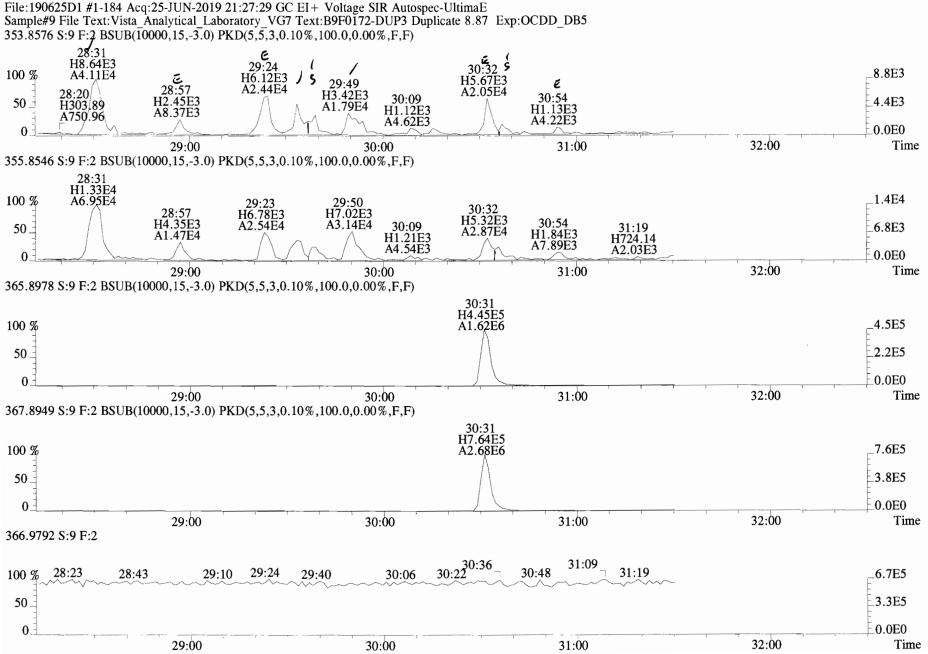
Totals class: HxC	CDF EMPC	Entry #: 33				
		5D1 S: 9 I: 1 Processed: 26-JUN-19 09:				
Total Concentratio	Total Concentration: 265.92 Unnamed Concentration: 180.330					
RT ml Resp	m2 Resp RA	Resp Concentration	Name			
31:45 2.040e+05	1.830e+05 1.11 y	3.870e+05 23.217				
31:56 6.020e+05	4.956e+05 1.21 y	1.098e+06 65.841				
32:16 1.469e+04	1.305e+04 1.13 y	2.773e+04 1.6638				
32:29 7.993e+05	6.621e+05 1.21 y	1.461e+06 87.673				
32:50 1.664e+04	1.562e+04 1.07 y	3.227e+04 1.9357				
32:57 4.480e+05	3.744e+05 1.20 y	8.224e+05 50.181	1,2,3,4,7,8-HxCDF			
33:04 1.760e+05	1.492e+05 1.18 y	3.251e+05 17.842	1,2,3,6,7,8-HxCDF			
33:41 8.884e+04	7.840e+04 1.13 y	1.672e+05 9.4194	2,3,4,6,7,8-HxCDF			
34:40 6.446e+04	5.226e+04 1.23 y	1.167e+05 8.1428	1,2,3,7,8,9-HxCDF			

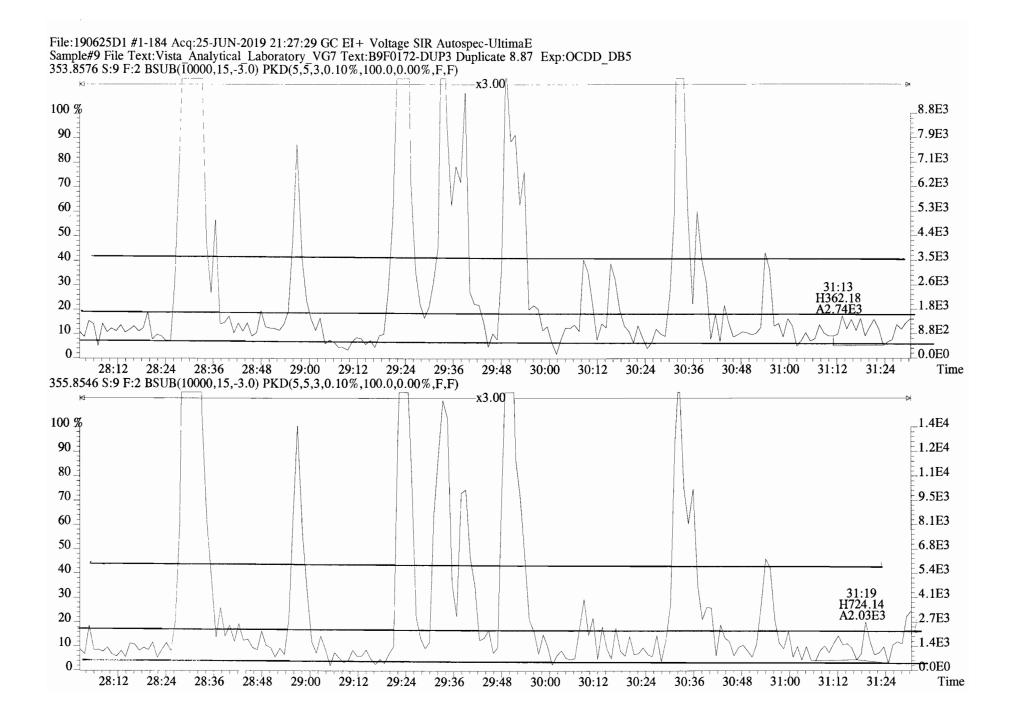

Totals class: HpCDF EMPC Entry #: 35 Run: 14 File: 190625D1 S: 9 I: 1 F: 4 Acquired: 25-JUN-19 21:27:29 Processed: 26-JUN-19 09:27:41 Total Concentration: 265.72 Unnamed Concentration: 172.524 RT ml Resp m2 Resp RA Resp Concentration Name 36:27 3.913e+05 4.419e+05 0.89 y 8.332e+05 84.716 1,2,3,4,6,7,8-HpCDF

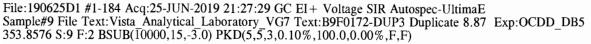
 37:02
 8.002e+05
 8.965e+05
 0.89 y
 1.697e+06
 172.52

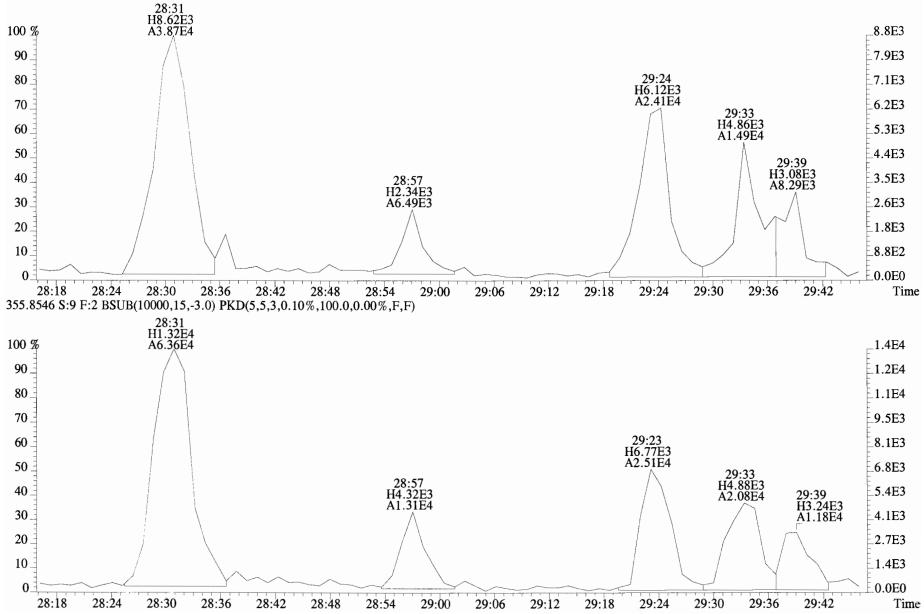

 38:15
 4.237e+04
 4.179e+04
 1.01 y
 8.415e+04
 8.4838
 1,2,3,4,7,8,9-HpCDF

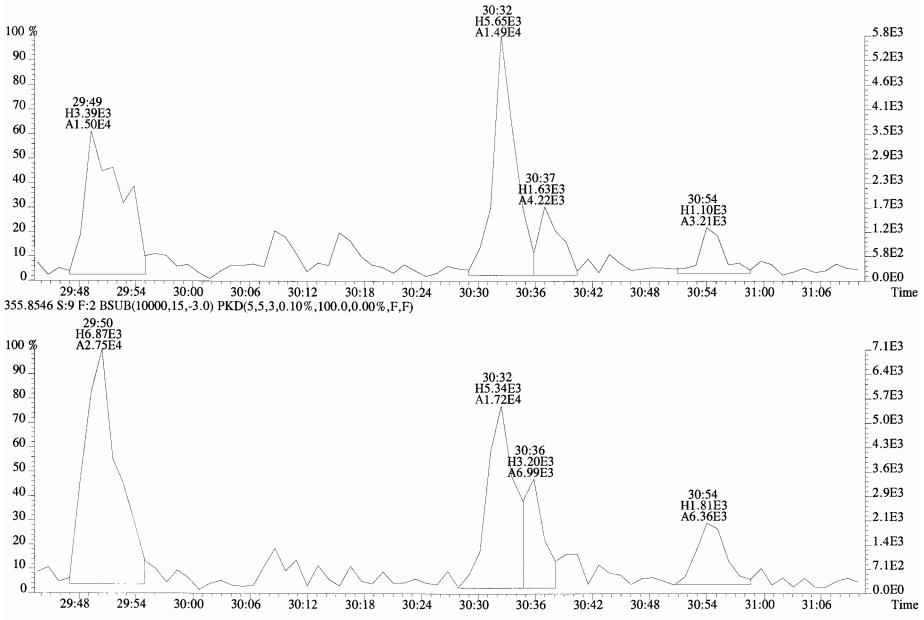

File:190625D1 #1-513 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 319.8965 S:9 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

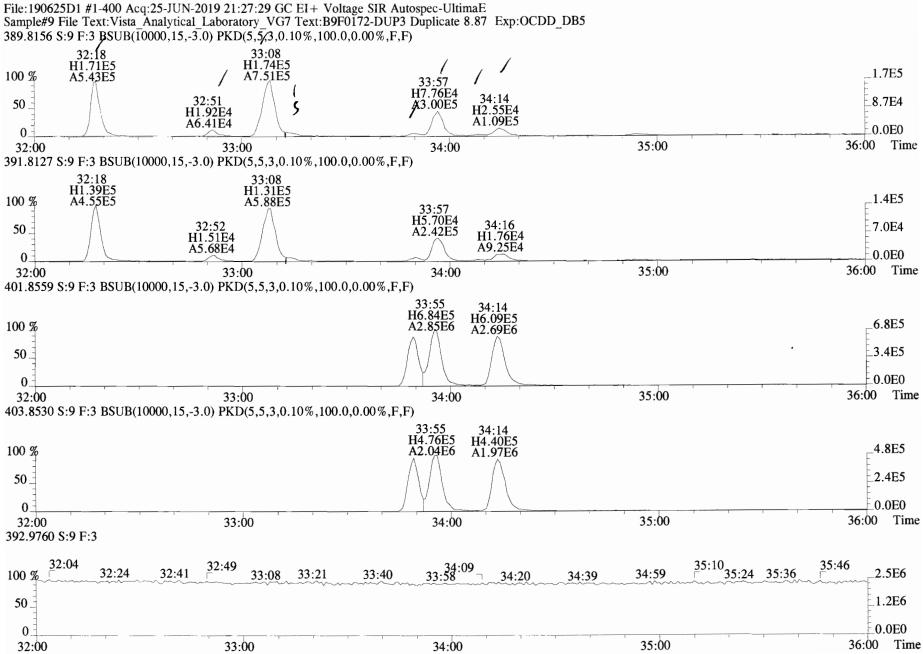


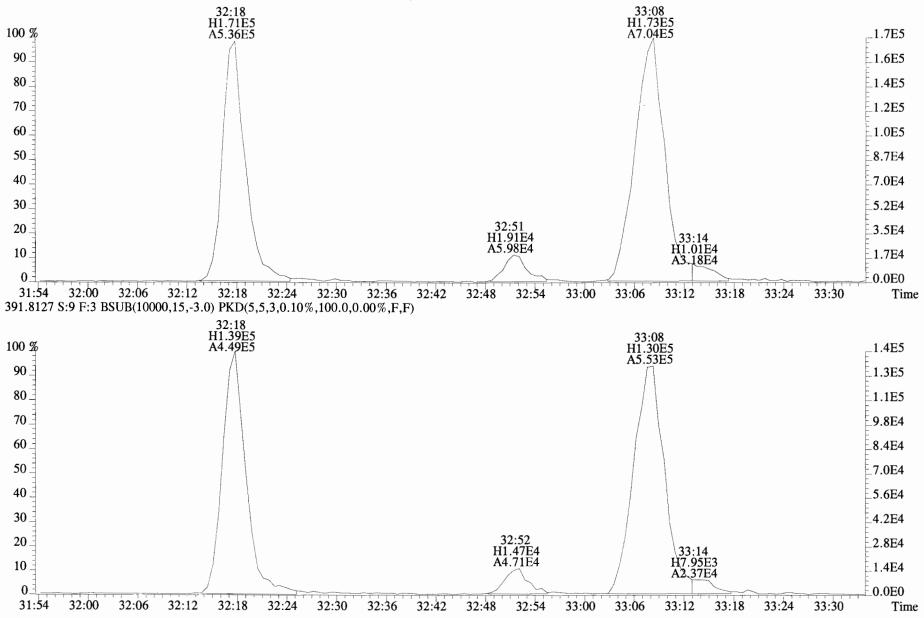


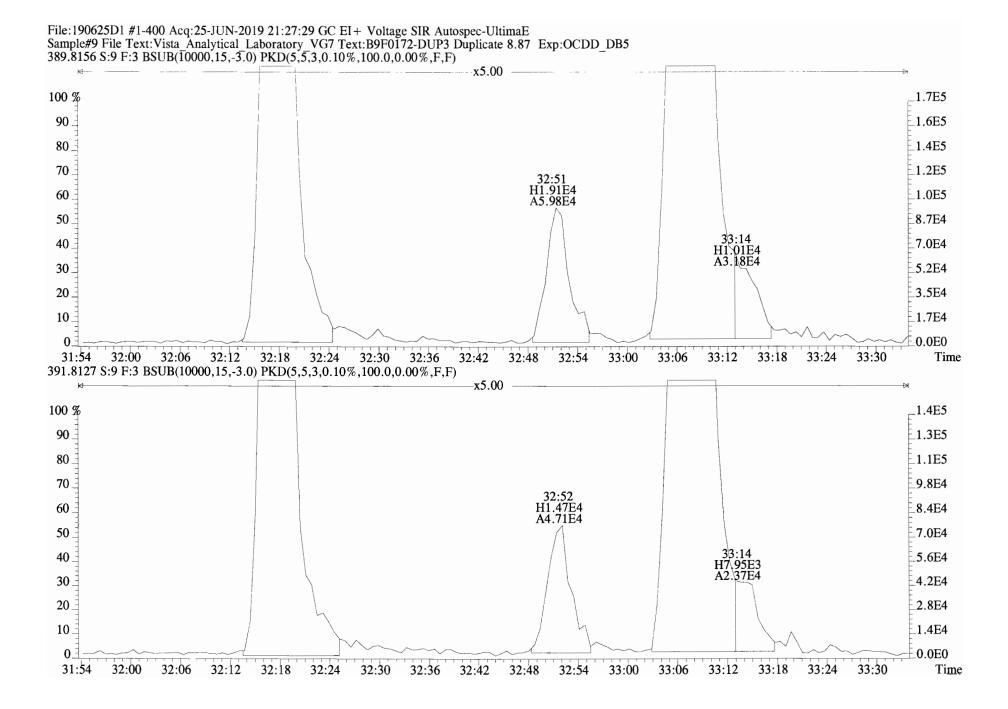

File:190625D1 #1-513 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory_VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 331.9368 S:9 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

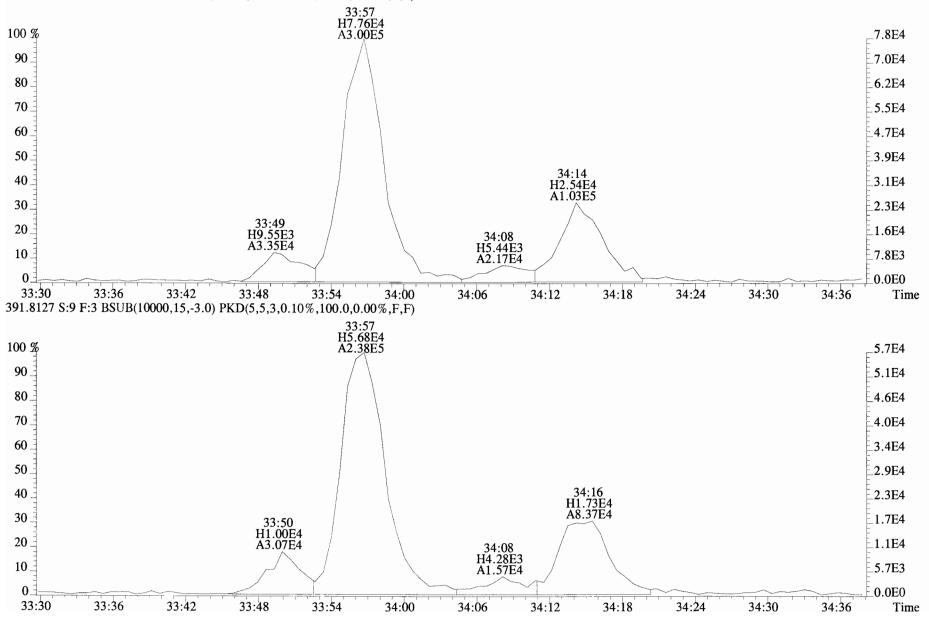


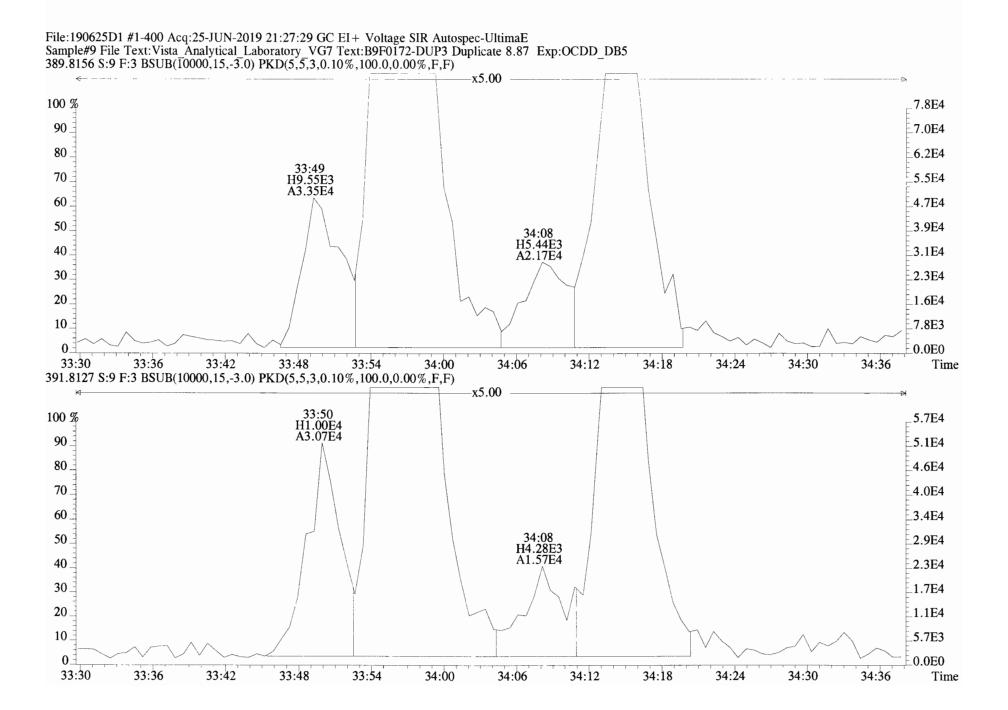

Work Order 1901248

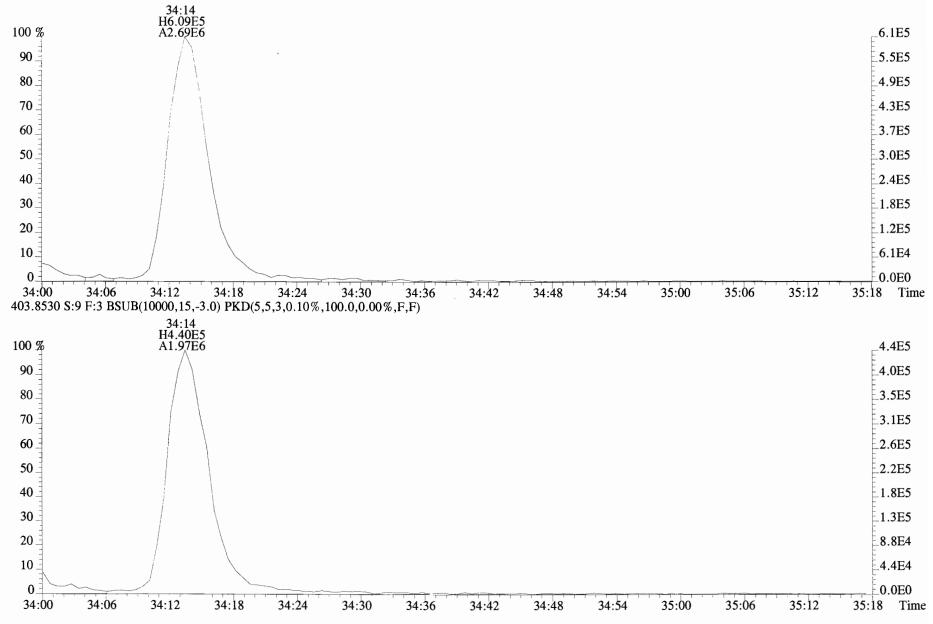


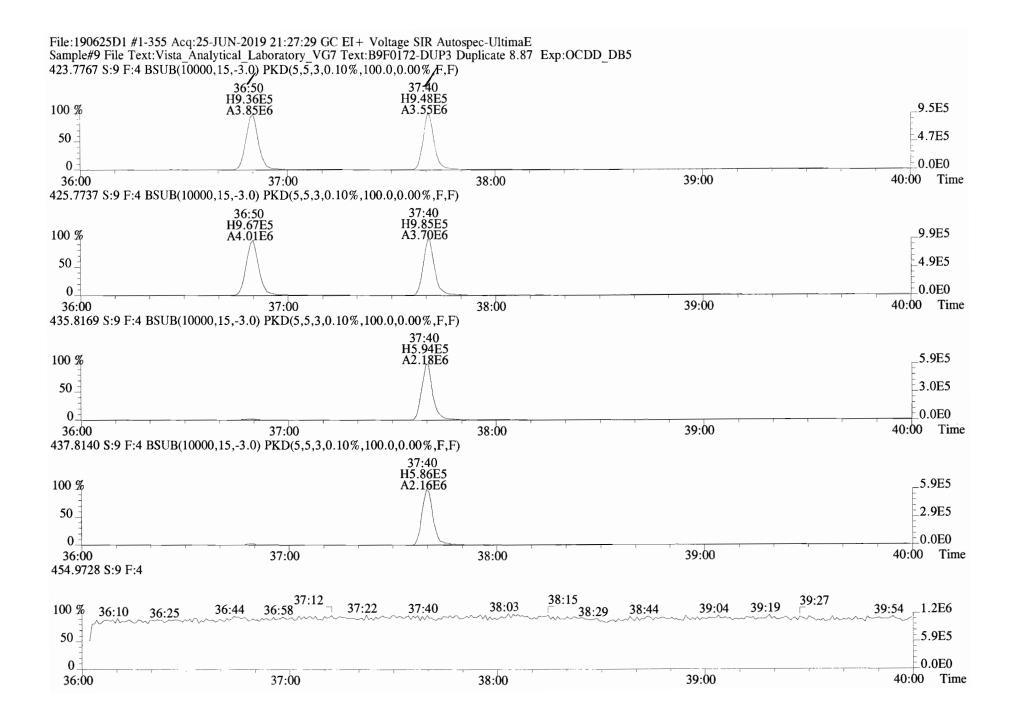

File:190625D1 #1-184 Acq:25-JUN-2019 21:27:29 GC EI + Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 353.8576 S:9 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

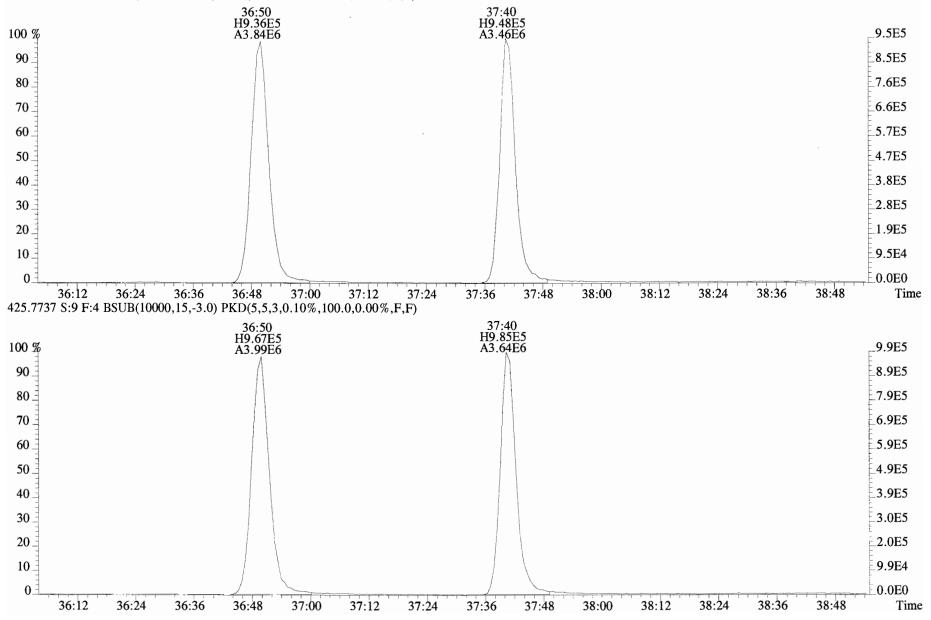


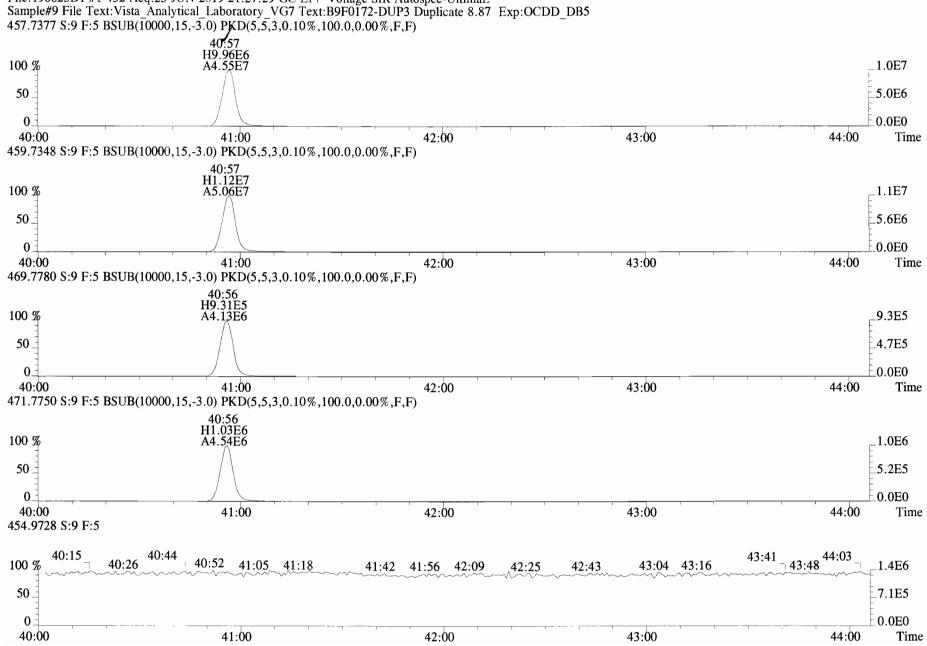

389.8156 S:9 F:3 BSUB(10000,15,-3.0) PKD(5,5/3,0.10%,100.0,0.00%,F,F)

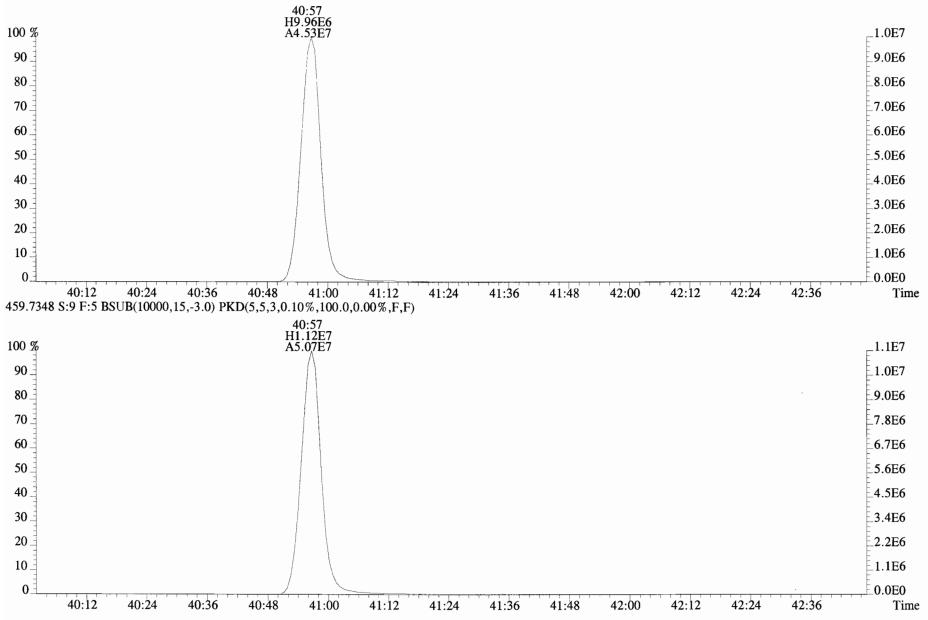

File:190625D1 #1-400 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 389.8156 S:9 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

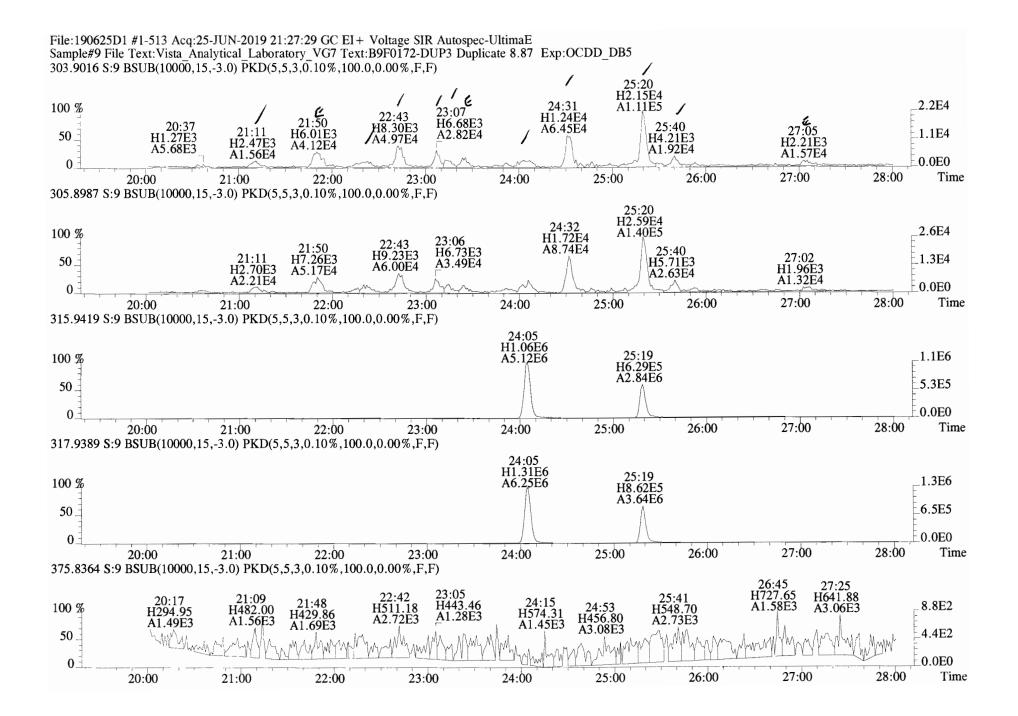


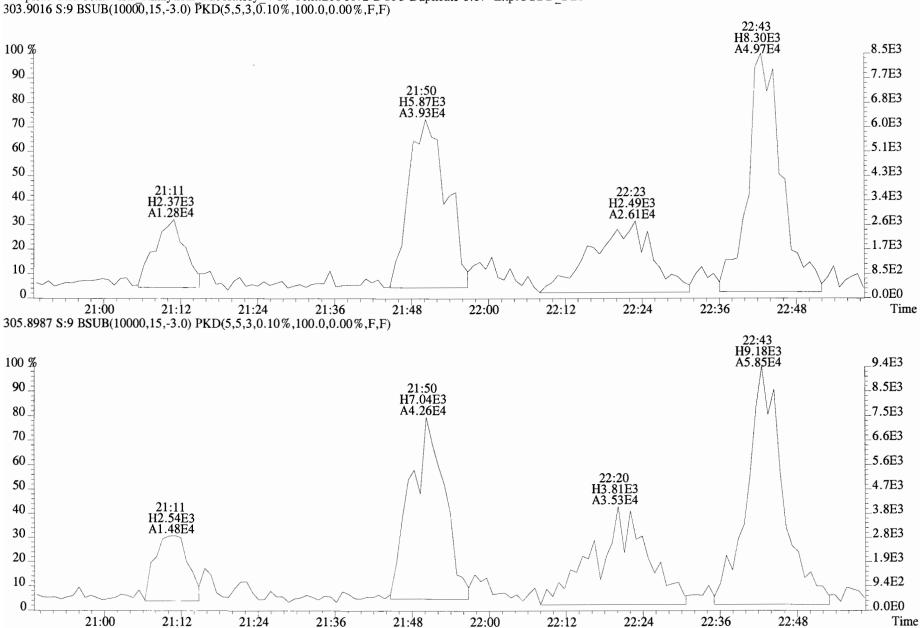

File:190625D1 #1-400 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory_VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 389.8156 S:9 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)




File:190625D1 #1-400 Acq:25-JUN-2019 21:27:29 GC EI + Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 401.8559 S:9 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

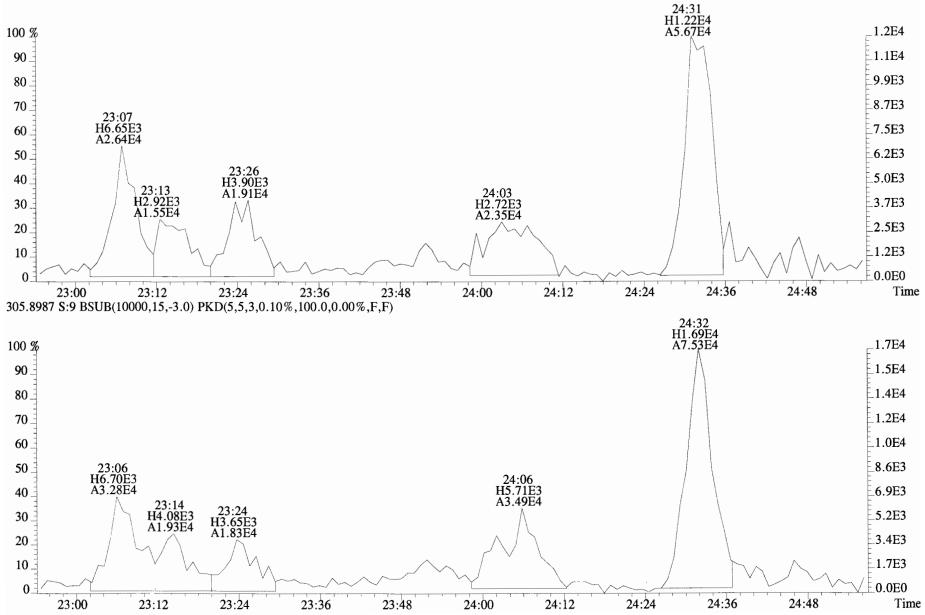

File:190625D1 #1-355 Acq:25-JUN-2019 21:27:29 GC EI + Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 423.7767 S:9 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

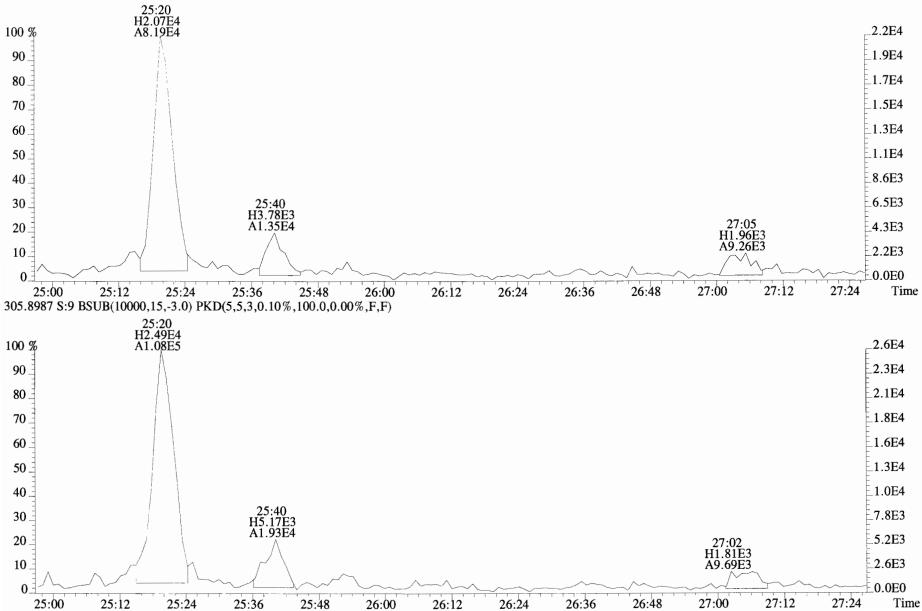


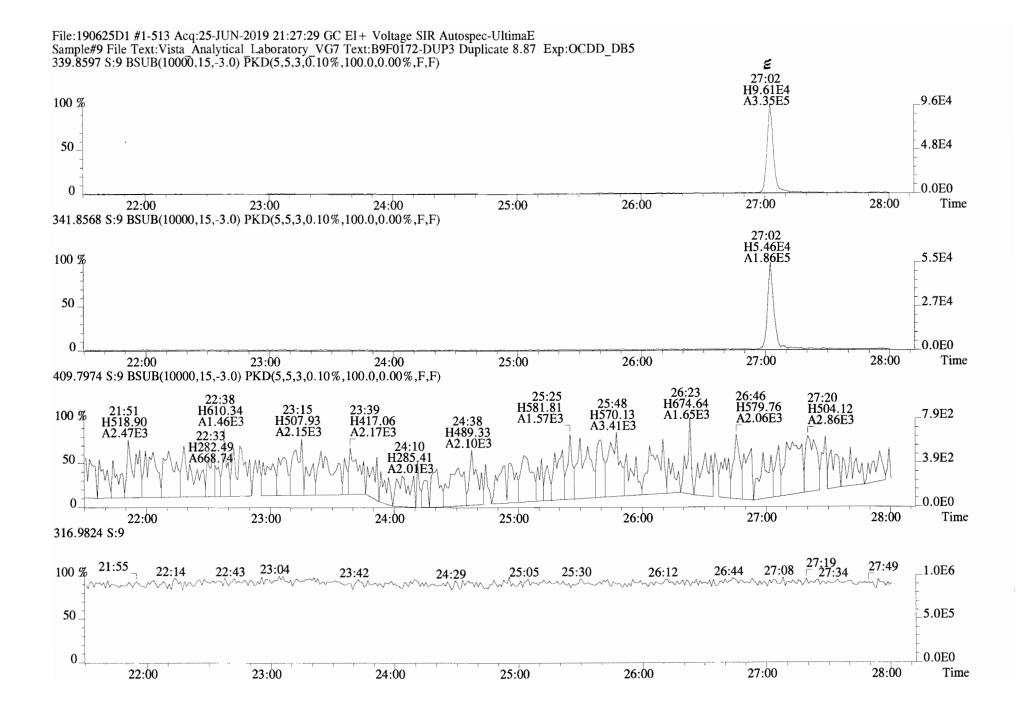


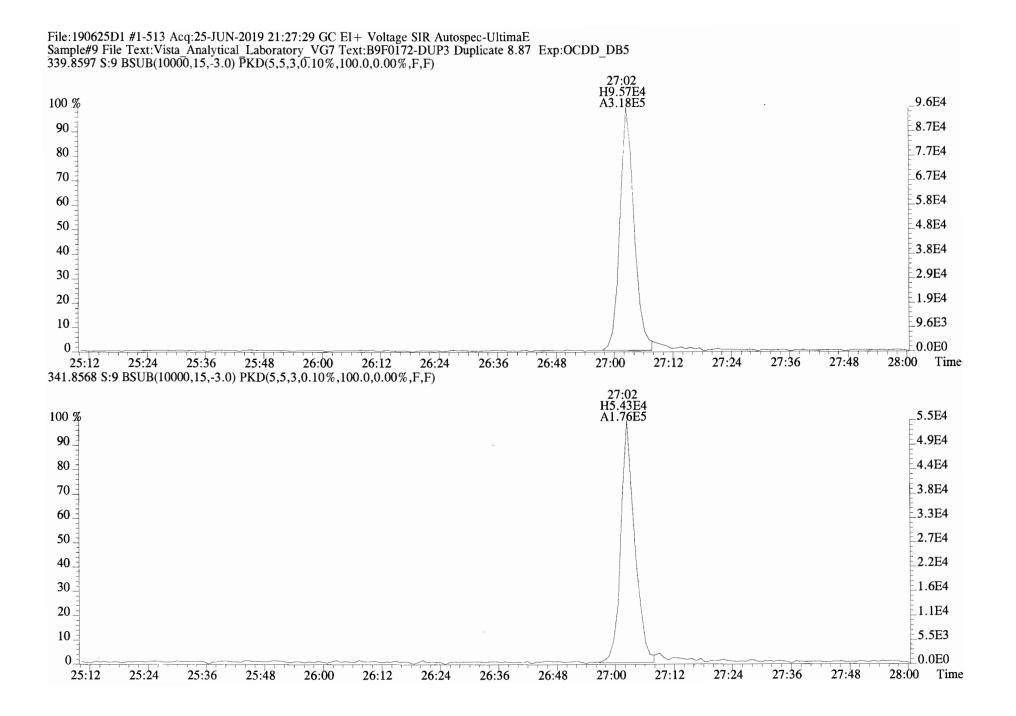
File:190625D1 #1-432 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE

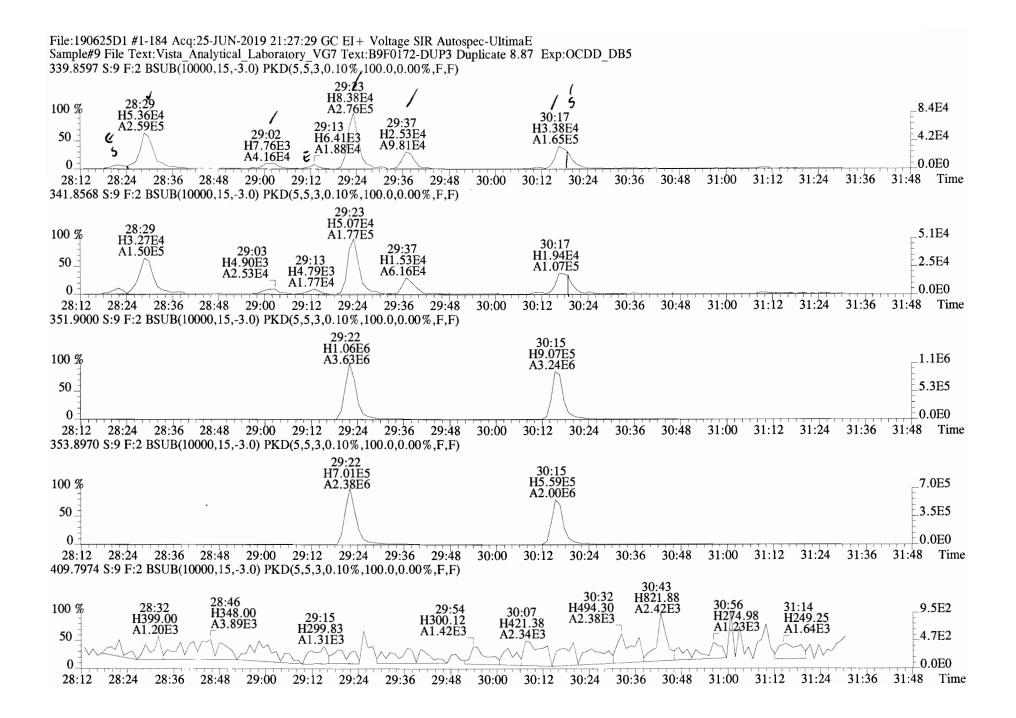
File:190625D1 #1-432 Acq:25-JUN-2019 21:27:29 GC EI + Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory_VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 457.7377 S:9 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

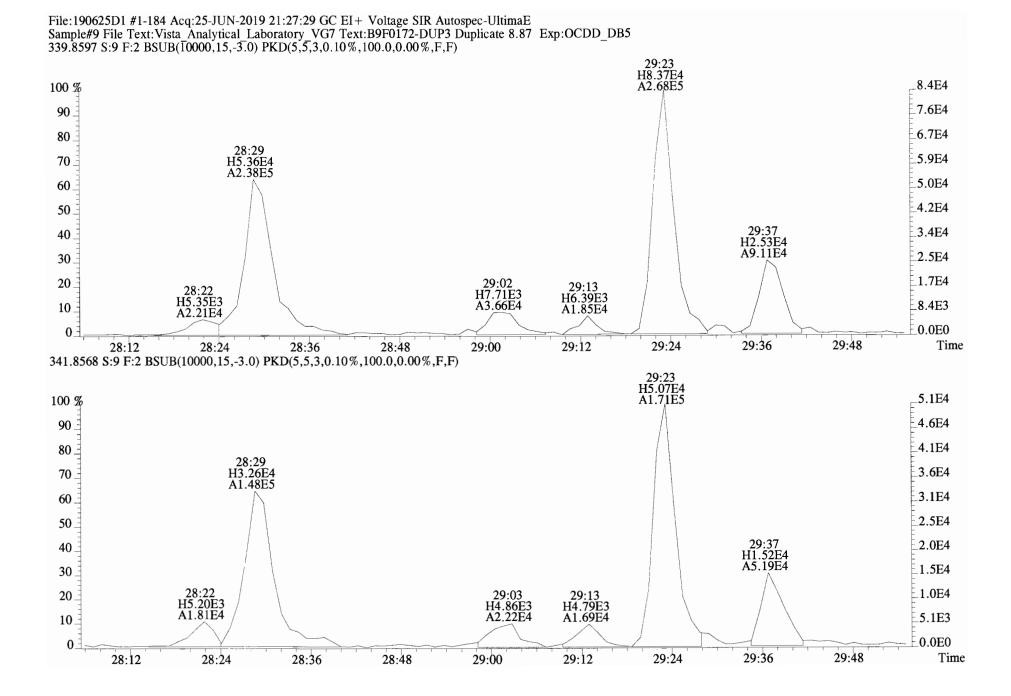


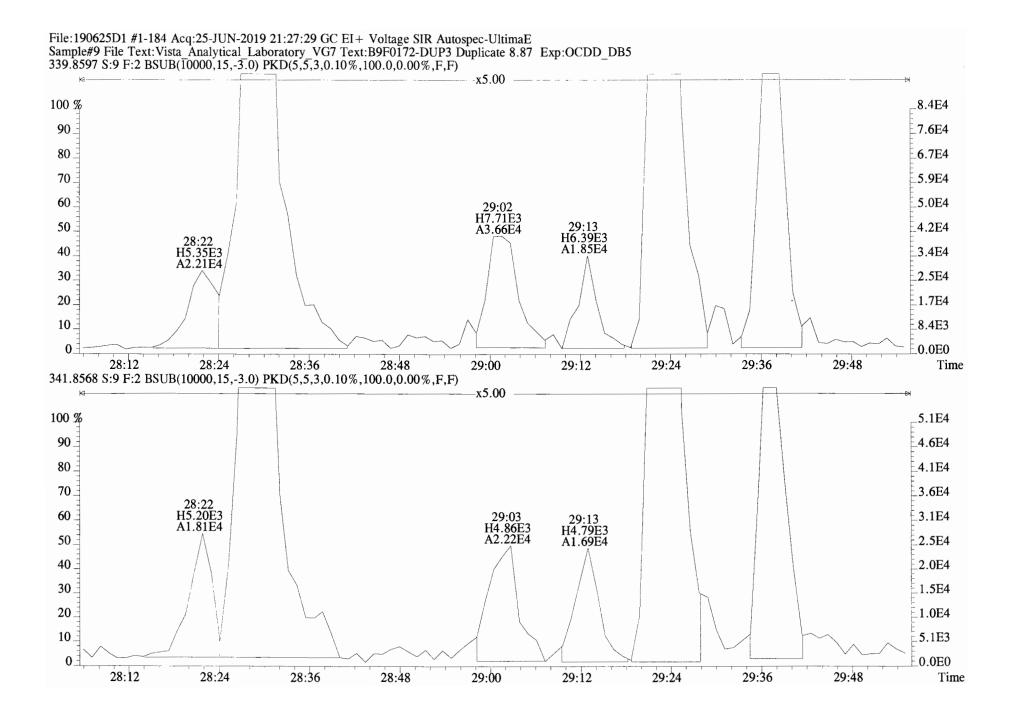


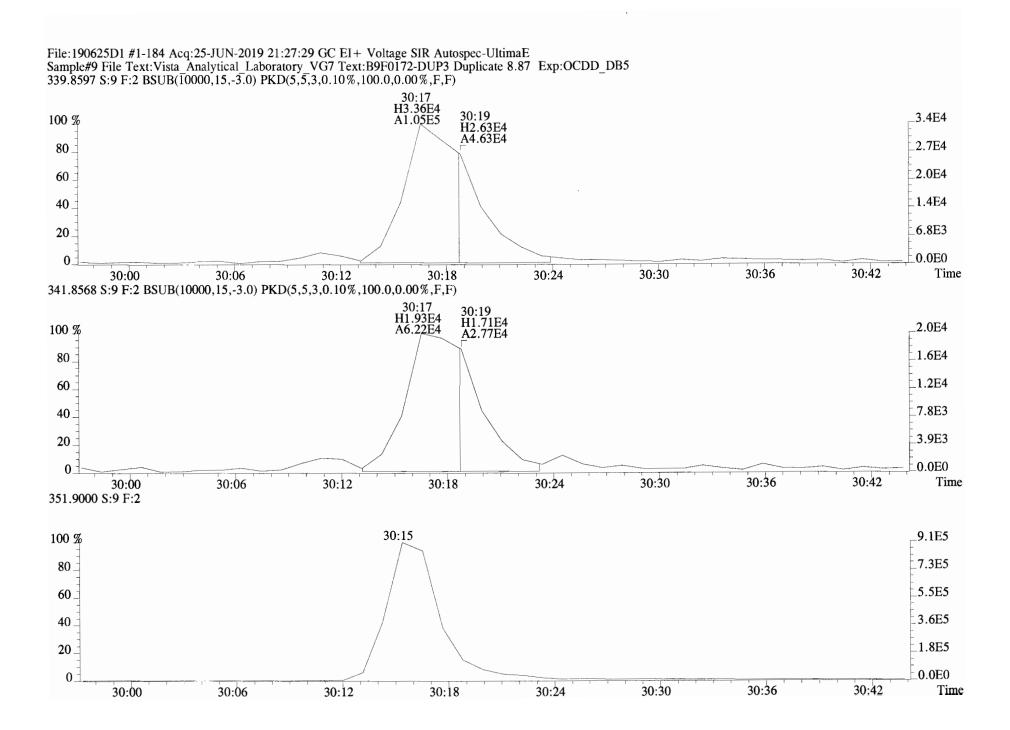

File:190625D1 #1-513 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 303.9016 S:9 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

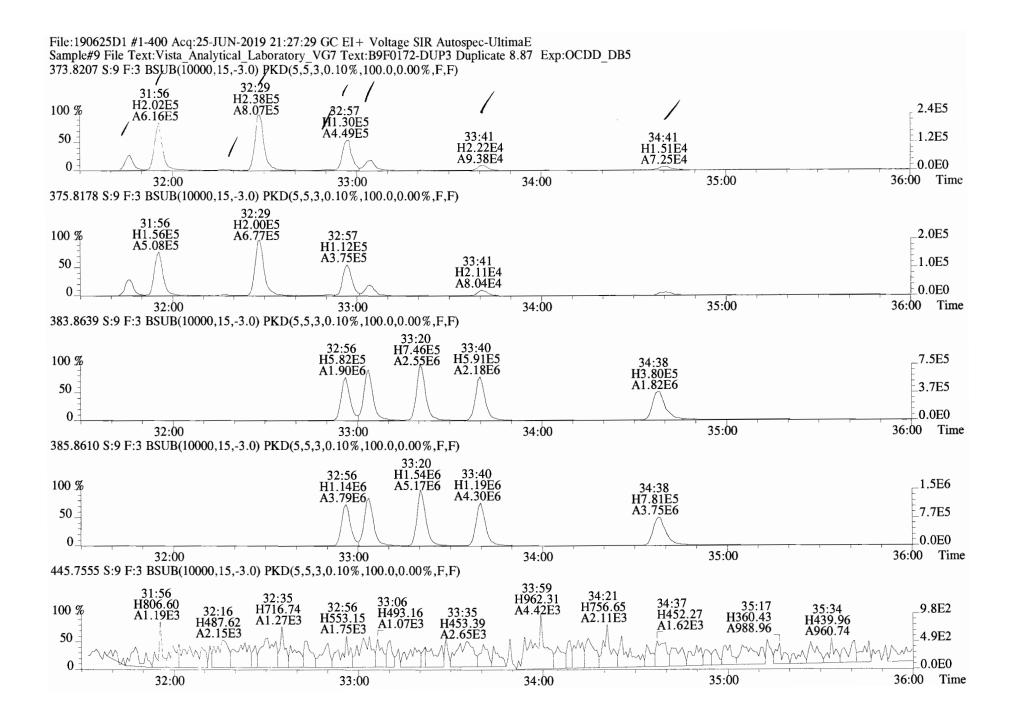

File:190625D1 #1-513 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista_Analytical_Laboratory_VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 303.9016 S:9 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

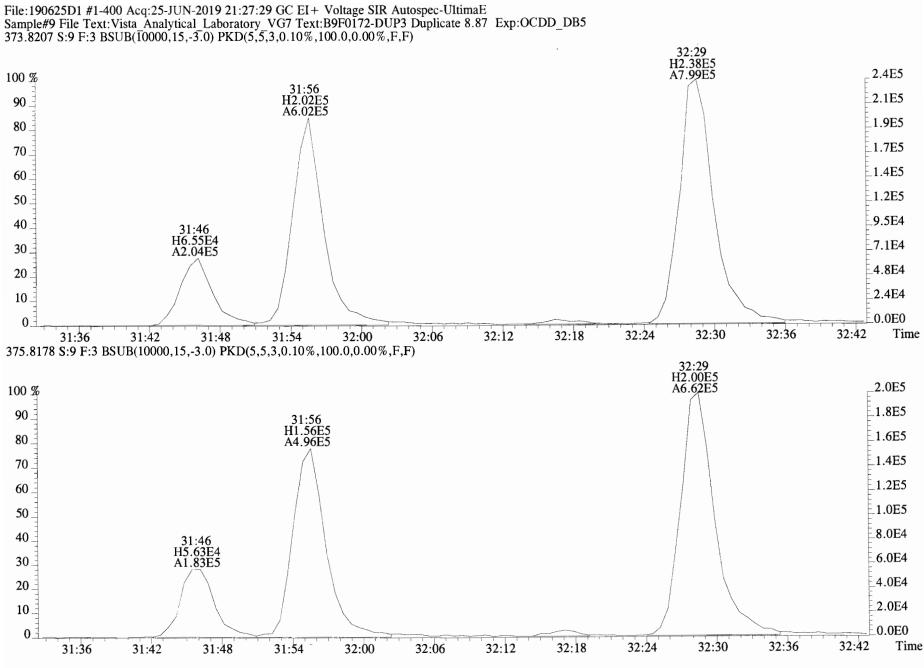


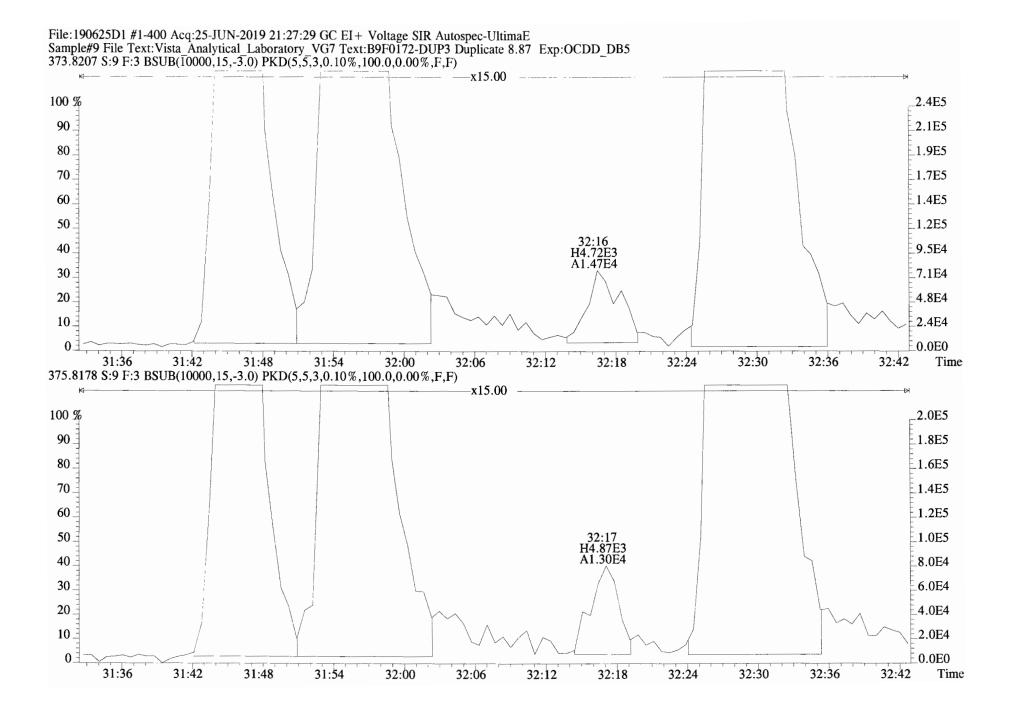

File:190625D1 #1-513 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 303.9016 S:9 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

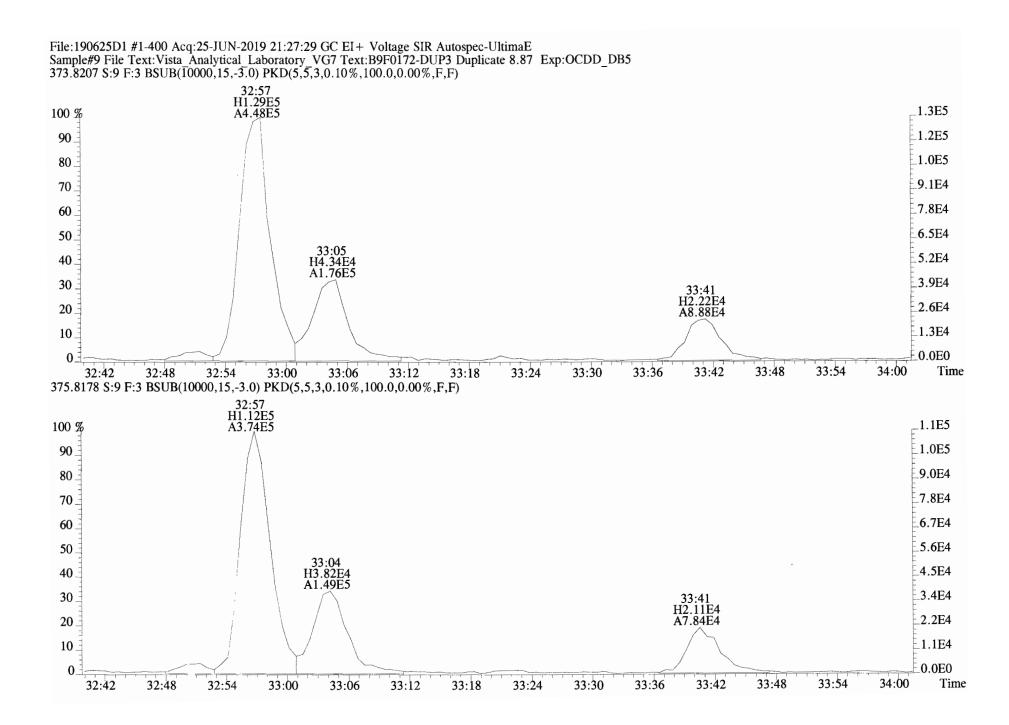


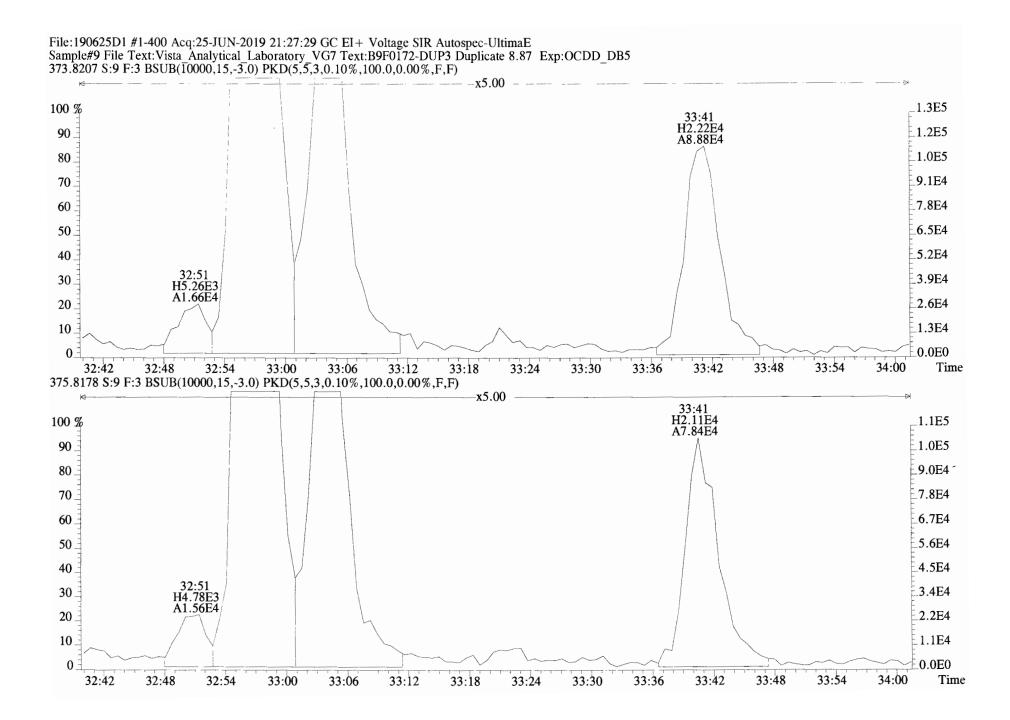


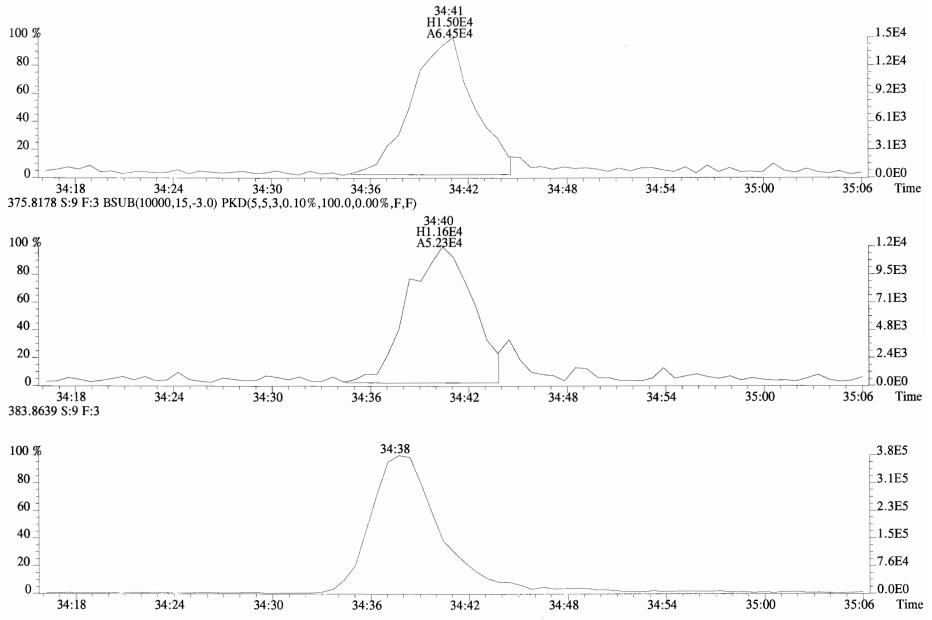


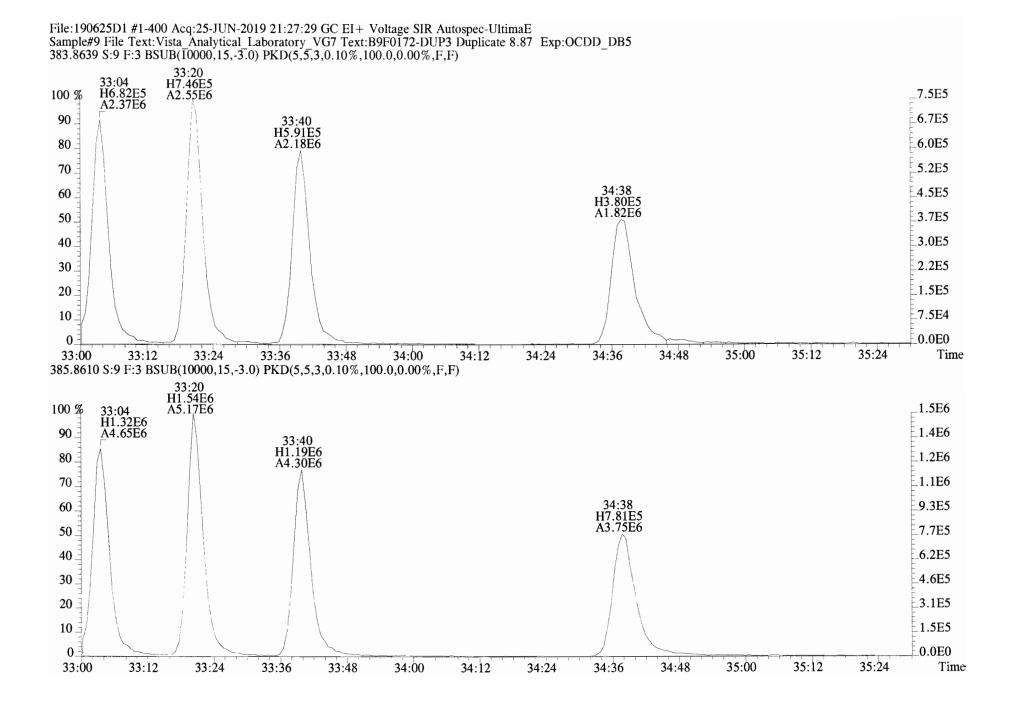


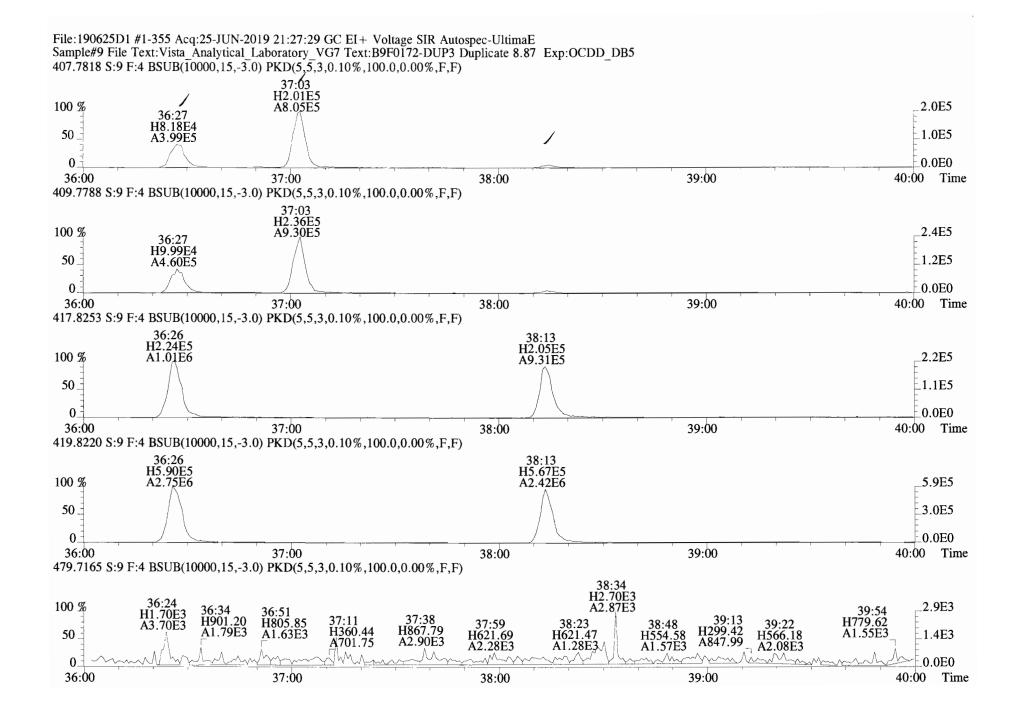


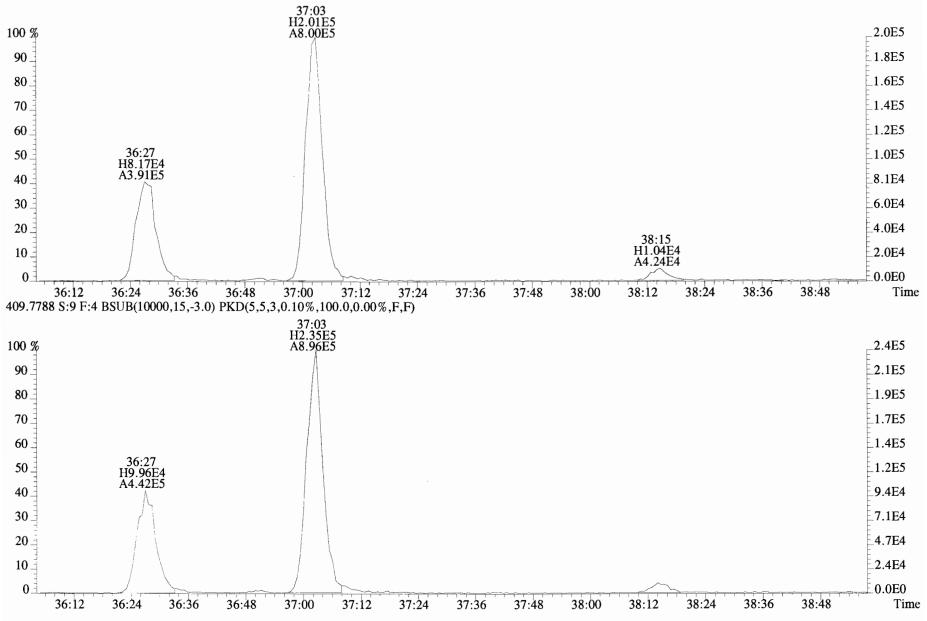


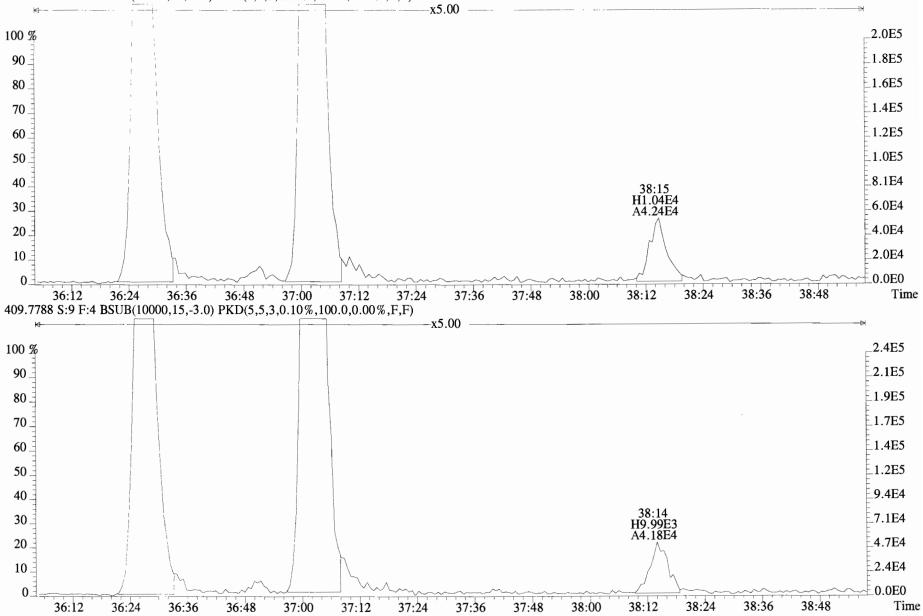


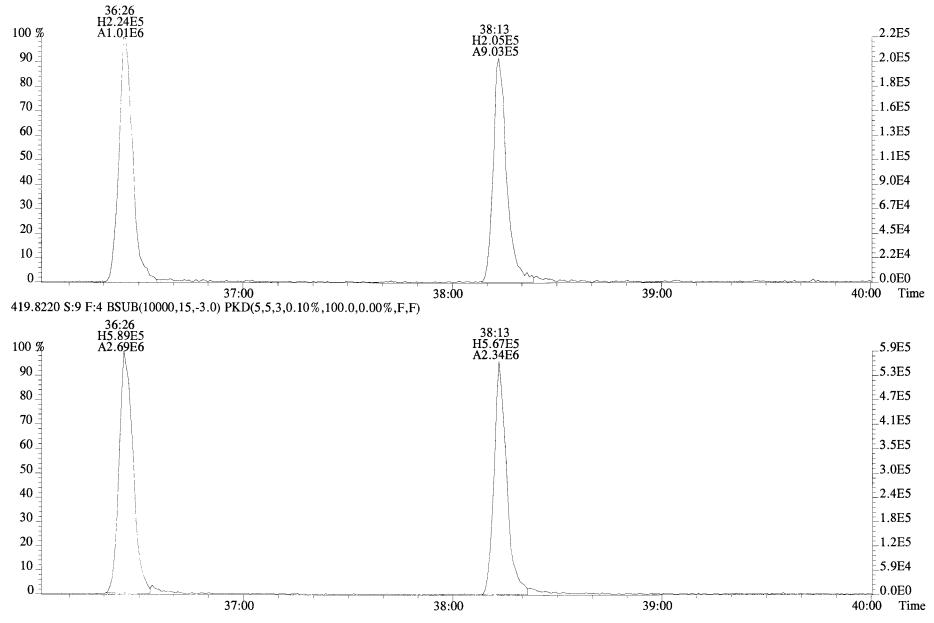


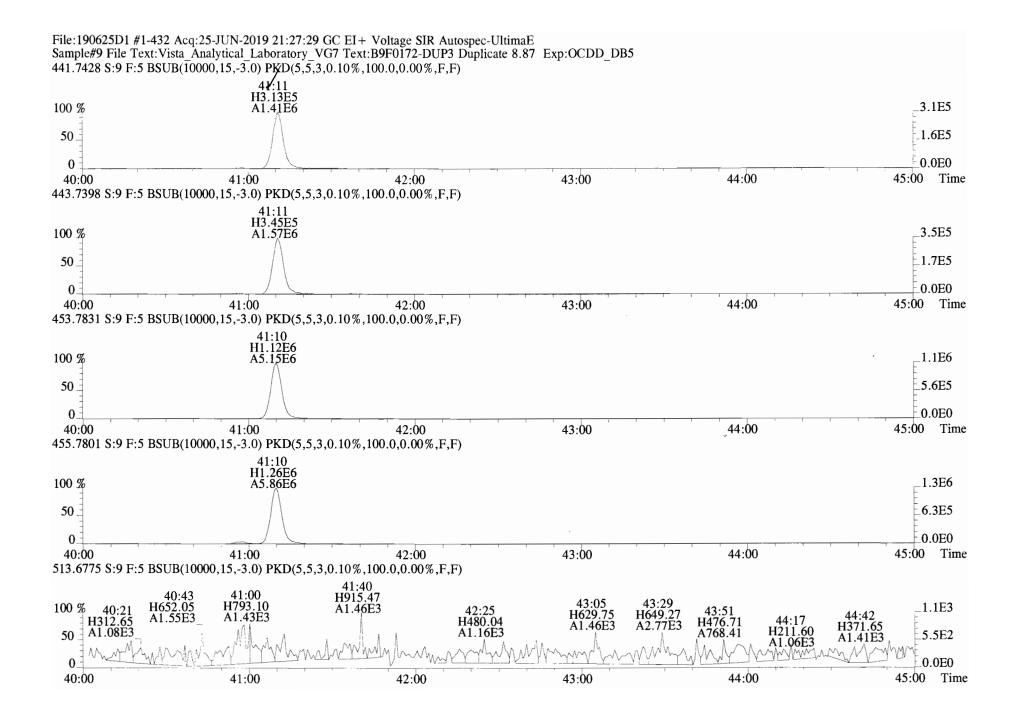


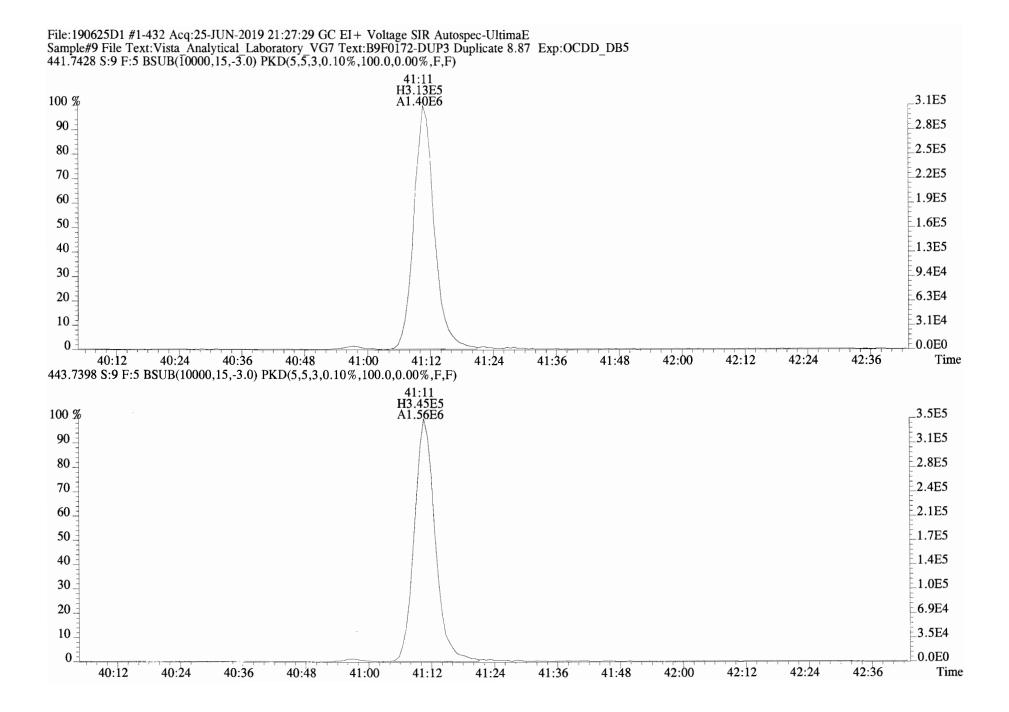



File:190625D1 #1-400 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory_VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 373.8207 S:9 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



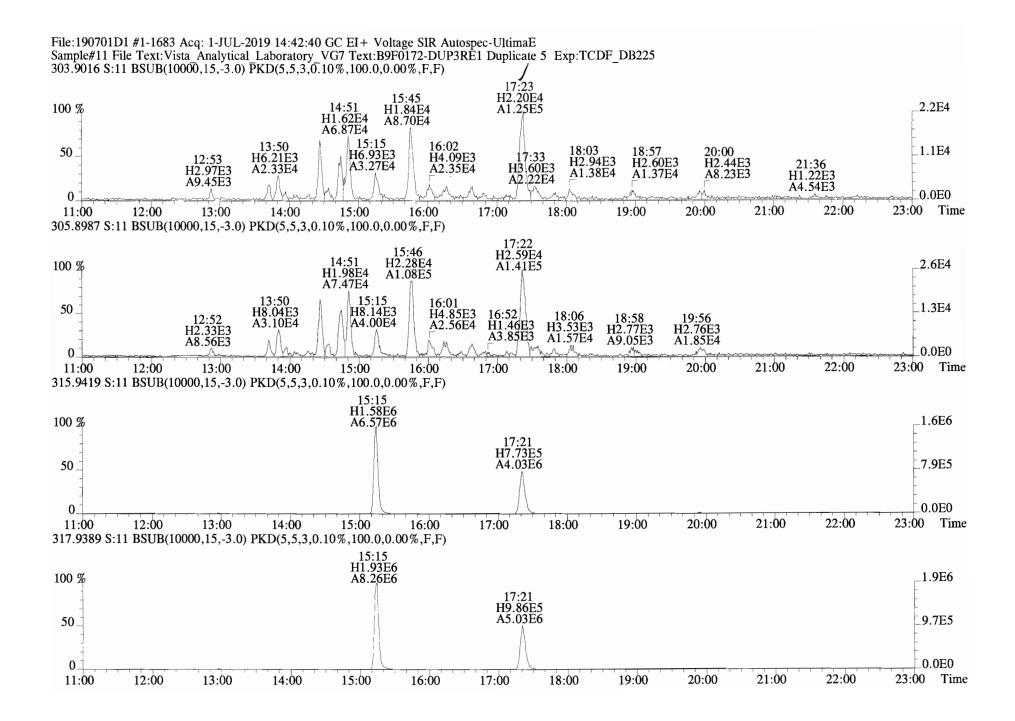

File:190625D1 #1-355 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista_Analytical_Laboratory_VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 407.7818 S:9 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

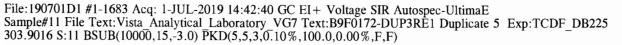


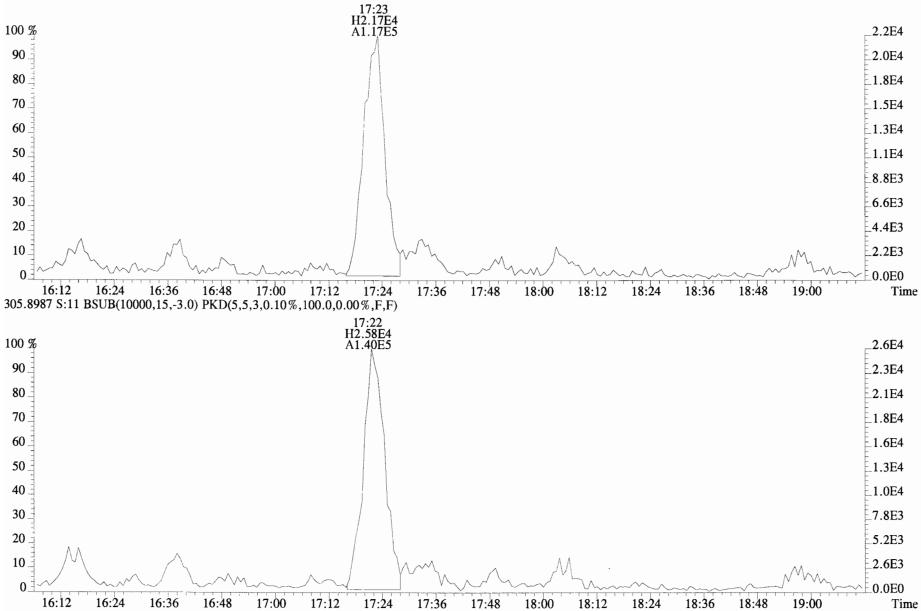

File:190625D1 #1-355 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista_Analytical_Laboratory_VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 407.7818 S:9 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

File:190625D1 #1-355 Acq:25-JUN-2019 21:27:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#9 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-DUP3 Duplicate 8.87 Exp:OCDD_DB5 417.8253 S:9 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

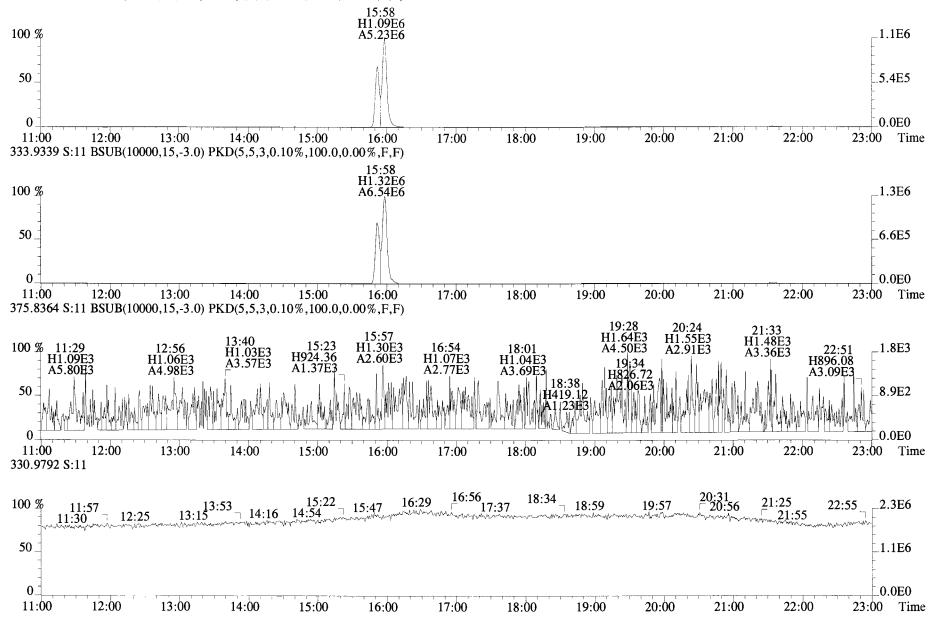
CONFIRMATION


Client ID: Duplicate	Filename: 190701D1	S:11	Acq: 1-JUL-19 14:42:4	0	ConCal:	: ST190701D1-1	Page 9 of 9
Lab ID: B9F0172-DUP3RE1	GC Column ID: DB-225	ICal:	1613TCDFVG7-5-30-19	wt/vol: 5.000	EndCAL	: NA	
				٠			


Name	Resp	RA	RT	RRF	Conc	Rec
13C-1,2,3,4-TCDF	1.48e+07	0.79 y	15:14	1.00	400.0	-
13C-2,3,7,8-TCDF	9.07e+06	0.80 y	17:21	1.02	239.4	59.9
2,3,7,8-TCDF	2.57e+05	0.84 y	17:22	0.95	11.94	


Integrations

Reviewed


 $\frac{by}{Analyst:} \xrightarrow{DB} by \\ Analyst:} \xrightarrow{DB} Date: \underbrace{O7/02/19} Date: \underbrace{O7/02/19}$

File:190701D1 #1-1683 Acq: 1-JUL-2019 14:42:40 GC EI+ Voltage SIR Autospec-UltimaE Sample#11 File Text:Vista Analytical Laboratory VG7 Text:B9F0172-DUP3RE1 Duplicate 5 Exp:TCDF_DB225 331.9368 S:11 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

CONTINUING CALIBRATION

HRMS CALIBRATION STANDARDS REVIEW CHECKLIST

Beg. Calbration ID: 57(9062501	=(Reviewed By: <u>07 06/26/19</u> Initials & Date		
End Calibration ID:NA					
	Beg.	End		Beg.	End
Ion abundance within QC limits?	~	NA	Mass resolution >	1	\sim
Concentrations within criteria?	V	ф	□ 5k □ 6-8K □ 8K ☑ 10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%	\checkmark	Ф	Intergrated peaks display correctly?	-	NA
First and last eluters present?		ф	GC Break <20%		
Retention Times within criteria?		Ф	8280 CS1 End Standard:		
Verification Std. named correctly?		ф	- Ratios within limits, S/N <2.5:1, CS1 within 12 hours		AU
(ST-Year-Month-Day-VG ID)					
Forms signed and dated?		Ф	Comments:		
Correct ICAL referenced?	DB_				
<u>Run Log:</u>					
- Correct instrument listed?	\checkmark	V			
- Samples within 12 hour clock?	$\langle \mathbf{Y} \rangle$	Ν			
- Bottle position verfied?	De	3			

Data file	s#	Sample ID	Analyst	Acq date	Acq time	CCal	ECal
190625D1	1	ST190625D1-1	DB	25-JUN-19	15:05:35	ST190625D1-1	NA
190625D1	2	B9F0172-BS1	DB	25-JUN-19	15:53:21	ST190625D1-1	NA
190625D1	3	SOLVENT BLANK	DB	25-JUN-19	16:41:08	ST190625D1-1	NA
190625D1	4	B9F0172-BLK1	DB	25-JUN-19	17:28:52	ST190625D1-1	NA
190625D1	5	1901248-01	DB	25-JUN-19	18:16:35	ST190625D1-1	NA
190625D1	б	1901248-02	DB	25-JUN-19	19:04:24	ST190625D1-1	NA
190625D1	7	1901248-03	DB	25-JUN-19	19:52:12	ST190625D1-1	NA
190625D1	8	1901248-04	DB	25-JUN-19	20:39:50	ST190625D1-1	NA
190625D1	9	B9F0172-DUP3	DB	25-JUN-19	21:27:29	ST190625D1-1	NA
190625D1	10	1901249-02	DB	25-JUN-19	22:15:12	ST190625D1-1	NA
190625D1	11	1901305-02	DB	25-JUN-19	23:02:49	ST190625D1-1	NA
190625D1	12	1901305-06	DB	25-JUN-19	23:50:22	ST190625D1-1	NA
190625D1	13	1901305-07	DB	26-JUN-19	00:38:00	ST190625D1-1	NA
190625D1	14	1901384-04	DB	26-JUN-19	01:25:31	ST190625D1-1	NA
190625D1	15	B9F0172-DUP4	DB	26-JUN-19	02:13:08	ST190625D1-1	NA

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Vista Analytical Laboratory Episode No.: CCAL ID: ST190625D1-1

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190625D1 S#1 Analysis Date: 25-JUN-19 Time: 15:05:35

	M/Z'S FORMING	ION ABUND.	QC LIMITS	_	CONC.	CONC. RANGE (3)
NATIVE ANALYTES	RATIO (1)	RATIO	(2)	Pass	FOUND	(ng/mL)
2,3,7,8-TCDD	M/M+2	0.80	0.65-0.89	У	12.7	7.8 - 12.9 8.2 - 12.3 (4)
1,2,3,7,8-PeCDD	M/M+2	0.65	0.54-0.72	У	54.5	39.0 - 65.0
1,2,3,4,7,8-HxCDD	M+2/M+4	1.24	1.05-1.43	У	56.3	39.0 - 64.0
1,2,3,6,7,8-HxCDD	M+2/M+4	1.26	1.05-1.43	У	54.2	39.0 - 64.0
1,2,3,7,8,9-HxCDD	M+2/M+4	1.21	1.05-1.43	У	52.9	41.0 - 61.0
1,2,3,4,6,7,8-HpCDD	M+2/M+4	0.98	0.88-1.20	У	47.3	43.0 ~ 58.0
OCDD	M+2/M+4	0.90	0.76-1.02	У	94.3	79.0 - 126.0
2,3,7,8-TCDF	M/M+2	0.83	0.65-0.89	У	9.43	8.4 - 1 2.0 8.6 - 11.6 (4)
1,2,3,7,8-PeCDF	M+2/M+4	1.65	1.32-1.78	У	49.8	41.0 - 60.0
2,3,4,7,8-PeCDF	M+2/M+4	1.64	1.32-1.78	У	51.7	41.0 - 61.0
1,2,3,4,7,8-HxCDF	M+2/M+4	1.25	1.05-1.43	у	51.3	45.0 - 56.0
1,2,3,6,7,8-HxCDF	M+2/M+4	1.21	1.05-1.43	y	52.5	44.0 - 57.0
2,3,4,6,7,8-HxCDF	M+2/M+4	1.25	1.05-1.43	У	53.2	44.0 - 57.0
1,2,3,7,8,9-HxCDF	M+2/M+4	1.26	1.05-1.43	У	53.3	45.0 - 56.0
1,2,3,4,6,7,8-HpCDF	M+2/M+4	0.97	0.88-1.20	у	49.8	45.0 - 55.0
1,2,3,4,7,8,9-HpCDF		0.96	0.88-1.20	y	49.1	43.0 - 58.0
OCDF	M+2/M+4	0.93	0.76-1.02	У	101	63.0 - 159.0

(1) See Table 8, Method 1613, for m/z specifications.

(2) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

(3) Contract-required concentration range as specified in Table 6, Method 1613.

(4) Contract-required concentration range as specified in Table 6a, Method 1613, for tetras only.

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7

GC Column ID: ZB-5MS

VER Data Filename: 190625D1 S#1 Analysis Date: 25-JUN-19 Time: 15:05:35

	M/Z'S FORMING	ION ABUND.	QC LIMITS	-	CONC.	CONC. RANGE
LABELED COMPOUNDS	RATIO (1)	RATIO	(2)	Pass	FOUND	(ng/mL)
13C-2,3,7,8-TCDD	M/M+2	0.82	0.65-0.89	У	99.7	82.0 - 121.0
13C-1,2,3,7,8-PeCDD	M/M+2	0.63	0.54-0.72	Y	84.0	62.0 - 160.0
13C-1,2,3,4,7,8-HxCDI	O M+2/M+4	1.44	1.05-1.43	n	91.5	85.0 - 117.0
13C-1,2,3,6,7,8-HxCDI	M+2/M+4	1.29	1.05-1.43	У	93.3	85.0 - 118.0
13C-1,2,3,7,8,9-HxCDI	D M+2/M+4	1.30	1.05-1.43	У	95.9	85.0 - 118.0
13C-1,2,3,4,6,7,8-Hp	CDD M+2/M+4	1.03	0.88-1.20	У	95.9	72.0 - 138.0
13C-OCDD	M/M+2	0.90	0.76-1.02	У	213	96.0 - 415.0
13C-2,3,7,8-TCDF	M+2/M+4	0.77	0.65-0.89	У	110	71.0 - 140.0
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.61	1.32-1.78	y	84.5	76.0 - 130.0
13C-2,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4		1.32-1.78	-	83.7	77.0 - 130.0
130-2,3,4,7,0-10001	M+2/ M+4	1.50	1.52-1.70	Y	05.7	//.0 150.0
13C-1,2,3,4,7,8-HxCD	F M/M+2	0.50	0.43-0.59	y	100	76.0 - 131.0
				1		
13C-1,2,3,6,7,8-HxCD	F M/M+2	0.52	0.43-0.59	У	99.1	70.0 - 143.0
13C-2,3,4,6,7,8-HxCD	F M/M+2	0.51	0.43-0.59	У	97.8	73.0 - 137.0
13C-1,2,3,7,8,9-HxCD	F M/M +2	0.51	0.43-0.59	У	99.3	74.0 - 135.0
13C-1,2,3,4,6,7,8-Hp	CDF M+2/M+4	0.43	0.37-0.51	У	91.2	78.0 - 129.0
13C-1,2,3,4,7,8,9-Hp	CDF M+2/M+4	0.41	0.37-0.51	Y	91.4	77.0 - 129.0
13C-OCDF	M+2/M+4	0.90	0.76-1.02	Y	190	96.0 - 415.0
CLEANUP STANDARD (3)				0 51	7.9 - 12.7
37Cl-2,3,7,8-TCDD					9.51	1.9 - 12.1

(1) See Table 8, Method 1613, for $\ensuremath{\text{m/z}}$ specifications.

(2) Ion Abundance Ratio Control Limits as specified

(3) No ion abundance ratio; report concentration found.

Analyst: DB Date: 625/19

FORM 5 PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Instrument ID: VG-7 Initial Calibration Date: 5-10-19

RT Window Data Filename: 190625D1 S#1 Analysis Date: 25-JUN-19 Time: 15:05:35

ZB-5MS IS Data Filename: 190625D1 S#1 Analysis Date: 25-JUN-19 Time: 15:05:35

DB_225 IS Data Filename: Analysis Date: Time:

ZB-5MS RT WINDOW DEFINING STANDARDS RESULTS

	ABSOLUTE		ABSOLUTE
ISOMERS	RT	ISOMERS	RT
1,3,6,8-TCDD (F)	22:43	1,3,6,8-TCDF (F)	20:36
1,2,8,9-TCDD (L)	26:57	1,2,8,9-TCDF (L)	27:06
1,2,4,7,9-PeCDD (F)	28:31	1,3,4,6,8-PeCDF (F)	27:01
1,2,3,8,9-PeCDD (L)	30:55	1,2,3,8,9-PeCDF (L)	31:10
1,2,4,6,7,9-HxCDD (F)	32:18	1,2,3,4,6,8-HxCDF (F)	31:47
1,2,3,7,8,9-HxCDD (L)	34:15	1,2,3,7,8,9-HxCDF (L)	34:40
1,2,3,4,6,7,9-HpCDD (F)	36:51	1,2,3,4,6,7,8-HpCDF (F)	36:28
1,2,3,4,6,7,8-HpCDD (L)	37:42	1,2,3,4,7,8,9-HpCDF (L)	38:16

(F) = First eluting isomer (ZB-5MS); (L) = Last eluting isomer (ZB-5MS).

ISOMER SPECIFICITY (IS) TEST STANDARD RESULTS

% VALLEY HEIGHT BETWEEN COMPARED PEAKS (1)

<25%

(1) To meet contract requirements, %Valley Height Between Compared Peaks shall not exceed 25% (section 15.4.2.2, Method 1613).

Analyst: DBDate: 6/25/19Date:

FORM 6A PCDD/PCDF RELATIVE RETENTION TIMES

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190625D1 S#1 Analysis Date: 25-JUN-19 Time: 15:05:35

Compounds Using 13C-1234-TCDD as RT Internal Standard

NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
2,3,7,8-TCDD	13C-2,3,7,8-TCDD	1.001	0.999-1.002
1,2,3,7,8-PeCDD	13C-1,2,3,7,8-PeCDD	1.001	0.999-1.002
2,3,7,8-TCDF	13C-2,3,7,8-TCDF	1.001	0.999-1.003
1,2,3,7,8-PeCDF	13C-1,2,3,7,8-PeCDF	1.000	0.999-1.002
2,3,4,7,8-PeCDF	13C-2,3,4,7,8-PeCDF	1.000	0.999-1.002

LABELED COMPOUNDS

13C-2,3,7,8-TCDD	13C-1,2,3,4-TCDD	1.023	0.976-1.043
13C-1,2,3,7,8-PeCDD	13C-1,2,3,4-TCDD	1.198	1.000-1.567
13C-2,3,7,8-TCDF	13C-1,2,3,4-TCDD	0.993	0.923-1.103
13C-1,2,3,7,8-PeCDF	13C-1,2,3,4-TCDD	1.153	1.000-1.425
13C-2,3,4,7,8-PeCDF	13C-1,2,3,4-TCDD	1.188	1.011-1.526
37Cl-2,3,7,8-TCDD	13C-1,2,3,4-TCDD	1.024	0.989-1.052

Analyst: DB Date: 6/25/19

FORM 6B PCDD/PCDF RELATIVE RETENTION TIMES

Lab Name:	Vista .	Analytical	Laboratory	/ Episode No.:
-----------	---------	------------	------------	----------------

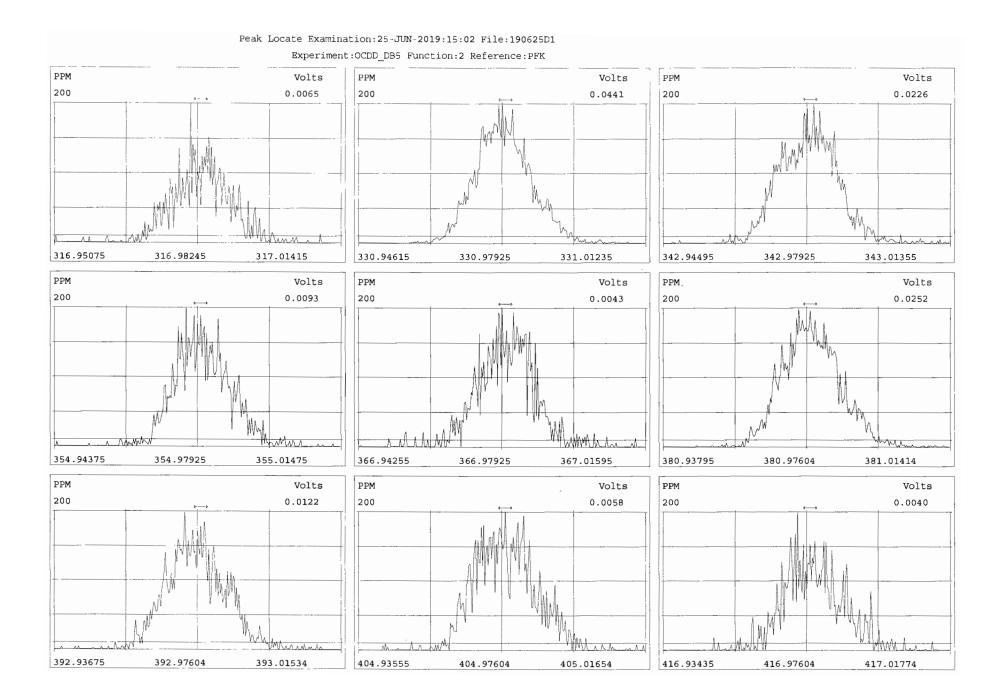
Contract No.: SAS No.:

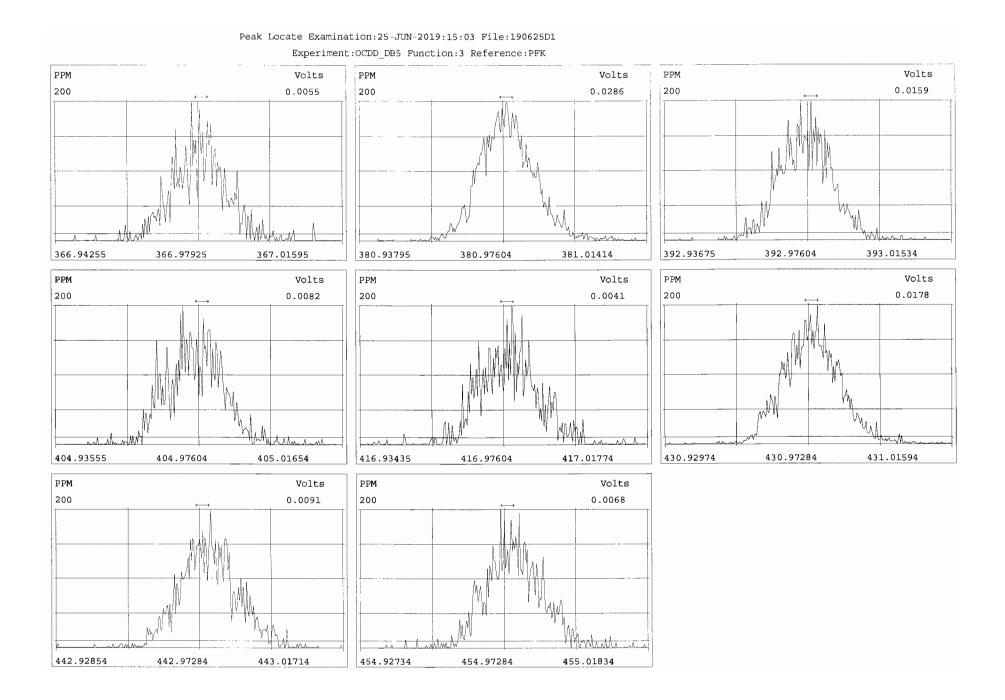
Initial Calibration Date: 5-10-19

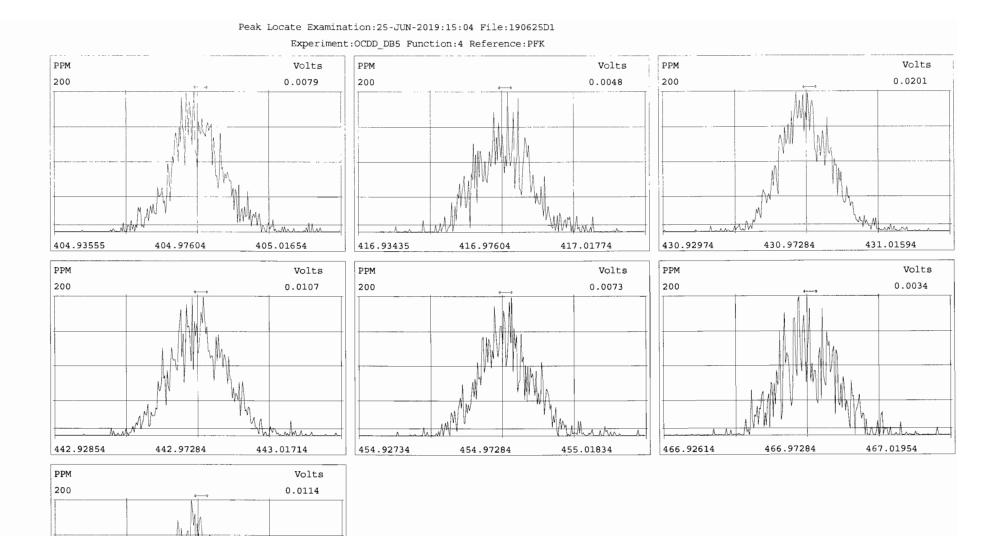
Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190625D1 S#1 Analysis Date: 25-JUN-19 Time: 15:05:35

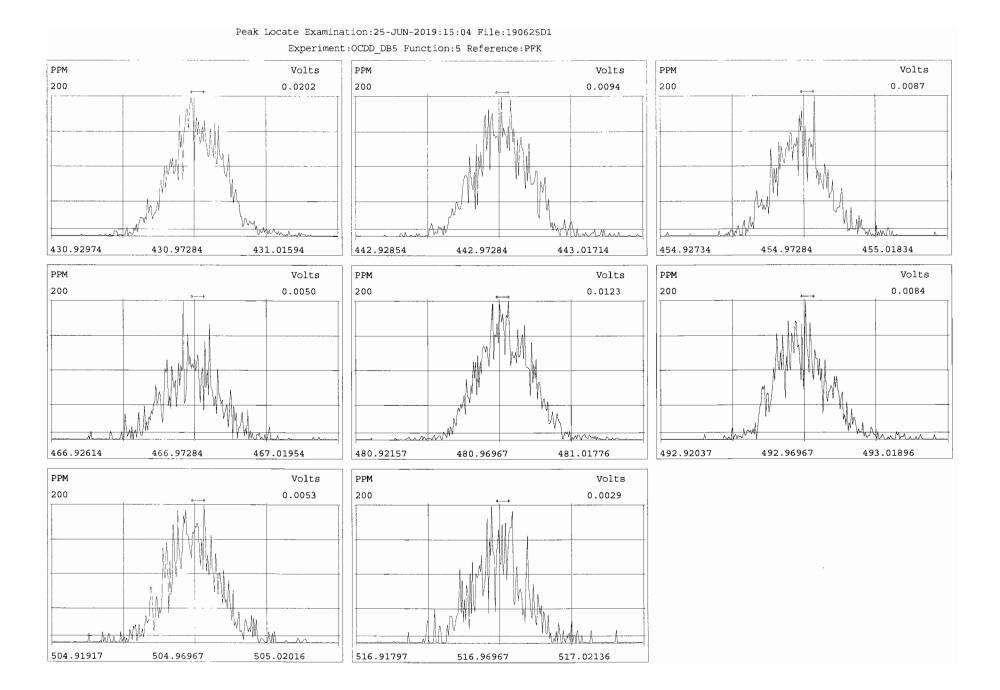
NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
1,2,3,4,7,8-HxCDF	13C-1,2,3,4,7,8-HxCDF	1.000	0.999-1.001
1,2,3,6,7,8-HxCDF	13C-1,2,3,6,7,8-HxCDF	1.001	0.997-1.005
2,3,4,6,7,8-HxCDF	13C-2,3,4,6,7,8-HxCDF	1.001	0.999-1.001
1,2,3,7,8,9-HxCDF	13C-1,2,3,7,8,9-HxCDF	1.000	0.999-1.001
1,2,3,4,7,8-HxCDD	13C-1,2,3,4,7,8-HxCDD	1.000	0.999-1.001
1,2,3,6,7,8-HxCDD	13C-1,2,3,6,7,8-HxCDD	1.000	0.998-1.004
1,2,3,7,8,9-HxCDD	13C-1,2,3,7,8,9-HxCDD	1.000	0.998-1.004
1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6,7,8-HpCDF	1.000	0.999-1.001
1,2,3,4,6,7,8-HpCDD	13C-1,2,3,4,6,7,8-HpCDD	1.000	0.999-1.001
1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,7,8,9-HpCDF	1.000	0.999-1.001
OCDD	13C-OCDD	1.000	0.999-1.001
OCDF	13C-OCDF	1.000	0.999-1.001


LABELED COMPOUNDS

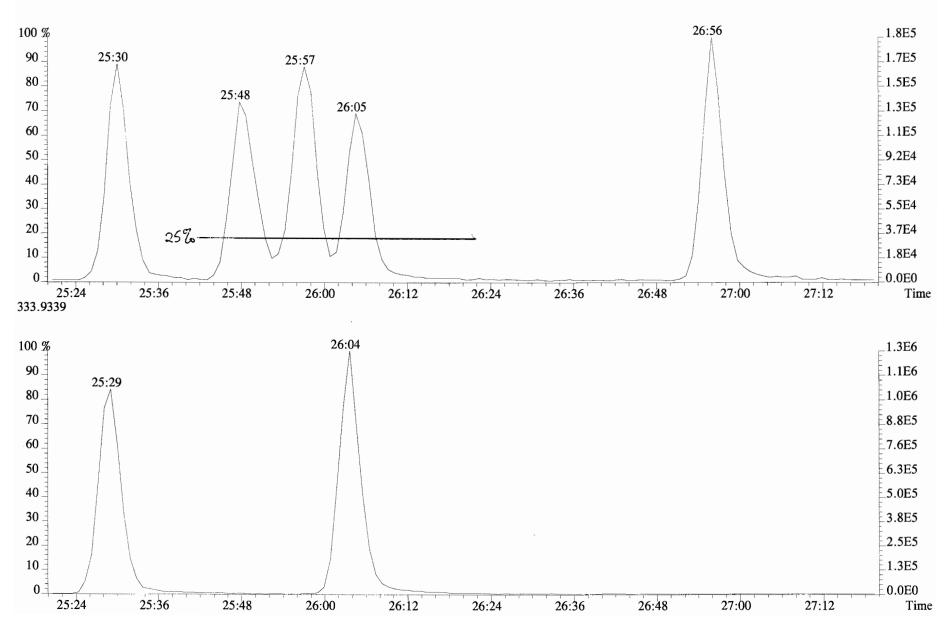

13C-1,2,3,4,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	0.988	0.975-1.001
13C-1,2,3,6,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	0.991	0.979-1.005
13C-2,3,4,6,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	1.009	1.001-1.020
13C-1,2,3,7,8,9-HxCDF	13C-1,2,3,4,6,9-HxCDF	1.039	1.002-1.072
13C-1,2,3,4,7,8-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.014	1.002-1.026
13C-1,2,3,6,7,8-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.017	1.007-1.029
13C-1,2,3,7,8,9-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.026	1.014-1.038
13C-1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6,9-HxCDF	1.093	1.069-1.111
13C-1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,6,9-HxCDF	1.146	1.098-1.192
13C-1,2,3,4,6,7,8-HpCDD	13C-1,2,3,4,6,9-HxCDF	1.130	1.117-1.141
13C-OCDD	13C-1,2,3,4,6,9-HxCDF	1.228	1.085-1.365
13C-OCDF	13C-1,2,3,4,6,9-HxCDF	1.235	1.091-1.371


Analyst: DB Date: 6/25/19

Data file	S#	Sample ID	Analyst	Acq date	Acq time	CCal	ECal
190625D1	1	ST190625D1-1	DB	25-JUN-19	15:05:35	ST190625D1-1	NA
190625D1	2	B9F0172-BS1	DB	25-JUN-19	15:53:21	ST190625D1-1	NA
190625D1	3	SOLVENT BLANK	DB	25-JUN-19	16:41:08	ST190625D1-1	NA
190625D1	4	B9F0172-BLK1	DB	25-JUN-19	17:28:52	ST190625D1-1	NA
190625D1	5	1901248-01	DB	25-JUN-19	18:16:35	ST190625D1-1	NA
190625D1	6	1901248-02	DB	25-JUN-19	19:04:24	ST190625D1-1	NA
190625D1	7	1901248-03	DB	25-JUN-19	19:52:12	ST190625D1-1	NA
190625D1	8	1901248-04	DB	25-JUN-19	20:39:50	ST190625D1-1	NA
190625D1	9	B9F0172-DUP3	DB	25-JUN-19	21:27:29	ST190625D1-1	NA
190625D1	10	1901249-02	DB	25-JUN-19	22:15:12	ST190625D1-1	NA
190625D1	11	1901305-02	DB	25-JUN-19	23:02:49	ST190625D1-1	NA
190625D1	12	1901305-06	DB	25-JUN-19	23:50:22	ST190625D1-1	NA
190625D1	13	1901305-07	DB	26-JUN-19	00:38:00	ST190625D1-1	NA
190625D1	14	1901384-04	DB	26-JUN-19	01:25:31	ST190625D1-1	NA
190625D1	15	B9F0172-DUP4	DB	26-JUN-19	02:13:08	ST190625D1-1	NA

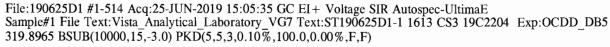


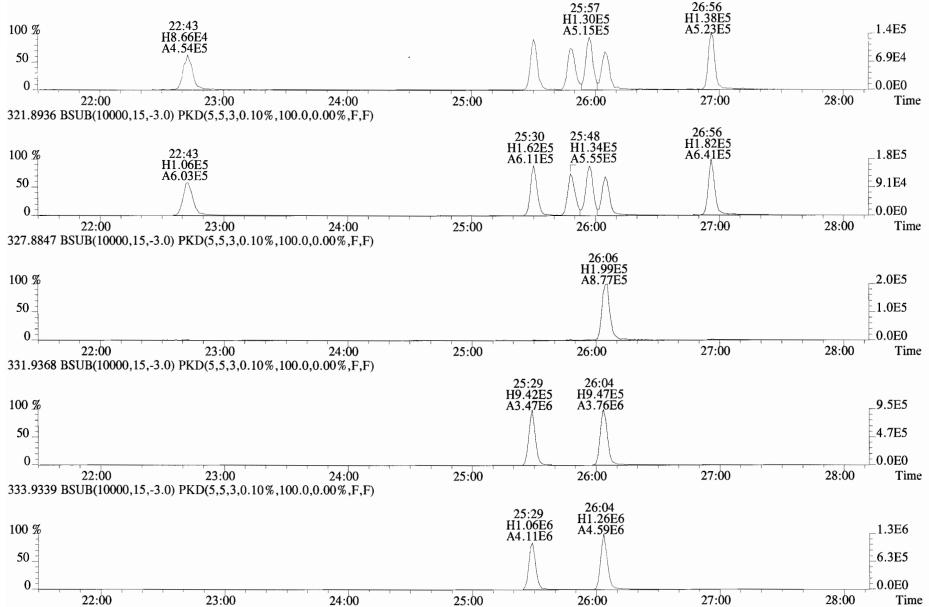
Work Order 1901248

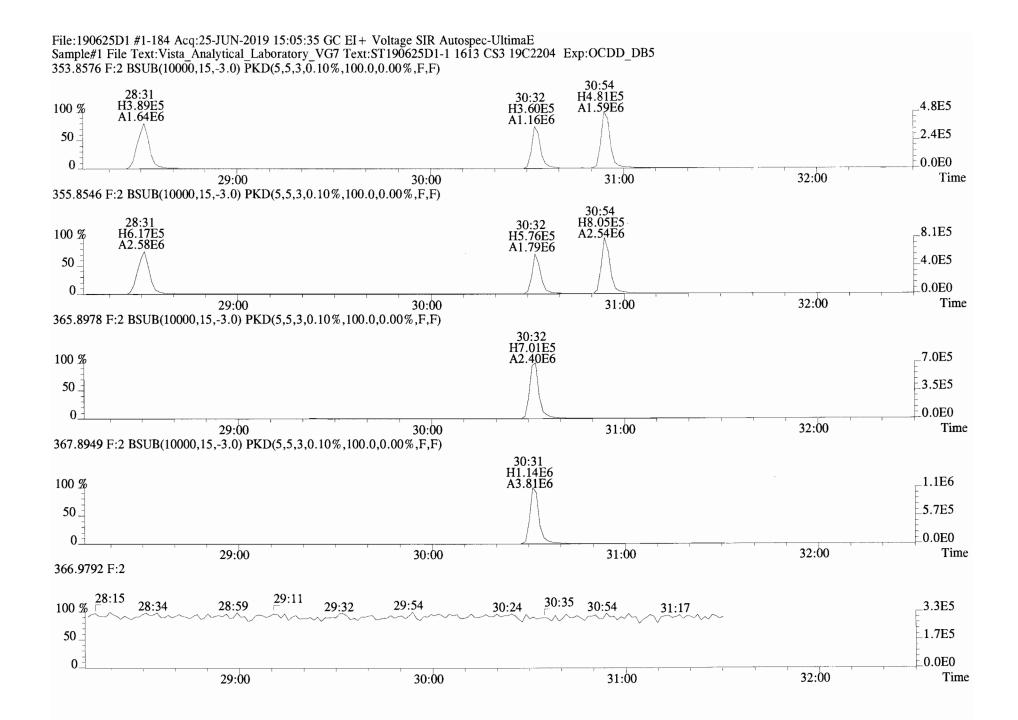

480.96967

481.01776

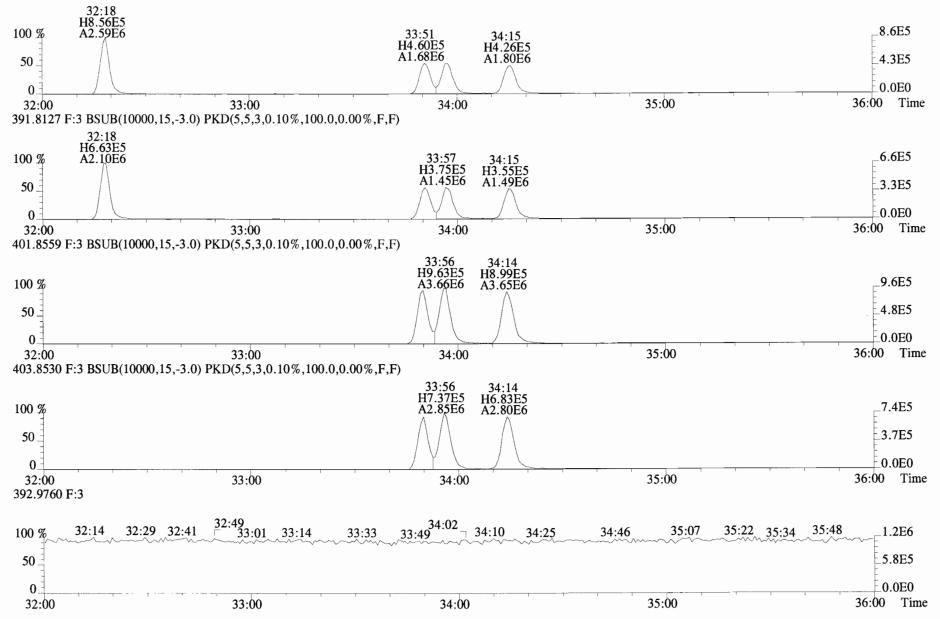
480.92157

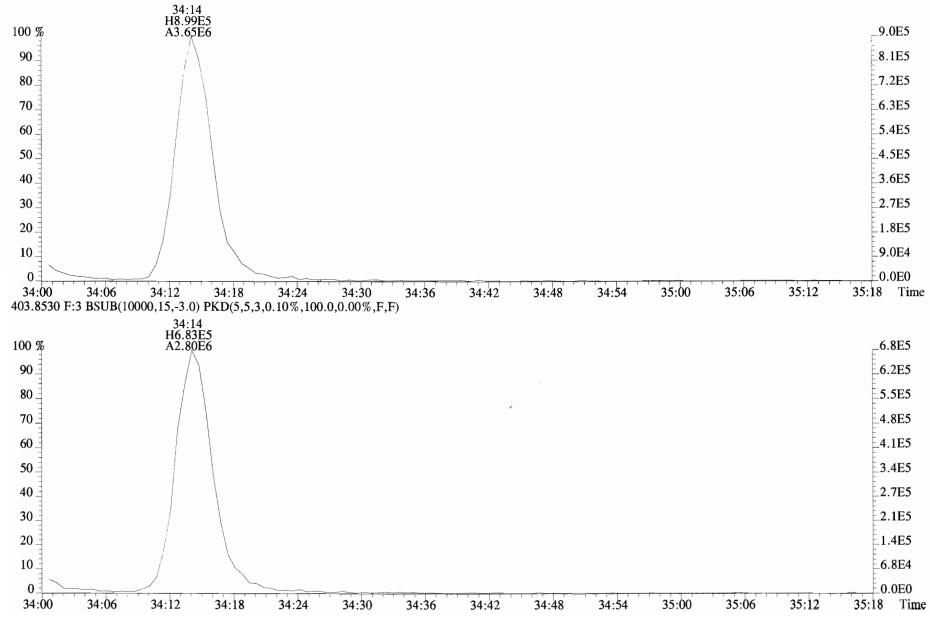


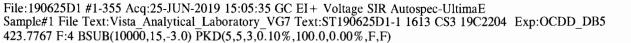

File:190625D1 #1-514 Acq:25-JUN-2019 15:05:35 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190625D1-1 1613 CS3 19C2204 Exp:OCDD_DB5 321.8936

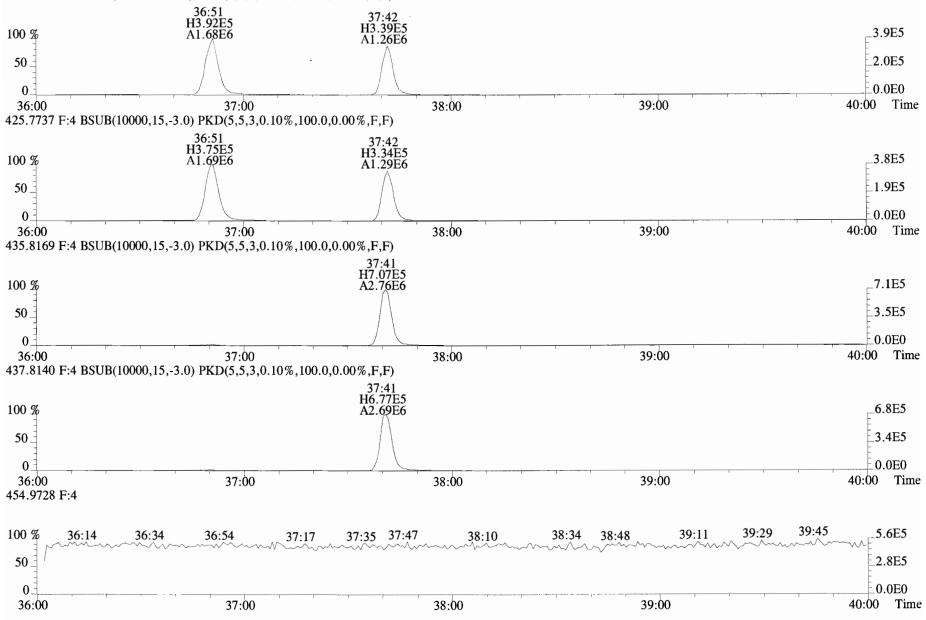


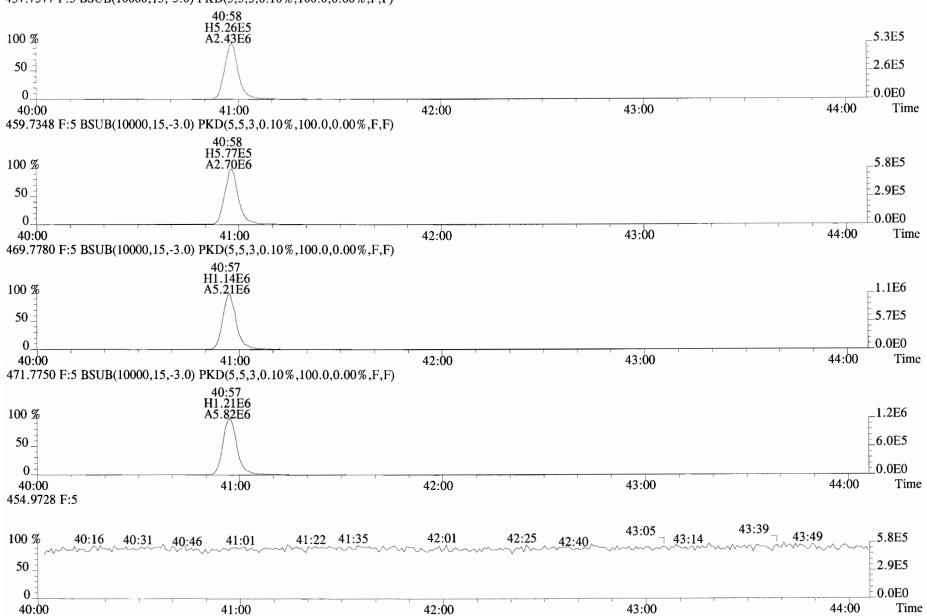
ient ID: 1613 CS3 19C2204 b ID: ST190625D1-1	Filename: 190625D1 S:1 Acq:25-JUN-19 15:05:35 GC Column ID: ZB-5MS ICal: 1613VG7-5-10-19 wt/vol: 1.000					ConCal EndCAI		Page	1 01						
Name	Resp	RA	RRF	RT	Conc	Qual	noise Fac	DL	Name		Conc	EMPC	Qual	noise	I
2,3,7,8-TCDD	9.59e+05	0.80 y	0.90	26:05	12.745		* 2.5	*		etra-Dioxins	86.4	88.1		*	
1,2,3,7,8-PeCDD	2.95e+06	0.65 y	0.87	30:33	54.484		* 2.5	*	Total Pe	enta-Dioxins	208	209		*	
1,2,3,4,7,8-HxCDD	3.03e+06	1.24 y	1.05	33:51	56.318		* 2.5	*	Total He	exa-Dioxins	243	245		*	
1,2,3,6,7,8-HxCDD	3.28e+06	1.26 y	0.93	33:57	54.185		* 2.5	*	Total He	epta-Dioxins	110	111		*	
1,2,3,7,8,9-HxCDD	3.28e+06	1.21 y	0.96	34:15	52.911		* 2.5	*	Total Te	etra-Furans	32.8	34.9		*	
1,2,3,4,6,7,8-HpCDD	2.55e+06	0.98 y	0.99	37:42	47.325		* 2.5	*	Total Pe	enta-Furans	223.52	224.26		*	
OCDD	5.13e+06	0.90 y	0.99	40:58	94.304		* 2.5	*	Total He	exa-Furans	282	282		*	
		-							Total He	epta-Furans	99.4	101		*	
2,3,7,8-TCDF	1.22e+06	0.83 y	0.94	25:20	9.4264		* 2.5	*							
1,2,3,7,8-PeCDF	4.42e+06	1.65 y	0.92	29:23	49.841		* 2.5	*							
2,3,4,7,8-PeCDF		1.64 y	0.96	30:17	51.707		* 2.5	*							
1,2,3,4,7,8-HxCDF		1.25 y	1.15	32:57	51.322		* 2.5	*							
1,2,3,6,7,8-HxCDF		1.21 y	1.04	33:05	52.538		* 2.5	*							
2,3,4,6,7,8-HxCDF		1.25 y	1.10	33:42	53.192		* 2.5	*							
1,2,3,7,8,9-HxCDF		1.26 y	1.03	34:40	53.282		* 2.5	*							
1,2,3,4,6,7,8-HpCDF		0.97 y	1.05	36:28	49.791		* 2.5	*							
1,2,3,4,7,8,9-HpCDF		0.96 y	1.23	38:16	49.101		* 2.5	*							
	5.86e+06	0.93 y	0.94	41:13	101.48		* 2.5	*							
OCBF	5.000+00	0.93 Y	0.94	41:13	101.40		~ 2.5		Rec	Oual					
13C-2,3,7,8-TCDD	9 350106	0.82 y	1.11	26:04	99.651				99.7	Quui					
13C-1,2,3,7,8-PeCDD		0.82 y 0.63 y	0.98	30:32	83.980				84.0						
13C-1,2,3,4,7,8-HxCDD		1.44 n	0.68	33:50	91.507				91.5						
	6.51e+06		0.84	33:50	93.337				93.3						
		1.29 y	0.84	33:57 34:15	95.858				95.9						
13C-1,2,3,7,8,9-HxCDD		1.30 y							95.9						
13C-1,2,3,4,6,7,8-HpCDD		1.03 y	0.69	37:41	95.920				107						
13C-OCDD		0.90 y	0.62	40:57	213.00										
13C-2,3,7,8-TCDF		0.77 y	1.05	25:19	109.84				110						
13C-1,2,3,7,8-PeCDF		1.61 y	0.95	29:23	84.466				84.5						
13C-2,3,4,7,8-PeCDF		1.58 y	0.94	30:17	83.669				83.7						
13C-1,2,3,4,7,8-HxCDF		0.50 y	0.86	32:57	100.07				100						
13C-1,2,3,6,7,8-HxCDF		0.52 y	1.02	33:04	99.099				99.1						
13C-2,3,4,6,7,8-HxCDF	7.71e+06	0.51 y	0.95	33:40	97.762				97.8						
13C-1,2,3,7,8,9-HxCDF	7.14e+06	0.51 y	0.87	34:39	99.316				99.3						
13C-1,2,3,4,6,7,8-HpCDF	6.11e+06	0.43 y	0.81	36:27	91.247				91.2						
13C-1,2,3,4,7,8,9-HpCDF	4.79e+06	0.41 y	0.63	38:15	91.393				91.4						
13C-OCDF	1.23e+07	0.90 y	0.78	41:12	189.70				94.8						
p 37Cl-2,3,7,8-TCDD	8.77e+05		1.22	26:05	9.5064				95.1	Integr	ations	Rev	iewed		
										by	DA	by		~	
RT 13C-1,2,3,4-TCDD	7.58e+06	0.84 y	1.00	25:29	100.00					Analyst:	10	Ana	lyst:_	CT 6/26/1	
13C-1,2,3,4-TCDF		0.79 y	1.00	24:05	100.00									_	
RT 13C-1,2,3,4,6,9-HxCDF		0.51 y	1.00	33:22	100.00						1 1				


T T

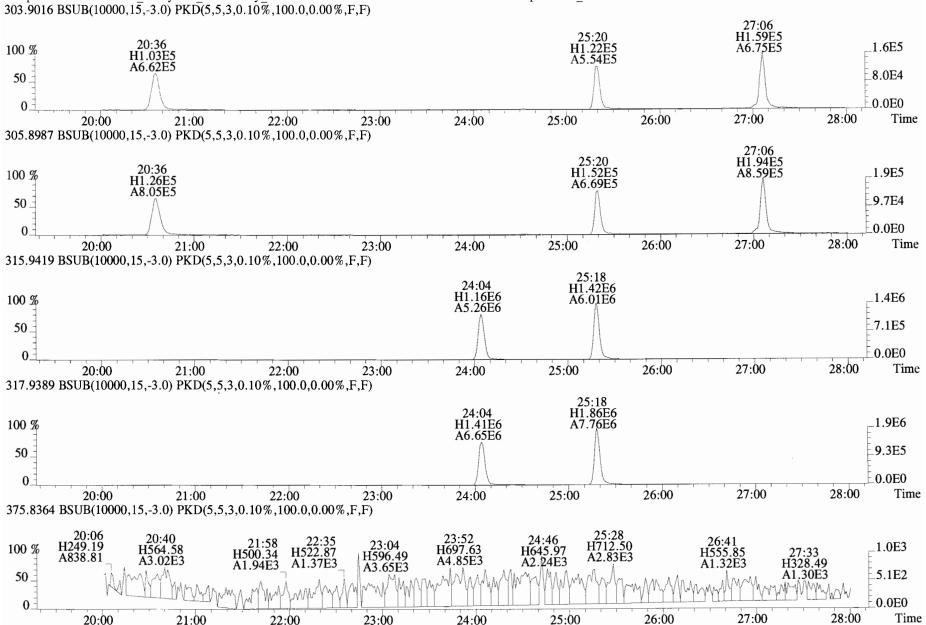


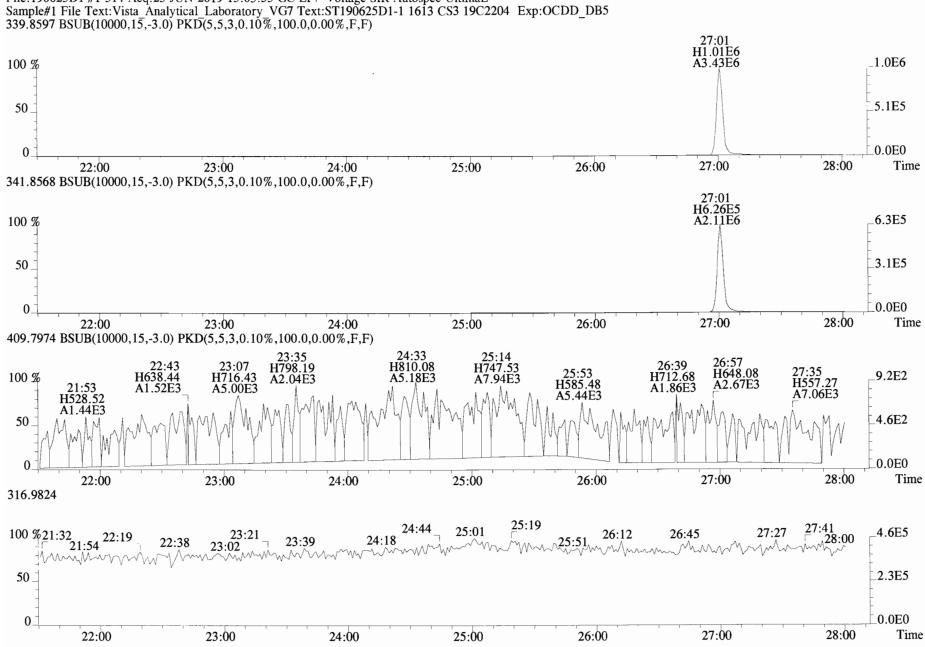


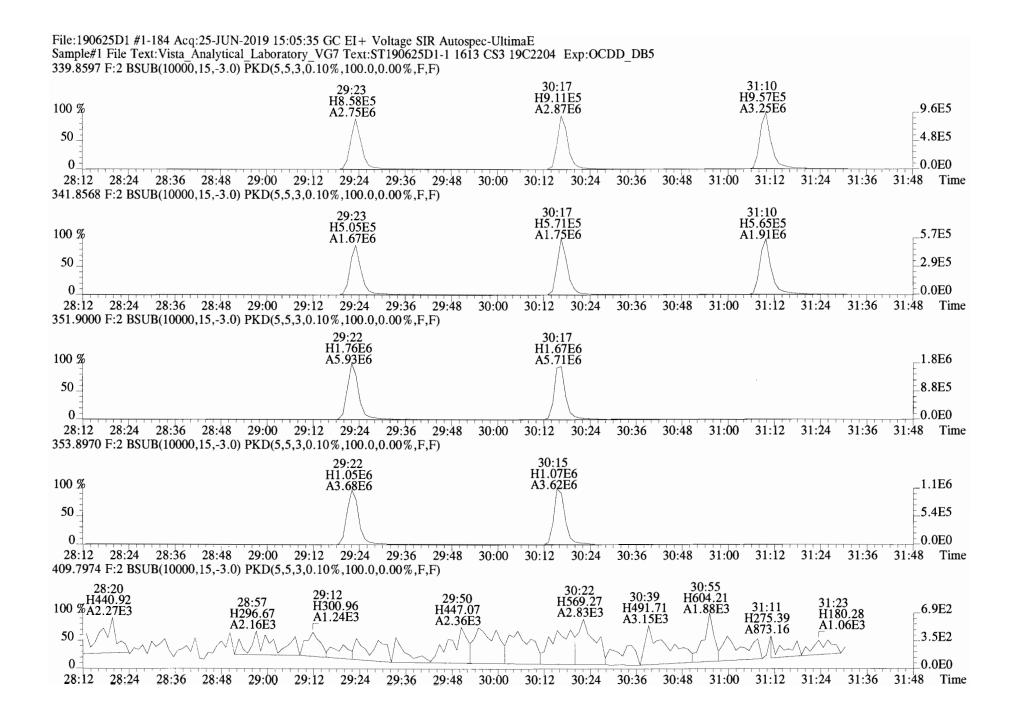

File:190625D1 #1-400 Acq:25-JUN-2019 15:05:35 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190625D1-1 1613 CS3 19C2204 Exp:OCDD_DB5 389.8156 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

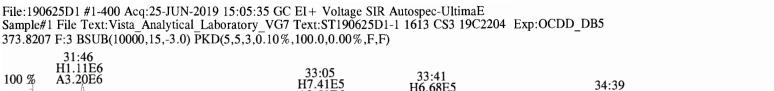


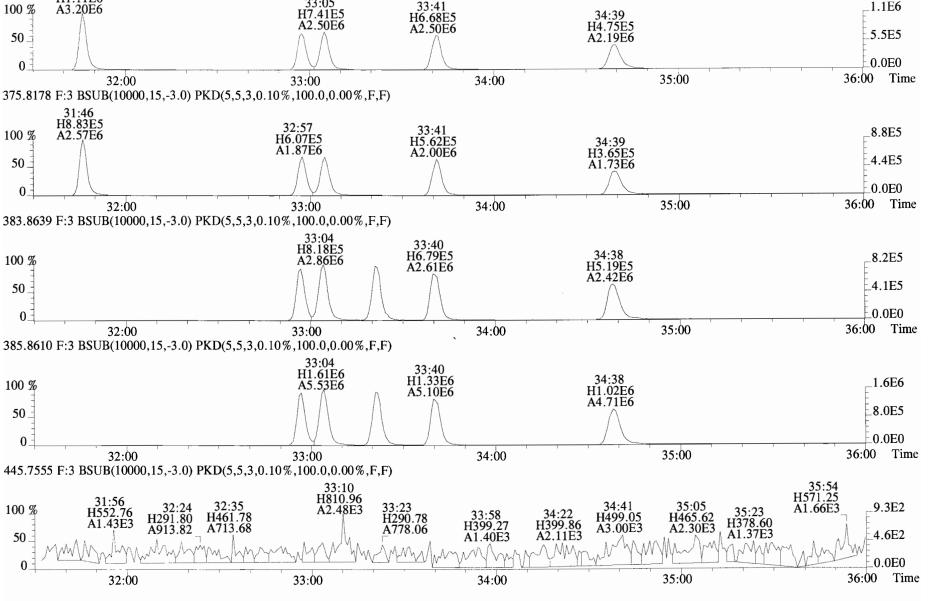
File:190625D1 #1-400 Acq:25-JUN-2019 15:05:35 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190625D1-1 1613 CS3 19C2204 Exp:OCDD_DB5 401.8559 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

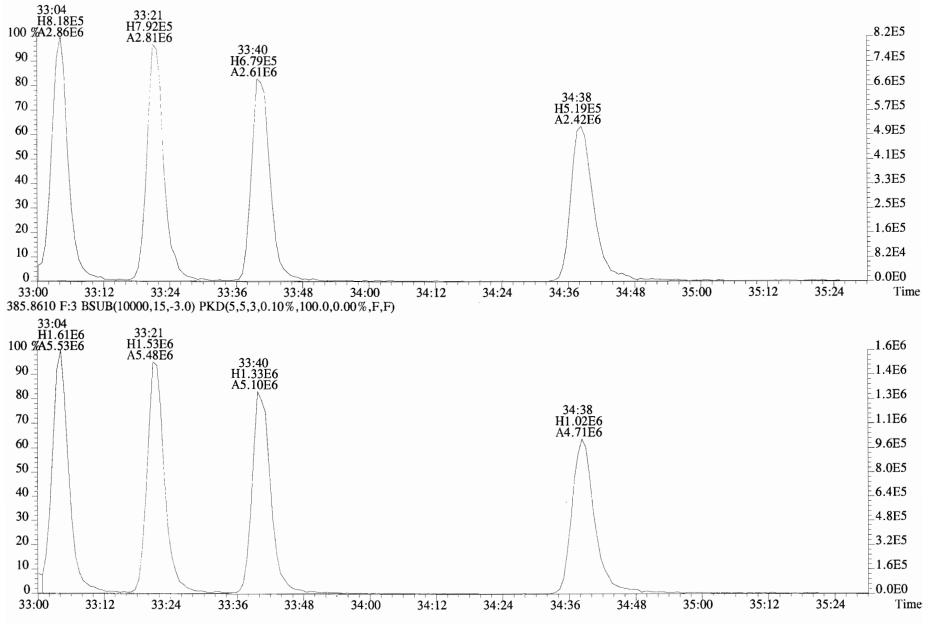


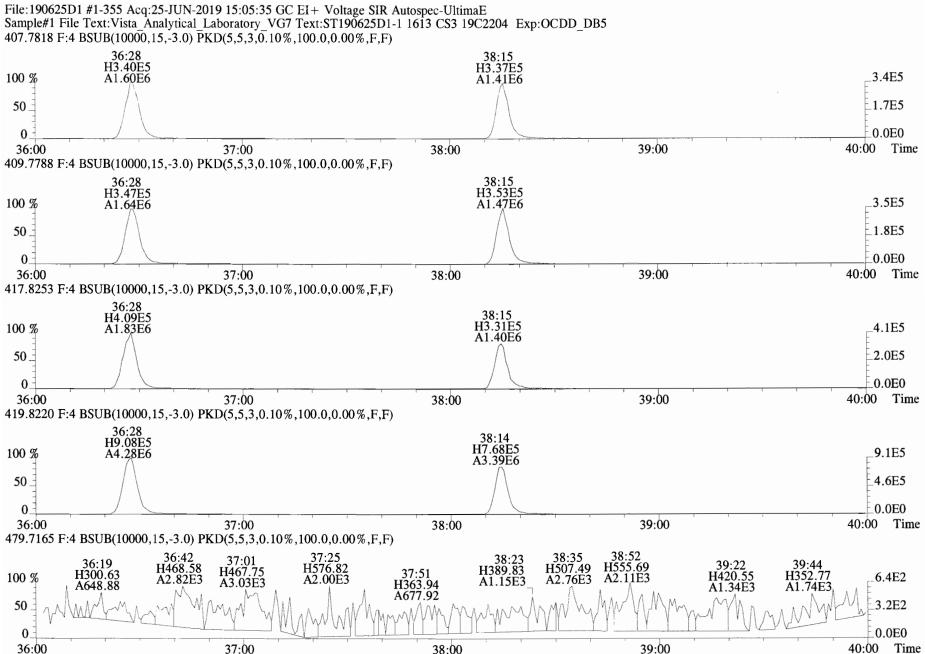



File:190625D1 #1-432 Acq:25-JUN-2019 15:05:35 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190625D1-1 1613 CS3 19C2204 Exp:OCDD_DB5 457.7377 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

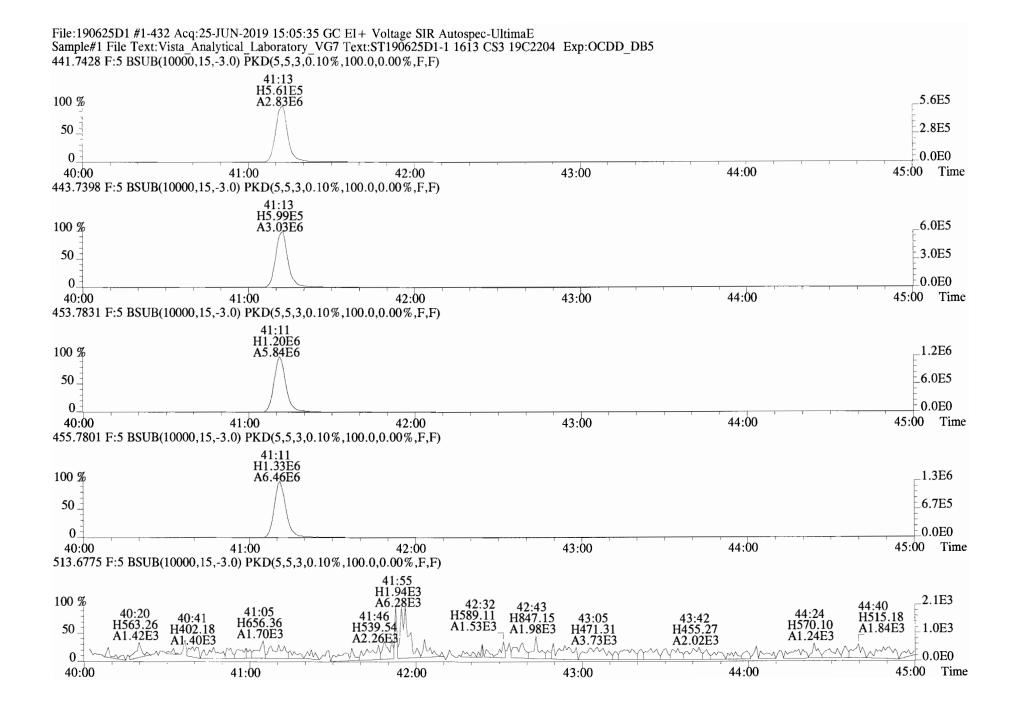

File:190625D1 #1-514 Acq:25-JUN-2019 15:05:35 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190625D1-1 1613 CS3 19C2204 Exp:OCDD_DB5 303.9016 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

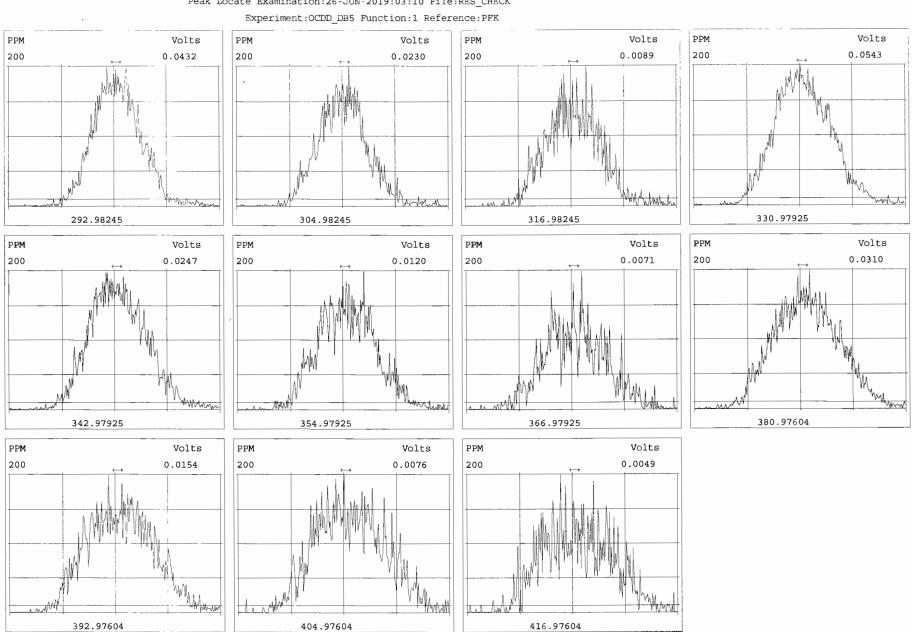

File:190625D1 #1-514 Acq:25-JUN-2019 15:05:35 GC EI+ Voltage SIR Autospec-UltimaE

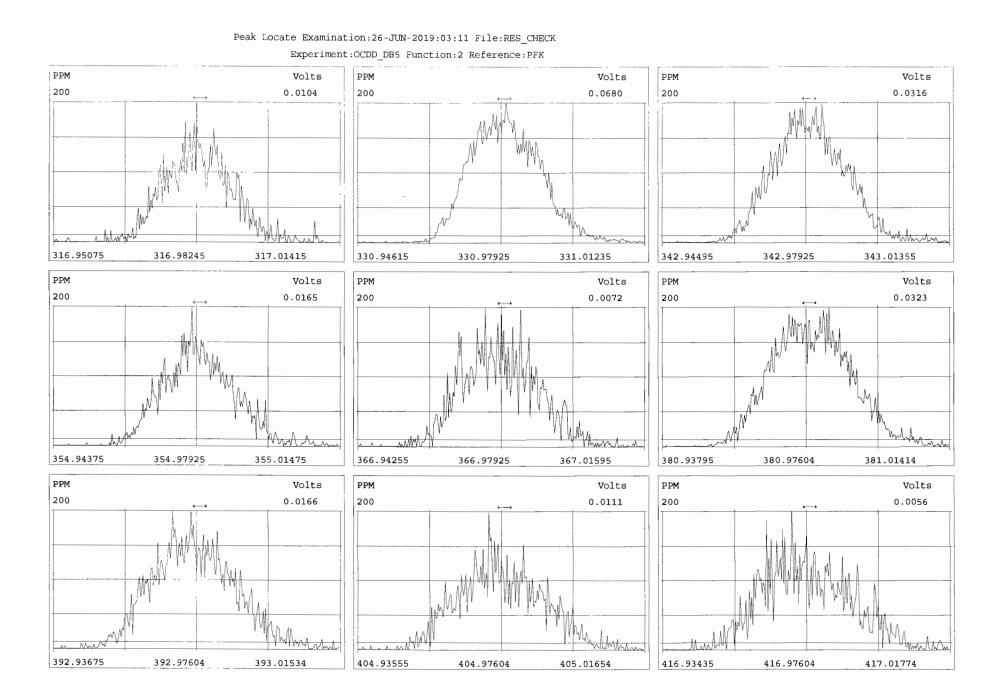

Work Order 1901248

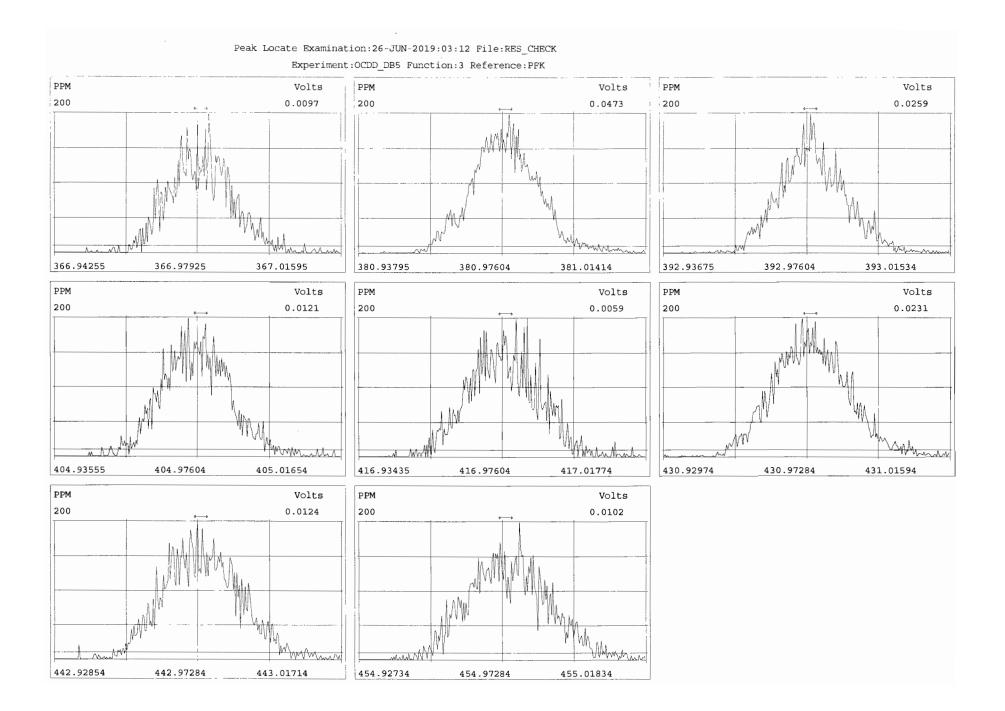


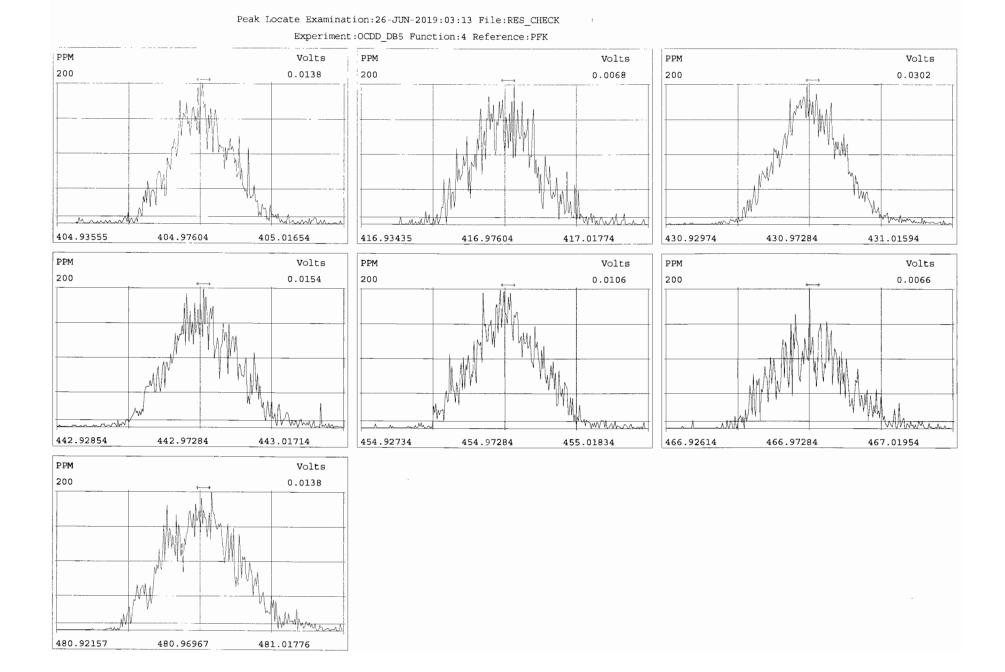
Sample#1 File Text: Vista Analytical Laboratory VG7 Text: ST190625D1-1 1613 CS3 19C2204 Exp:OCDD_DB5 373.8207 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)




File:190625D1 #1-400 Acq:25-JUN-2019 15:05:35 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190625D1-1 1613 CS3 19C2204 Exp:OCDD_DB5 383.8639 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)




Work Order 1901248



Peak Locate Examination:26-JUN-2019:03:10 File:RES_CHECK

Peak Locate Examination:26-JUN-2019:03:14 File:RES_CHECK

HRMS CALIBRATION STANDARDS REVIEW CHECKLIST

Beg. Calbration ID: 571907011)1-1			Reviewed By: CT 07/02/19		
End Calibration ID:NA			Initials & Date		
	Beg.	End		Beg.	End
Ion abundance within QC limits?	\checkmark	NA	Mass resolution >	\checkmark	
Concentrations within criteria?		ф	□ 5k □ 6-8K □ 8K ☑ 10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%	\checkmark	Ф	Intergrated peaks display correctly?	\square	NA
First and last eluters present?	\checkmark	ф	GC Break <20%		
Retention Times within criteria?		Ф	8280 CS1 End Standard:		
Verification Std. named correctly?	<u>∕</u>	□	- Ratios within limits, S/N <2.5:1, CS1 within 12 hours		NR
(ST-Year-Month-Day-VG ID)					
Forms signed and dated?			Comments:		
Correct ICAL referenced?	<u>D</u> B				
Run Log:					
- Correct instrument listed?		V			
- Samples within 12 hour clock?	(\mathbf{y})	N			
- Bottle position verfied?)E	3			

FORM 4A/4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Vista Analytical Laboratory

CCAL ID: ST190701D1-1

Initial Calibration Date: 5-30-19

Instrument ID: VG-7 GC Column ID: DB-225

VER Data Filename: 190701D1 S#2 Analysis Date: 1-JUL-19 Time: 09:56:21

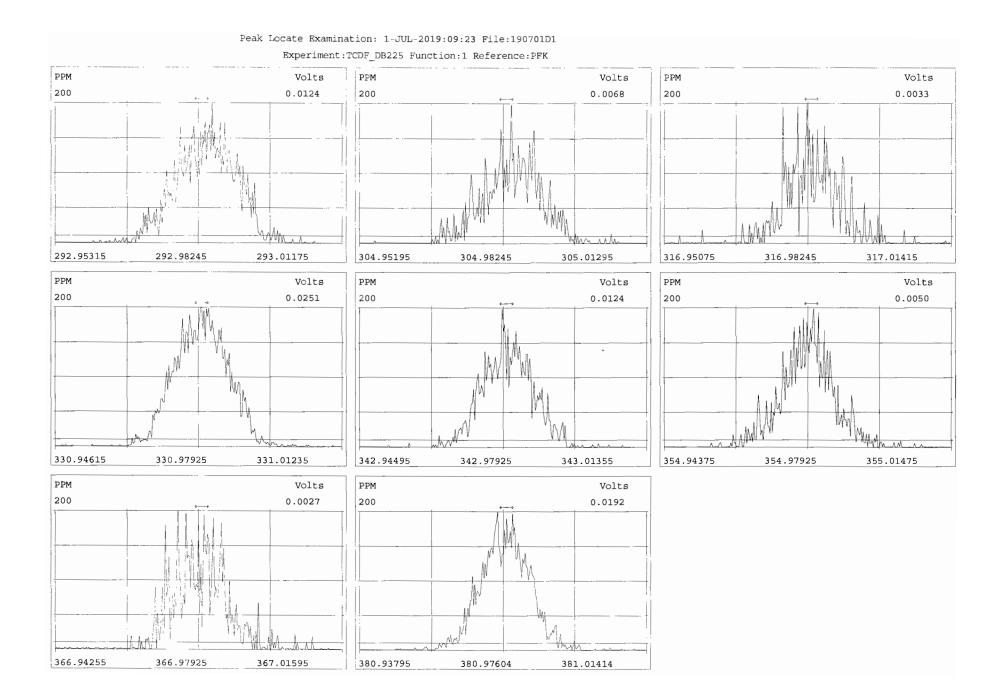
	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	CONC. FOUND	CONC. RANGE 1613 (ng/mL)	CONC. RANGE 8290 (ng/mL)
ANALYTES	KAIIO (I)	KAIIO	(2)	FOUND	(1197 (1112)	(119) (111)
2,3,7,8-TCDF	M/M+2	0.79	0.65-0.89	10.0	8.4 - 12.0 (3) 8.6 - 11.6 (4)	8.0 - 12.0
13C-2,3,7,8-TCDF	M/M+2	0.78	0.65-0.89	112.8	71.0 - 140.0 (3) 76.0 - 131.0 (4)	70.0 - 130.0

(1) See Table 8, Method 1613, for m/z specifications.

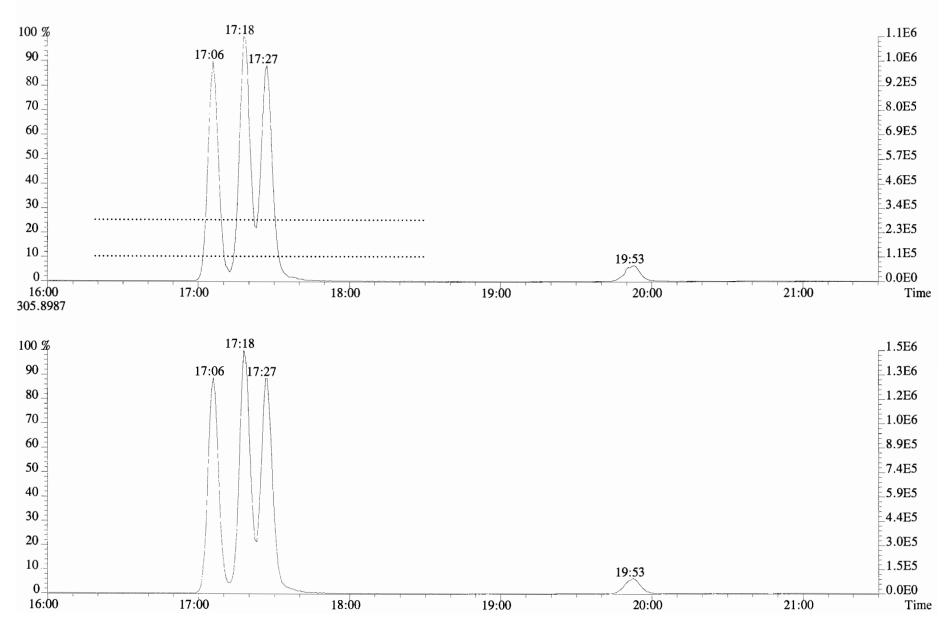
- (2) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.
- (3) Contract-required concentration range as specified in Table 6a, Method 1613, under VER.
- (4) Contract required concentration range as specified in Table 6a, Method 1613, for tetras only.

Analyst: <u>DB</u> Date: <u>7[1][9</u>

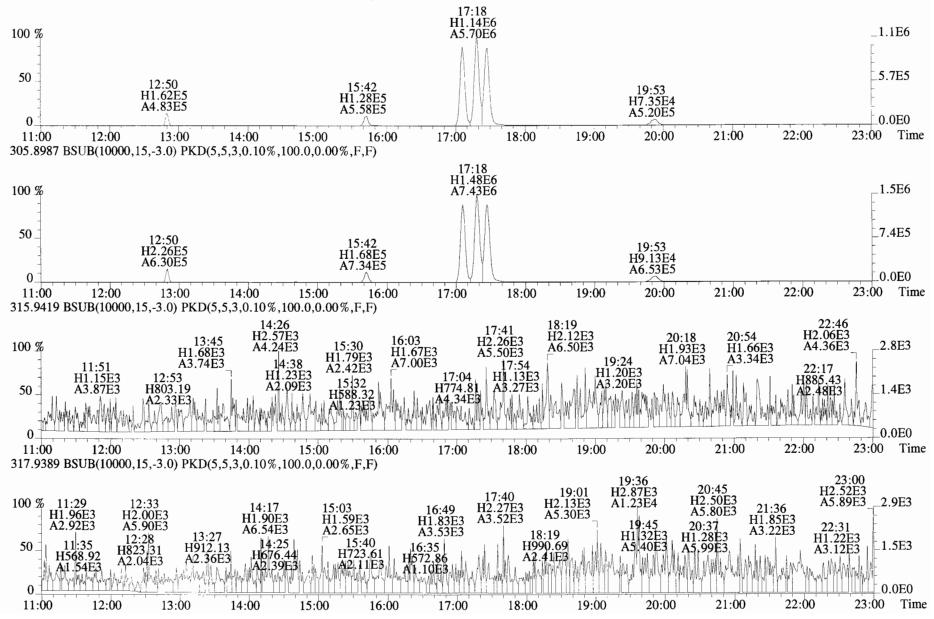
Client ID: 1613 CS3 19C2204	Filename: 190701D1 S:2	Acq: 1-JUL-19 09:56:21	ConCal: ST190701D1-1
Lab ID: ST190701D1-1	GC Column ID: DB-225 ICal	: 1613TCDFVG7-5-30-19 wt/vol: 1.000	EndCAL: NA

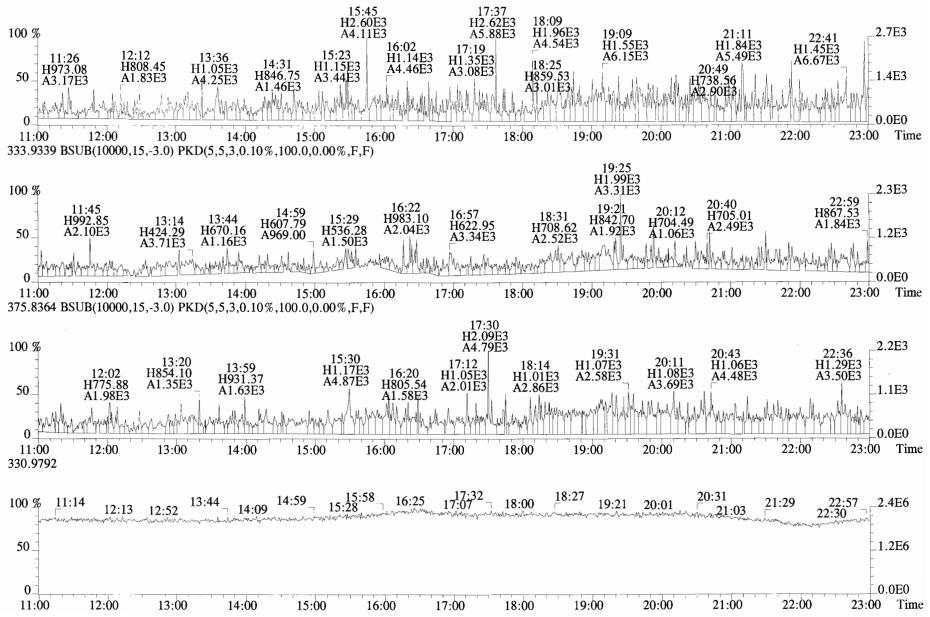

Name	Resp	RA	RT	RRF	Conc	Rec
13C-1,2,3,4-TCDF	1.37e+07	0.82 y	15:13	1.00	100.0	-
13C-2,3,7,8-TCDF	1.57e+07	0.78 y	17:20	1.02	112.8	112.8
2,3,7,8-TCDF	1.50e+06	0.79 y	17:21	0.95	10.04	

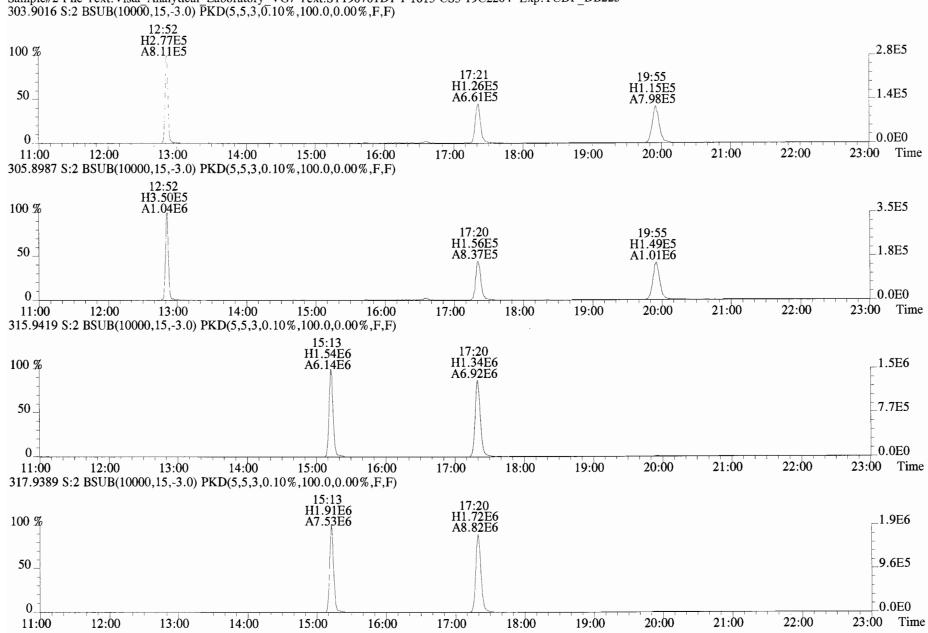
Integrat	ions
by	3
Analyst:	1)


Reviewed

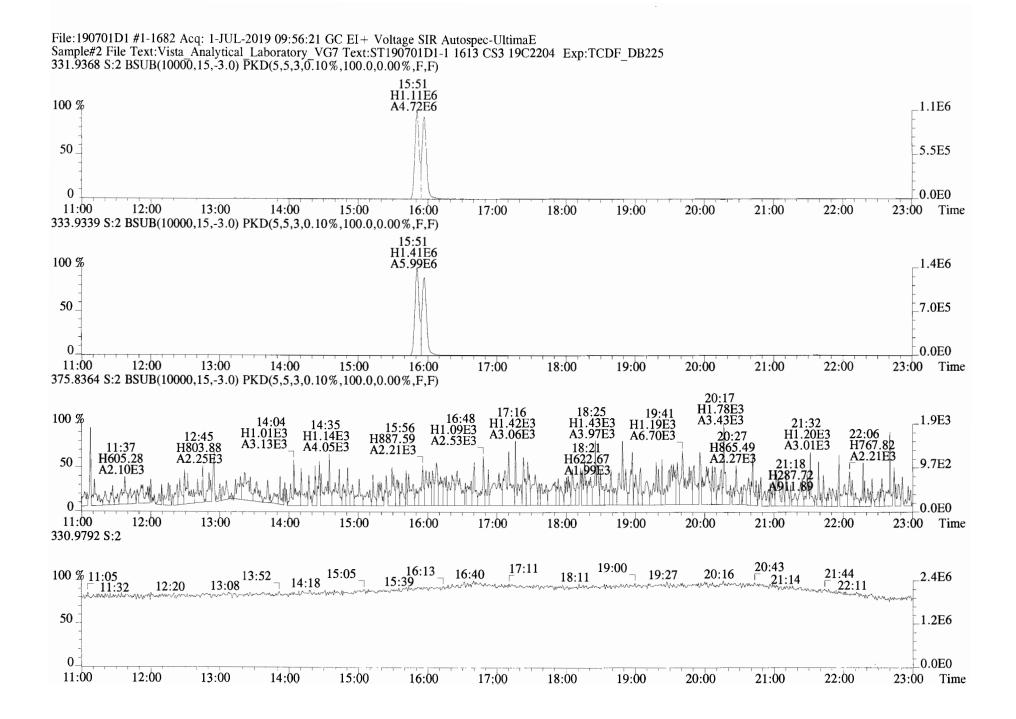
 $\frac{by}{Analyst:} \frac{b}{DA} \qquad \frac{by}{Analyst:} \frac{b}{DA} \qquad \frac{by}{Analyst:} \frac{b}{DA} \qquad \frac{b}{Date:} \frac{b}{DA} \qquad \frac{b}$


Data file	s#	Sample ID	Analyst	Acq date	Acq time	CCal	ECal
190701D1	1	CP190701D1-1	DB	1-JUL-19	09:24:36	ST190701D1-1	NA
190701D1	2	ST190701D1-1	DB	1-JUL-19	09:56:21	ST190701D1-1	NA
190701D1	3	SOLVENT BLANK	DB	1-JUL-19	10:28:11	ST190701D1-1	NA
190701D1	4	1900951-08RE1	DB	1-JUL-19	11:00:03	ST190701D1-1	NA
190701D1	5	B9E0217-DUP1RE1	DB	1-JUL-19	11:31:54	ST190701D1-1	NA
190701D1	6	1901211-01RE1	DB	1-JUL-19	12:03:39	ST190701D1-1	NA
190701D1	7	1901211-02RE1	DB	1-JUL-19	12:35:30	ST190701D1-1	NA
190701D1	8	1901211-03RE1	DB	1-JUL-19	13:07:16	ST190701D1-1	NA
190701D1	9	1900951-09RE2 '	DB	1-JUL-19	13:39:07	ST190701D1-1	NA
190701D1	10	B9F0125-DUP1RE1	DB	1-JUL-19	14:10:51	ST190701D1-1	NA
190701D1	11	B9F0172-DUP3RE1	DB	1-JUL-19	14:42:40	ST190701D1-1	NA

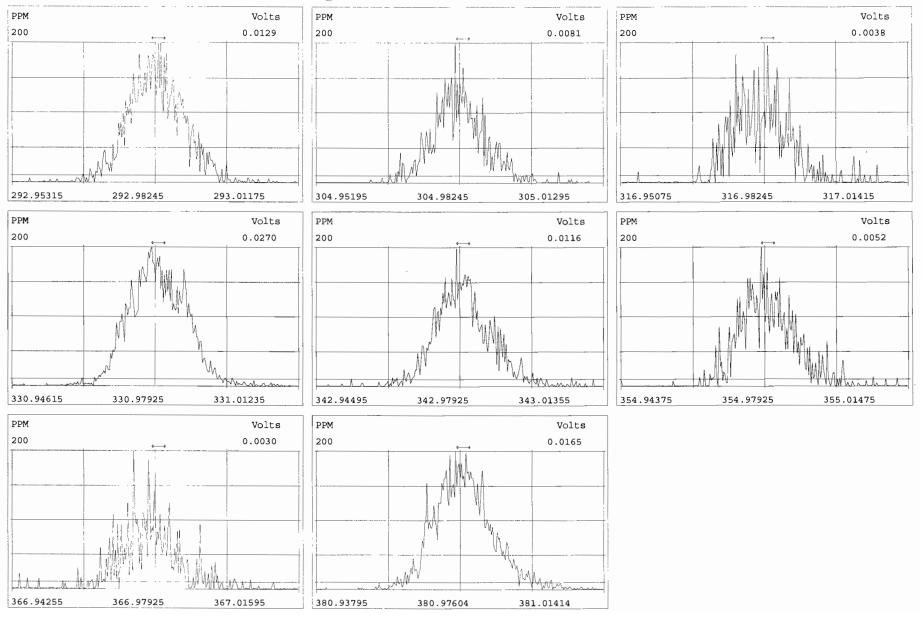

File:190701D1 #1-1683 Acq: 1-JUL-2019 09:24:36 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:CP190701D1-1 DB225 CPSM Exp:TCDF_DB225 303.9016



File:190701D1 #1-1683 Acq: 1-JUL-2019 09:24:36 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:CP190701D1-1 DB225 CPSM Exp:TCDF_DB225 303.9016 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



File:190701D1 #1-1683 Acq: 1-JUL-2019 09:24:36 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:CP190701D1-1 DB225 CPSM Exp:TCDF_DB225 331.9368 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



File:190701D1 #1-1682 Acq: 1-JUL-2019 09:56:21 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista Analytical Laboratory VG7 Text:ST190701D1-1 1613 CS3 19C2204 Exp:TCDF_DB225 303.9016 S:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

Peak Locate Examination: 1-JUL-2019:15:24 File:RES_CHECK

Experiment:TCDF_DB225 Function:1 Reference:PFK

HRMS CALIBRATION STANDARDS REVIEW CHECKLIST

Beg. Calbration ID: <u>ST190701D2-</u>	1		Reviewed By: <u>CTU7/02/19</u> Initials & Date		
End Calibration ID:NA	Beg.	End		Beg.	End
Ion abundance within QC limits?		NA	Mass resolution <u>></u>		
Concentrations within criteria?		ф	□ 5k □ 6-8K □ 8K ₪/10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%	\checkmark	Ф	Intergrated peaks display correctly?	\checkmark	NA
First and last eluters present?	\checkmark	ф	GC Break <20%		
Retention Times within criteria?		Ф	8280 CS1 End Standard:		
Verification Std. named correctly?		ф	- Ratios within limits, S/N <2.5:1, CS1 within 12 hours		NA
(ST-Year-Month-Day-VG ID)					
Forms signed and dated?		Ф	Comments:		
Correct ICAL referenced?	B				
Run Log:					
- Correct instrument listed?	\checkmark	∇			
- Samples within 12 hour clock? - Bottle position verfied?	(Y)	N			

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Vista Analytical Laboratory Episode No.: CCAL ID: ST190701D2-1

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190701D2 S#1 Analysis Date: 1-JUL-19 Time: 18:04:52

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	Pass	CONC. FOUND	CONC. RANGE (3) (ng/mL)
NATIVE ANALYTES						
2,3,7,8-TCDD	M/M+2	0.82	0.65-0.89	У	10.9	7.8 - 12.9 8.2 - 12.3 (4)
1,2,3,7,8-PeCDD	M/M+2	0.62	0.54-0.72	У	52.7	39.0 - 65.0
1,2,3,4,7,8-HxCDD	M+2/M+4	1.22	1.05-1.43	У	51.3	39.0 - 64.0
1,2,3,6,7,8-HxCDD	M+2/M+4	1.21	1.05-1.43	У	49.8	39.0 - 64.0
1,2,3,7,8,9-HxCDD	M+2/M+4	1.24	1.05-1.43	У	50.0	41.0 - 61.0
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.01	0.88-1.20	У	46.8	43.0 - 58.0
OCDD	M+2/M+4	0.91	0.76-1.02	У	96.1	79.0 - 126.0
2,3,7,8-TCDF	M/M+2	0.79	0.65-0.89	У	9.49	8.4 - 12.0 8.6 - 11.6 (4)
1,2,3,7,8-PeCDF	M+2/M+4	1.60	1.32-1.78	У	54.6	41.0 - 60.0
2,3,4,7,8-PeCDF	M+2/M+4	1.63	1.32-1.78	Ŷ	53.7	41.0 - 61.0
1,2,3,4,7,8-HxCDF	M+2/M+4	1.27	1.05-1.43	y	51.1	45.0 - 56.0
1,2,3,6,7,8-HxCDF	M+2/M+4	1.24	1.05-1.43	v ·	51.1	44.0 - 57.0
2,3,4,6,7,8-HxCDF	M+2/M+4	1.25	1.05-1.43	y	52.2	44.0 - 57.0
1,2,3,7,8,9-HxCDF	M+2/M+4	1.26	1.05-1.43	Y Y	51.6	45.0 - 56.0
1,2,3,4,6,7,8-HpCDF		1.03	0.88-1.20	У	52.7	45.0 - 55.0
1,2,3,4,7,8,9-HpCDF	M+2/M+4	1.02	0.88-1.20	У	50.5	43.0 - 58.0
OCDF	M+2/M+4	0.90	0.76-1.02	У	98.2	63.0 - 159.0

(1) See Table 8, Method 1613, for m/z specifications.

(2) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

(3) Contract-required concentration range as specified in Table 6, Method 1613.

(4) Contract-required concentration range as specified in Table 6a, Method 1613, for tetras only.

Analyst: <u>DB</u> Date: <u>7/2/19</u>

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190701D2 S#1 Analysis Date: 1-JUL-19 Time: 18:04:52

LABELED COMPOUNDS	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	Pass	CONC. FOUND	CONC. RANGE (ng/mL)
13C-2,3,7,8-TCDD	M/M+2	0.78	0.65-0.89	У	102	82.0 - 121.0
13C-1,2,3,7,8-PeCDD	M/M +2	0.63	0.54-0.72	У	92.9	62.0 - 160.0
13C-1,2,3,4,7,8-HxC	DD M+2/M+4	1.28	1.05-1.43	y	111	85.0 - 117.0
13C-1,2,3,6,7,8-HxC		1.29	1.05-1.43	y	101	85.0 - 118.0
13C-1,2,3,7,8,9-HxC	DD M+2/M+4	1.26	1.05-1.43	-	107	85.0 - 118.0
13C-1,2,3,4,6,7,8-H	pCDD M+2/M+4	1.01	0.88-1.20	У	114	72.0 - 138.0
13C-OCDD	M/M+2	0.92	0.76-1.02	У	226	96.0 - 415.0
13C-2,3,7,8-TCDF	M+2/M+4	0.80	0.65-0.89	У	101	71.0 - 140.0
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.60	1.32-1.78	У	94.6	76.0 - 130.0
13C-2,3,4,7,8-PeCDF	M+2/M+4	1.58	1.32-1.78	У	93.0	77.0 - 130.0
13C-1,2,3,4,7,8-HxC	DF M/M+2	0.51	0.43-0.59	У	107	76.0 - 131.0
13C-1,2,3,6,7,8-HxC	DF M/M+2	0.52	0.43-0.59	У	102	70.0 - 143.0
13C-2,3,4,6,7,8-HxC	DF M/M+2	0.52	0.43-0.59	у	102	73.0 - 137.0
13C-1,2,3,7,8,9-HxC	DF M/M+2	0.53	0.43-0.59	У	104	74.0 - 135.0
13C-1,2,3,4,6,7,8-H	DCDF M+2/M+4	0.44	0.37-0.51	v	104	78.0 - 129.0
13C-1,2,3,4,7,8,9-H		0.44	0.37-0.51	-	105	77.0 - 129.0
13C-OCDF	M+2/M+4	0.89	0.76-1.02	У	210	96.0 - 415.0
CLEANUP STANDARD (3)					
37Cl-2,3,7,8-TCDD					9.43	7.9 - 12.7

(1) See Table 8, Method 1613, for m/z specifications.

(2) Ion Abundance Ratio Control Limits as specified

(3) No ion abundance ratio; report concentration found.

Analyst: <u>]}</u>

Lab Name: Vista Analytical Laboratory Episode No.:

SAS No.: Contract No.:

Instrument ID: VG-7 Initial Calibration Date: 5-10-19

RT Window Data Filename: 190701D2 S#1 Analysis Date: 1-JUL-19 Time: 18:04:52

ZB-5MS IS Data Filename: 190701D2 S#1 Analysis Date: 1-JUL-19 Time: 18:04:52

DB_225 IS Data Filename: Analysis Date: Time:

ZB-5MS RT WINDOW DEFINING STANDARDS RESULTS

ISOMERS 1,3,6,8-TCDD (F) 1,2,8,9-TCDD (L)	ABSOLUTE RT 23:40 27:35	ISOMERS 1,3,6,8-TCDF (F) 1,2,8,9-TCDF (L)	ABSOLUTE RT 21:45 27:43
1,2,4,7,9-PeCDD (F)	29:05	1,3,4,6,8-PeCDF (F)	27:39
1,2,3,8,9-PeCDD (L)	31:24	1,2,3,8,9-PeCDF (L)	31:39
1,2,4,6,7,9-HxCDD (F)	32:49	1,2,3,4,6,8-HxCDF (F)	32:16
1,2,3,7,8,9-HxCDD (L)	34:50	1,2,3,7,8,9-HxCDF (L)	35:15
1,2,3,4,6,7,9-HpCDD (F)	37:23	1,2,3,4,6,7,8-HpCDF (F)	37:04
1,2,3,4,6,7,8-HpCDD (L)	38:12	1,2,3,4,7,8,9-HpCDF (L)	38:46

(F) = First eluting isomer (ZB-5MS); (L) = Last eluting isomer (ZB-5MS).

ISOMER SPECIFICITY (IS) TEST STANDARD RESULTS

% VALLEY HEIGHT BETWEEN COMPARED PEAKS (1)

<25%

(1) To meet contract requirements, %Valley Height Between Compared Peaks shall not exceed 25% (section 15.4.2.2, Method 1613).

Analyst: 16

FORM 6A PCDD/PCDF RELATIVE RETENTION TIMES

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190701D2 S#1 Analysis Date: 1-JUL-19 Time: 18:04:52

Compounds Using 13C-1234-TCDD as RT Internal Standard

NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
2,3,7,8-TCDD	13C-2,3,7,8-TCDD	1.001	0.999-1.002
1,2,3,7,8-PeCDD	13C-1,2,3,7,8-PeCDD	1.001	0.999-1.002
2,3,7,8-TCDF	13C-2,3,7,8-TCDF	1.001	0.999-1.003
1,2,3,7,8-PeCDF	13C-1,2,3,7,8-PeCDF	1.001	0.999-1.002
2,3,4,7,8-PeCDF	13C-2,3,4,7,8-PeCDF	1.000	0.999-1.002

LABELED COMPOUNDS

13C-2,3,7,8-TCDD	13C-1,2,3,4-TCDD	1.021	0.976-1.043
13C-1,2,3,7,8-PeCDD	13C-1,2,3,4-TCDD	1.184	1.000-1.567
13C-2,3,7,8-TCDF	13C-1,2,3,4-TCDD	0.993	0.923-1.103
13C-1,2,3,7,8-PeCDF	13C-1,2,3,4-TCDD	1.141	1.000-1.425
13C-2,3,4,7,8-PeCDF	13C-1,2,3,4-TCDD	1.174	1.011-1.526
37Cl-2,3,7,8-TCDD	13C-1,2,3,4-TCDD	1.021	0.989-1.052

Analyst: <u>76</u> Date: <u>772/19</u>

FORM 6B PCDD/PCDF RELATIVE RETENTION TIMES

Lab Name: Vista Analytical Laboratory Episode No.:

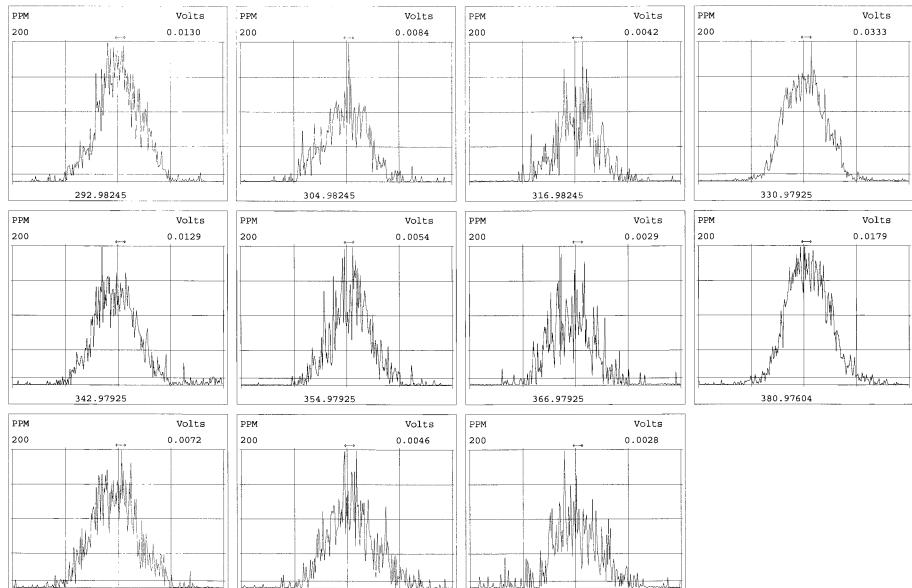
Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190701D2 S#1 Analysis Date: 1-JUL-19 Time: 18:04:52

NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
1,2,3,4,7,8-HxCDF	13C-1,2,3,4,7,8-HxCDF	1.000	0.999-1.001
1,2,3,6,7,8-HxCDF	13C-1,2,3,6,7,8-HxCDF	1.001	0.997-1.005
2,3,4,6,7,8-HxCDF	13C-2,3,4,6,7,8-HxCDF	1.000	0.999-1.001
1,2,3,7,8,9-HxCDF	13C-1,2,3,7,8,9-HxCDF	1.000	0.999-1.001
1,2,3,4,7,8-HxCDD	13C-1,2,3,4,7,8-HxCDD	1.001	0.999-1.001
1,2,3,6,7,8-HxCDD	13C-1,2,3,6,7,8-HxCDD	1.000	0.998-1.004
1,2,3,7,8,9-HxCDD	13C-1,2,3,7,8,9-HxCDD	1.000	0.998-1.004
1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6,7,8-HpCDF	1.000	0.999-1.001
1,2,3,4,6,7,8-HpCDD	13C-1,2,3,4,6,7,8-HpCDD	1.000	0.999-1.001
1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,7,8,9-HpCDF	1.000	0.999-1.001
OCDD	13C-OCDD	1.000	0.999-1.001
OCDF	13C-OCDF	1.000	0.999-1.001

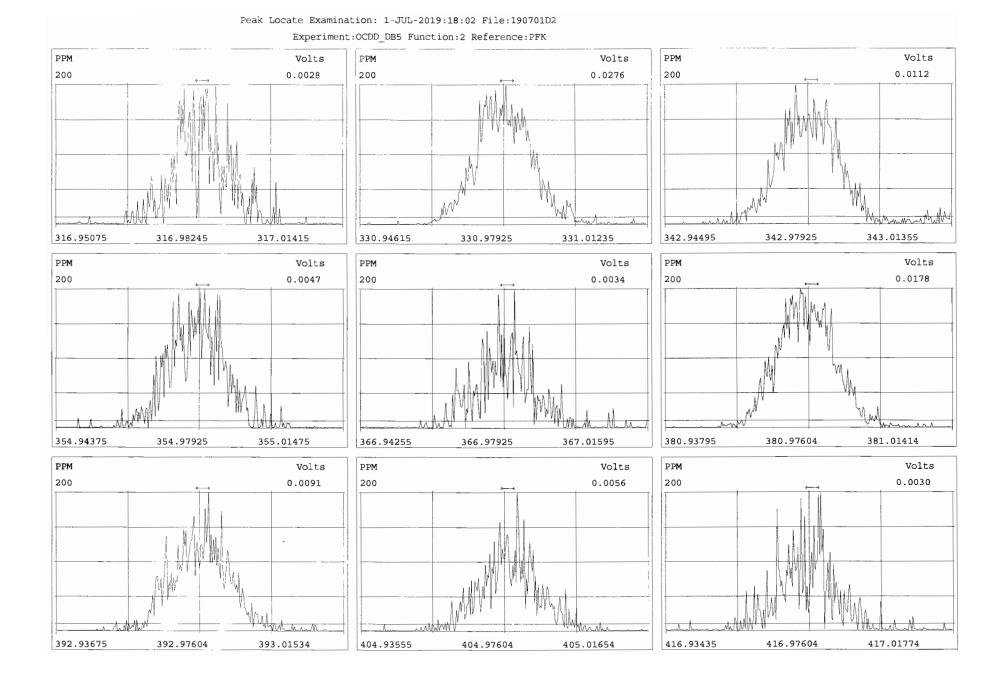

LABELED COMPOUNDS

13C-1,2,3,4,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	0.987	0.975-1.001
13C-1,2,3,6,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	0.991	0.979-1.005
13C-2,3,4,6,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	1.009	1.001-1.020
13C-1,2,3,7,8,9-HxCDF	13C-1,2,3,4,6,9-HxCDF	1.039	1.002-1.072
13C-1,2,3,4,7,8-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.014	1.002-1.026
13C-1,2,3,6,7,8-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.018	1.007-1.029
13C-1,2,3,7,8,9-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.027	1.014-1.038
13C-1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6,9-HxCDF	1.093	1.069-1.111
13C-1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,6,9-HxCDF	1.143	1.098-1.192
13C-1,2,3,4,6,7,8-HpCDD	13C-1,2,3,4,6,9-HxCDF	1.126	1.117-1.141
13C-OCDD	13C-1,2,3,4,6,9-HxCDF	1.226	1.085-1.365
13C-OCDF	13C-1,2,3,4,6,9-HxCDF	1.233	1.091-1.371

Analyst:______ Date:____7/2/19____

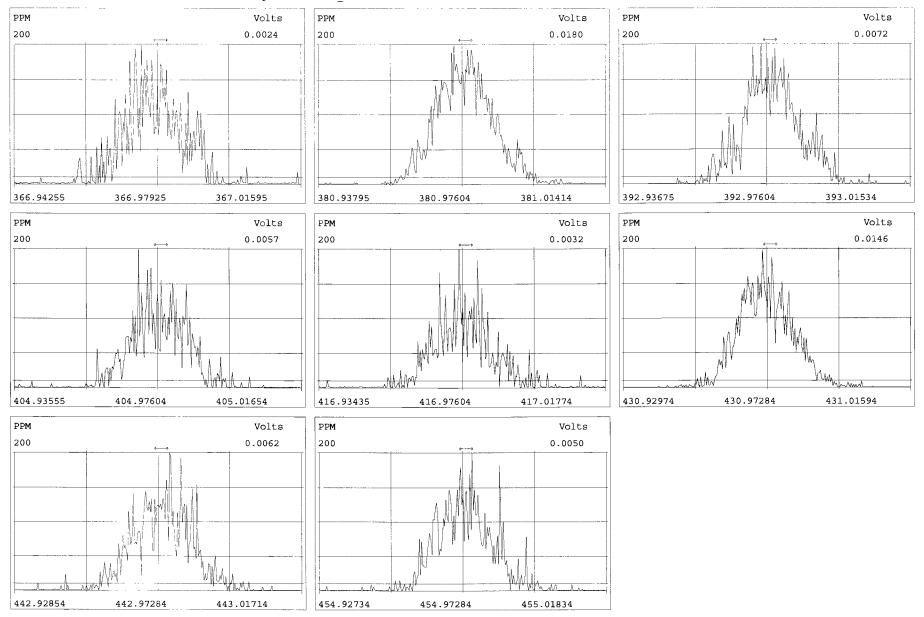
nt ID: 1613 CS3 19C2204 ID: ST190701D2-1		lename: 19 Column II			Acq: 1-J : 1613VG7-			: 1.000	ConCal EndCAL	: ST190701D2 : NA	-1			Page	l of
Norre	Deer		222	5.00	0	0			Name		Conc	EMPC	Qual	noico	D
Name 2,3,7,8-TCDD	Resp	RA	RRF	RT	Conc 10.867	Qual	noise Fac * 2.5	DL *		ra-Dioxins	77.0	77.4	Quai	*	D.
		0.82 y	0.90	26:47			* 2.5	*		nta-Dioxins	193	194		*	
1,2,3,7,8-PeCDD		0.62 y	0.87	31:03	52.683			*		ka-Dioxins	224	224		*	
1,2,3,4,7,8-HxCDD		1.22 y	1.05	34:25	51.252		* 2.5	*		ota-Dioxins	109	109		*	
1,2,3,6,7,8-HxCDD		1.21 y	0.93	34:32	49.773		* 2.5	*	-	tra-Furans	35.0	36.0		*	
1,2,3,7,8,9-HxCDD		1.24 y	0.96	34:50	49.972		* 2.5	*		nta-Furans	238.31	239.31		*	
1,2,3,4,6,7,8-HpCDD	5.11e+06	1.01 y	0.99	38:12	46.815		* 2.5	*			238.31	239.31			
OCDD	9.48e+06	0.91 y	0.99	41:35	96.093		* 2.5	*		ka-Furans	104	104		÷	
	1 040.00	0 70	0.04	26.04	0 4050		+ 2 5	•	IOCAL He	pta-Furans	104	104			
2,3,7,8-TCDF		0.79 y	0.94	26:04	9.4950		* 2.5	*							
1,2,3,7,8-PeCDF		1.60 y	0.92	29:56	54.610		* 2.5	*							
2,3,4,7,8-PeCDF		1.63 y	0.96	30:48	53.682		* 2.5	*							
1,2,3,4,7,8-HxCDF		1.27 y	1.15	33:30	51.053		* 2.5								
1,2,3,6,7,8-HxCDF		1.24 y	1.04	33:37	51.095		* 2.5	*							
2,3,4,6,7,8-HxCDF		1.25 y	1.10	34:15	52.205		* 2.5								
1,2,3,7,8,9-HxCDF		1.26 y	1.03	35:15	51.586		* 2.5	*							
1,2,3,4,6,7,8-HpCDF		1.03 y	1.06	37:04	52.745		* 2.5	*							
1,2,3,4,7,8,9-HpCDF		1.02 y	1.23	38:46	50.535		* 2.5	*							
OCDF	1.07e+07	0.90 y	0.94	41:50	98.161		* 2.5	*	_	0					
									Rec	Qual					
13C-2,3,7,8-TCDD		0.78 y	1.11	26:46	102.34				102						
13C-1,2,3,7,8-PeCDD		0.63 y	0.98	31:02	92.855				92.9						
13C-1,2,3,4,7,8-HxCDD		1.28 y	0.68	34:23	110.87				111						
13C-1,2,3,6,7,8-HxCDD		1.29 y	0.84	34:31	101.10				101						
13C-1,2,3,7,8,9-HxCDD		1.26 y	0.81	34:49	106.59				107						
3C-1,2,3,4,6,7,8-HpCDD		1.01 y	0.69	38:11	113.85				114						
	2.00e+07	0.92 y	0.62	41:34	226.43				113						
13C-2,3,7,8-TCDF		0.80 y	1.05	26:03	101.21				101						
13C-1,2,3,7,8-PeCDF		1.60 y	0.95	29:55	94.624				94.6						
13C-2,3,4,7,8-PeCDF		1.58 y	0.94	30:47	93.013				93.0						
13C-1,2,3,4,7,8-HxCDF		0.51 y	0.86	33:29	107.31				107						
13C-1,2,3,6,7,8-HxCDF		0.52 y	1.02	33:36	102.34				102						
13C-2,3,4,6,7,8-HxCDF		0.52 y	0.95	34:14	101.76				102						
13C-1,2,3,7,8,9-HxCDF		0.53 y	0.87	35:14	104.48				104						
3C-1,2,3,4,6,7,8-HpCDF		0.44 y	0.81	37:03	104.45				104						
3C-1,2,3,4,7,8,9-HpCDF		0.44 y	0.63	38:45	104.71				105						
13C-OCDF	2.32e+07	0.89 Y	0.78	41:49	209.92				105						
37C1-2,3,7,8-TCDD	1,59e+06		1.22	26:47	9.4336				94.3	Integr	ations	Revi	lewed		
				,	2.1000					by	2	by		0	
13C-1,2,3,4-TCDD	1.39e+07	0.78 y	1.00	26:13	100.00					Analyst:	10	Anal	lyst:	CM .	
13C-1,2,3,4-TCDF		0.79 y	1.00	24:55	100.00							Ana:			
13C-1,2,3,4,6,9-HxCDF		0.51 y	1.00	33:55	100.00					_	610				
		1 2- 1	_,							7	12/19	Det	05	ristic	9

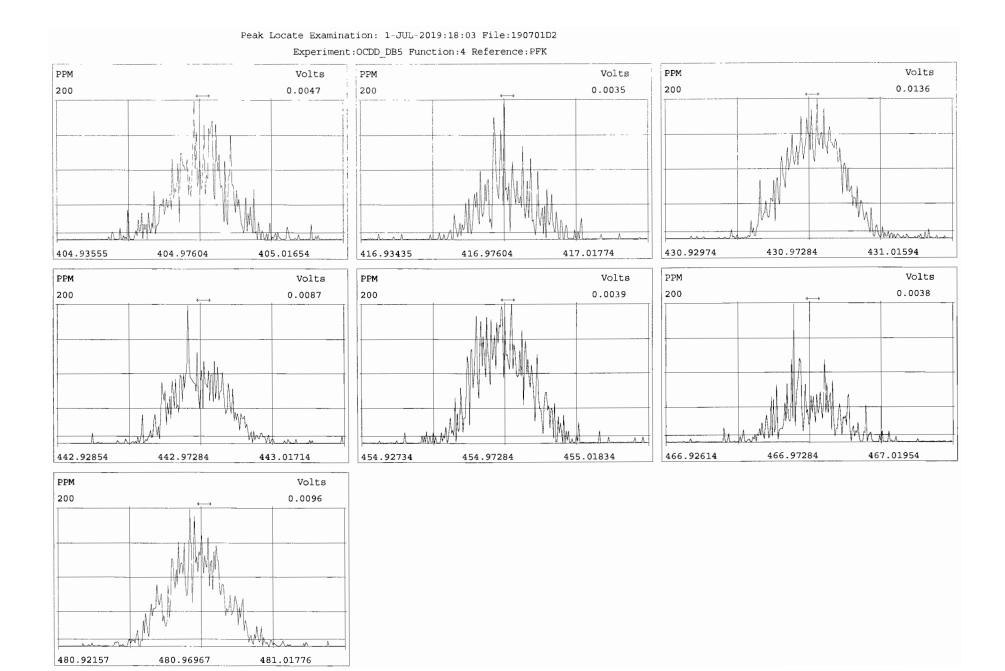
Data file	s#	Sample ID	Analyst	Acq date	Acq time	CCal	ECal
190701D2 190701D2	1 2 3	ST190701D2-1 ST190701D2-2 B9F0198-BS1	DB DB DB	1-JUL-19 1-JUL-19 1-JUL-19	18:04:52 18:52:37 19:40:19	ST190701D2-1 ST190701D2-2 ST190701D2-2	NA NA NA
	4	SOLVENT BLANK	DB	1-JUL-19	20:28:04	NA	NA
190701D2	5	B9F0198-BLK1	DB	1-JUL-19	21:15:50	ST190701D2-2	NA
190701D2	6	1901248-01	DB	1-JJL-19	22:03:37	ST190701D2-1	NA
190701D2	7	1901556-04	DB	1 <i>-J</i> JL-19	22:51:12	ST190701D2-2	NA
190701D2	8	1901556-01	DB	1 <i>-J</i> UL-19	23:38:48	ST190701D2-2	NA
190701D2	9	1901556-02	DB	2-JUL-19	00:26:25	ST190701D2-2	NA
190701D2	10	1901556-03	DB	2-JUL-19	01:13:54	ST190701D2-2	NA

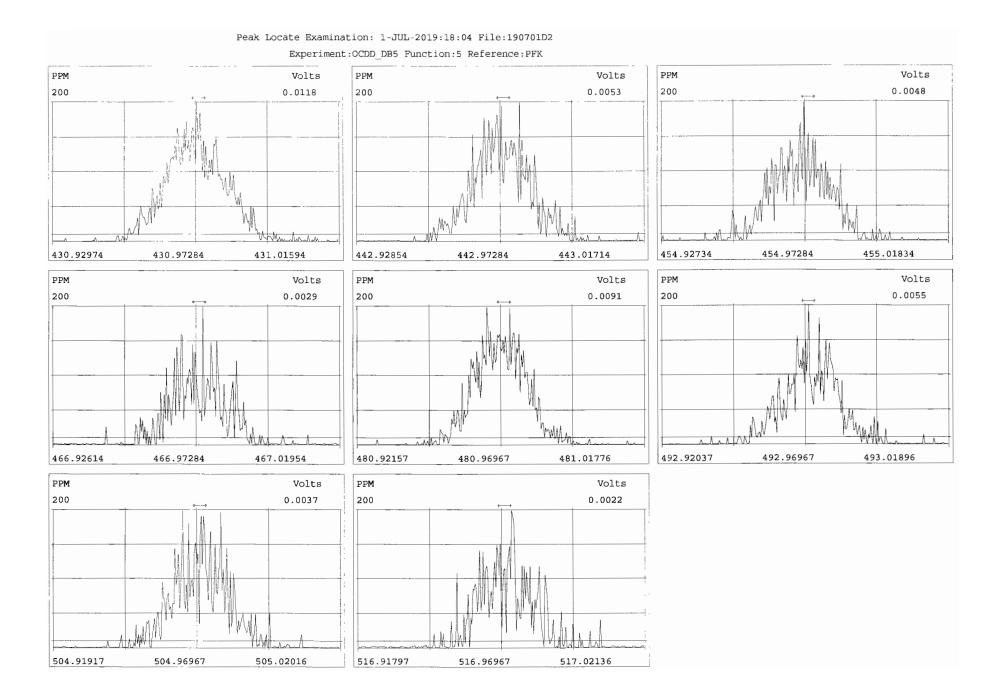

416.97604

Peak Locate Examination: 1-JUL-2019:18:01 File:190701D2

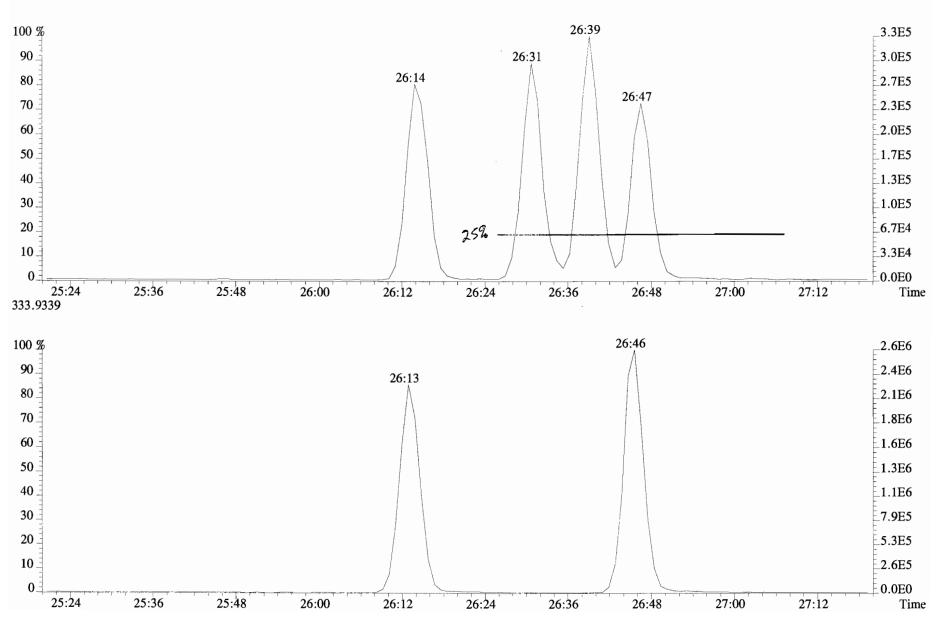
Experiment:OCDD_DB5 Function:1 Reference:PFK

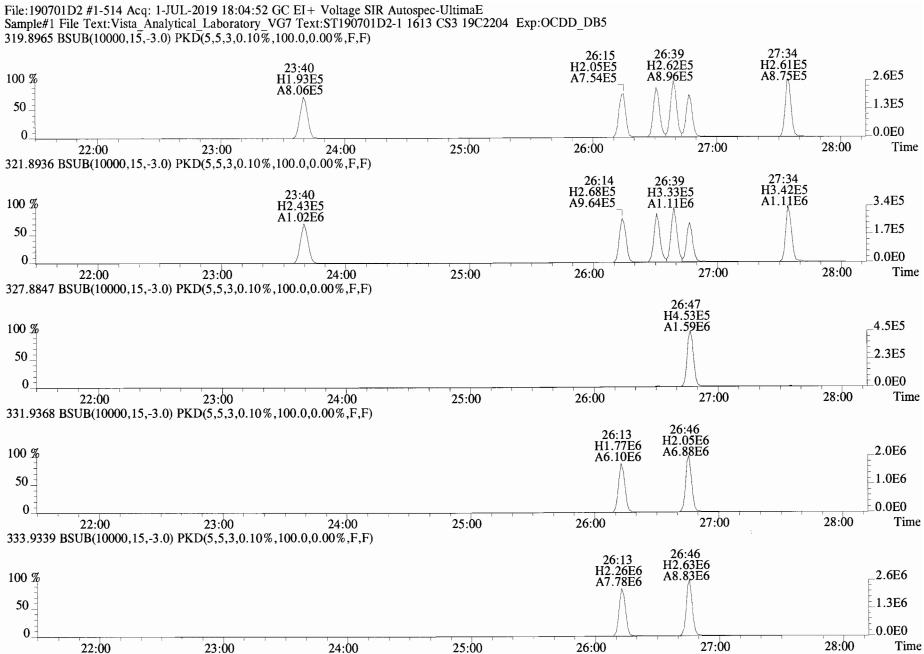

404.97604

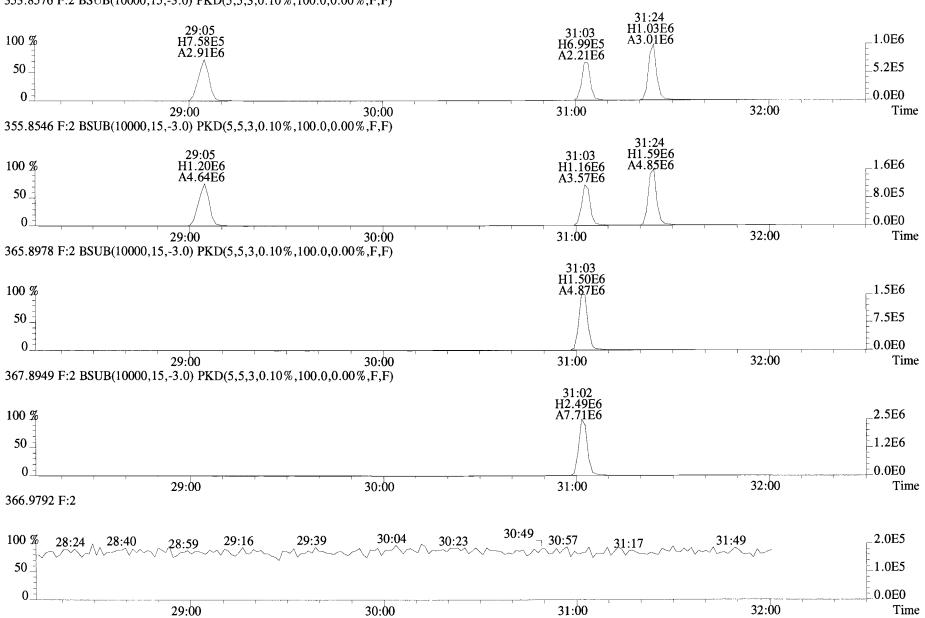

392.97604

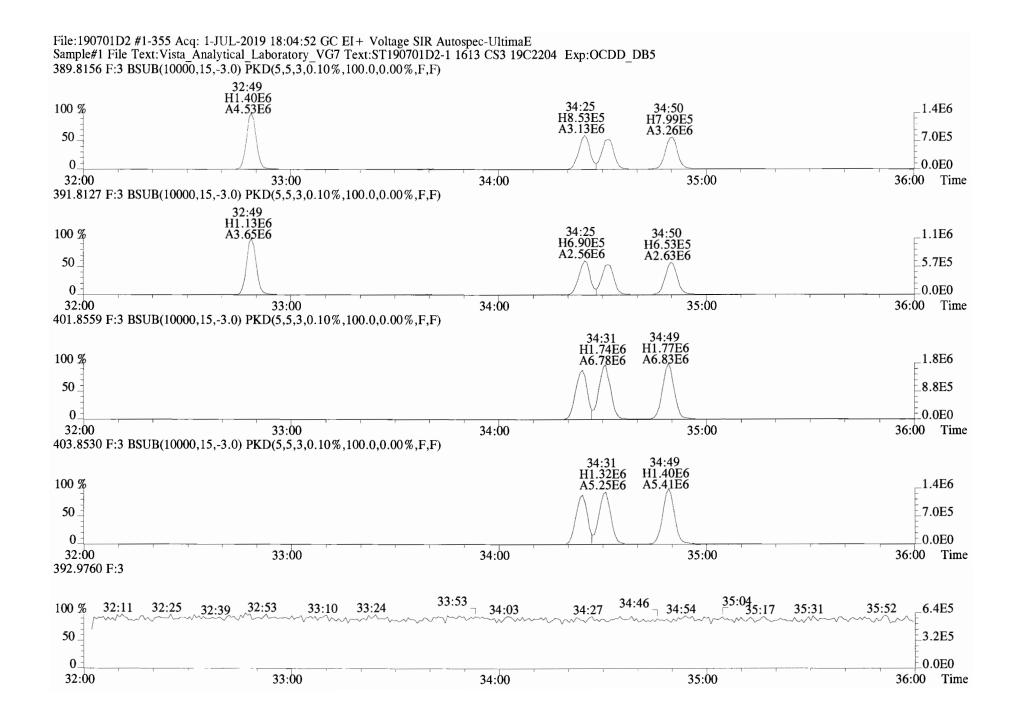


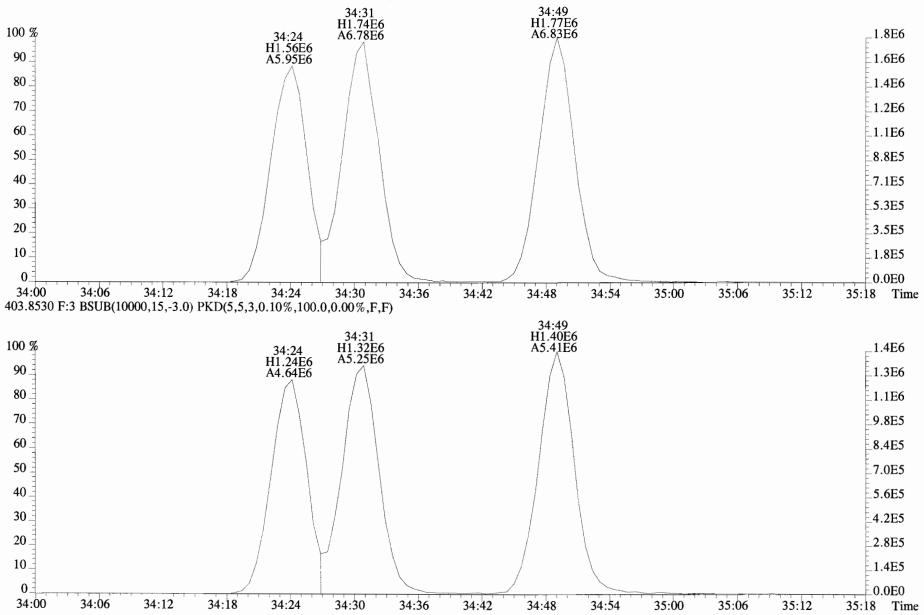
Peak Locate Examination: 1-JUL-2019:18:02 File:190701D2

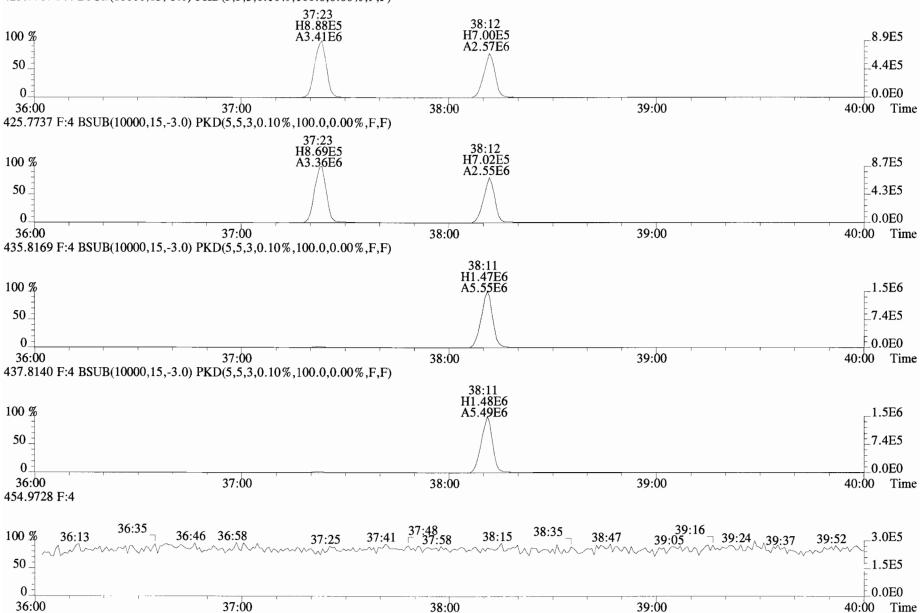

Experiment:OCDD_DB5 Function:3 Reference:PFK

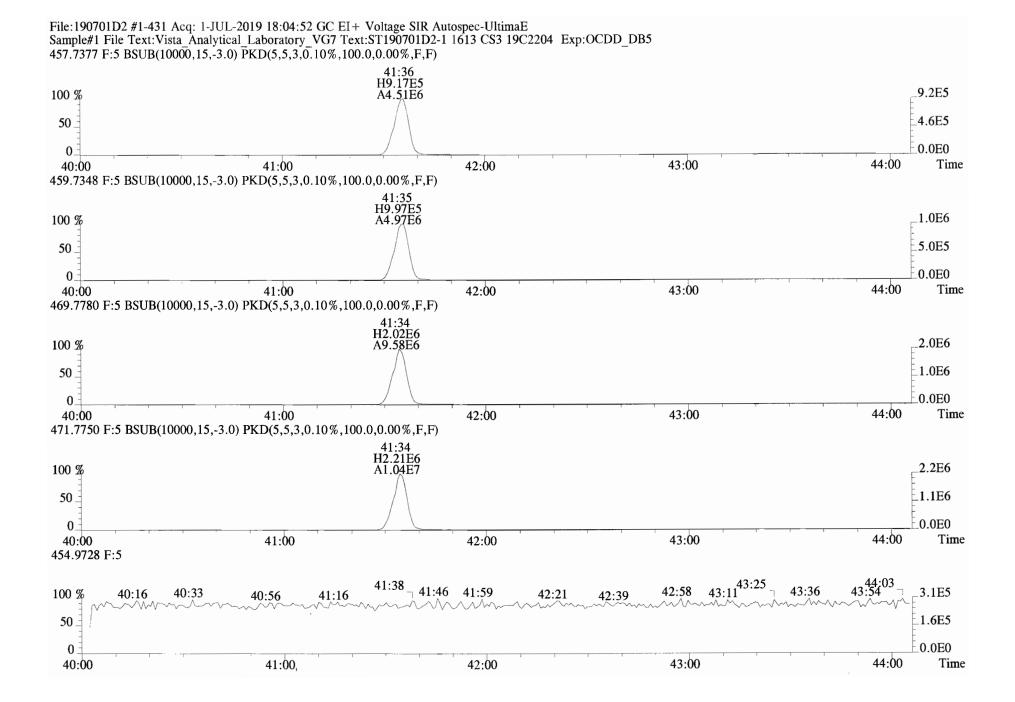


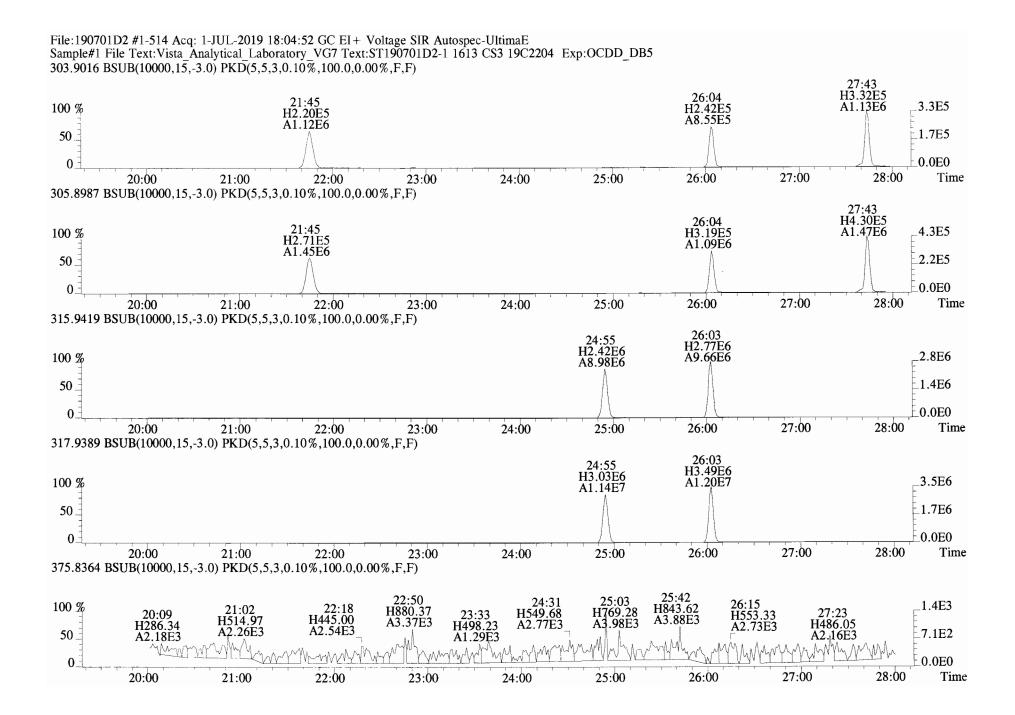


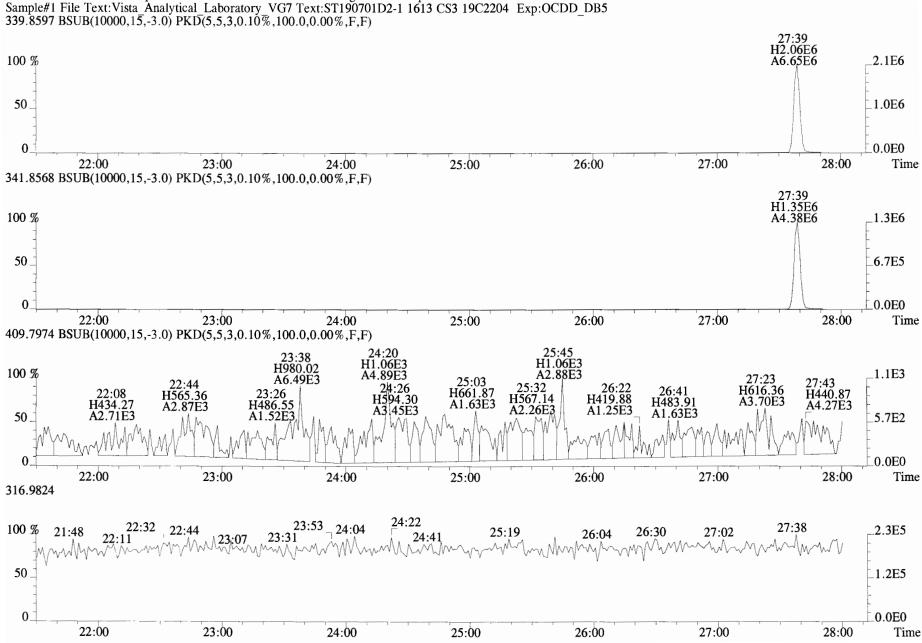

File:190701D2 #1-514 Acq: 1-JUL-2019 18:04:52 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190701D2-1 1613 CS3 19C2204 Exp:OCDD_DB5 321.8936



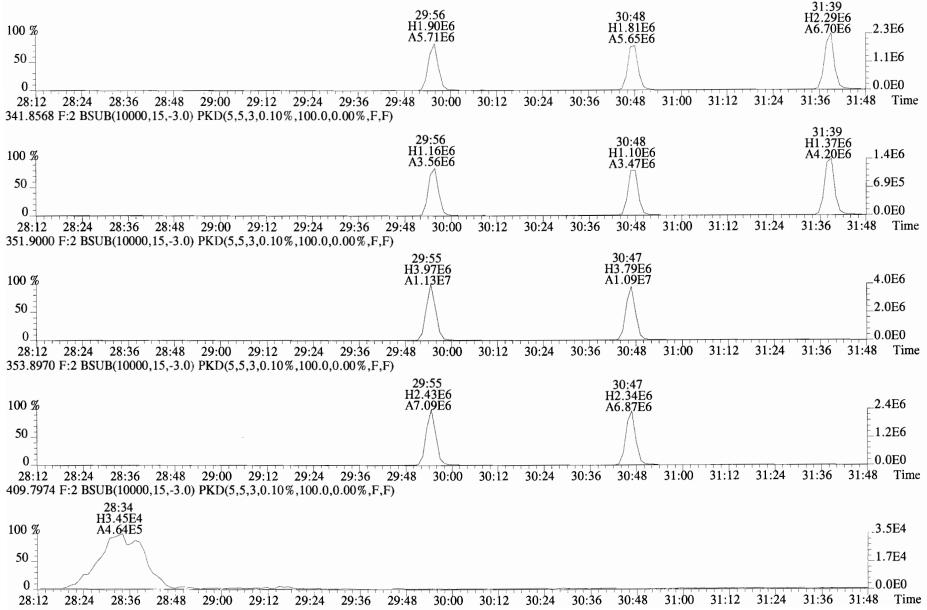

File:190701D2 #1-211 Acq: 1-JUL-2019 18:04:52 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190701D2-1 1613 CS3 19C2204 Exp:OCDD_DB5 353.8576 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

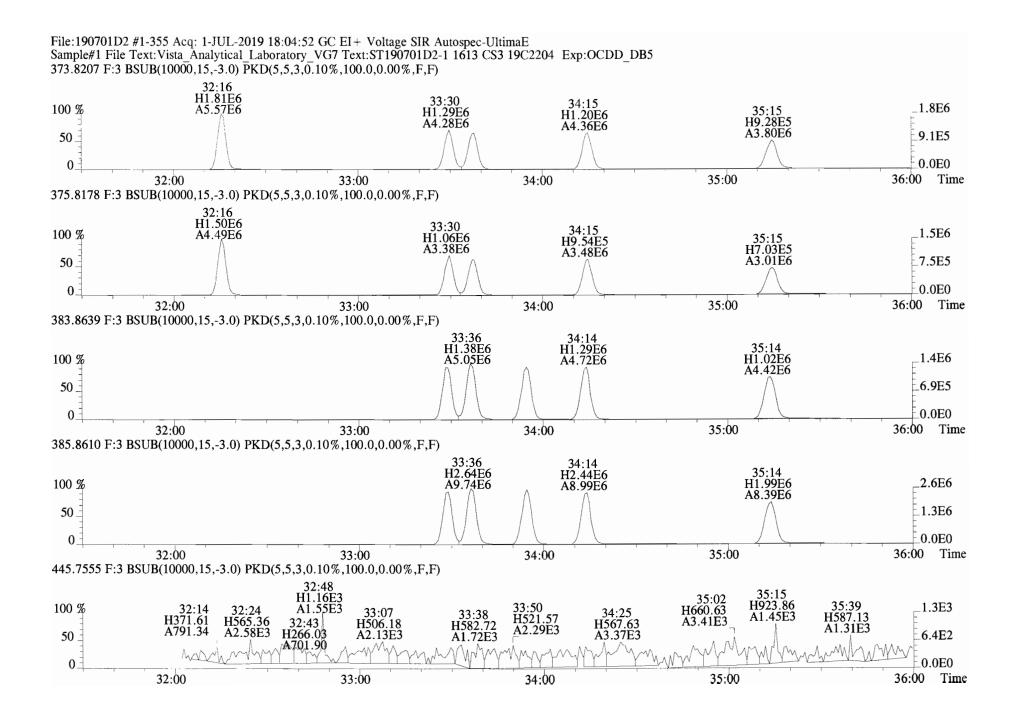


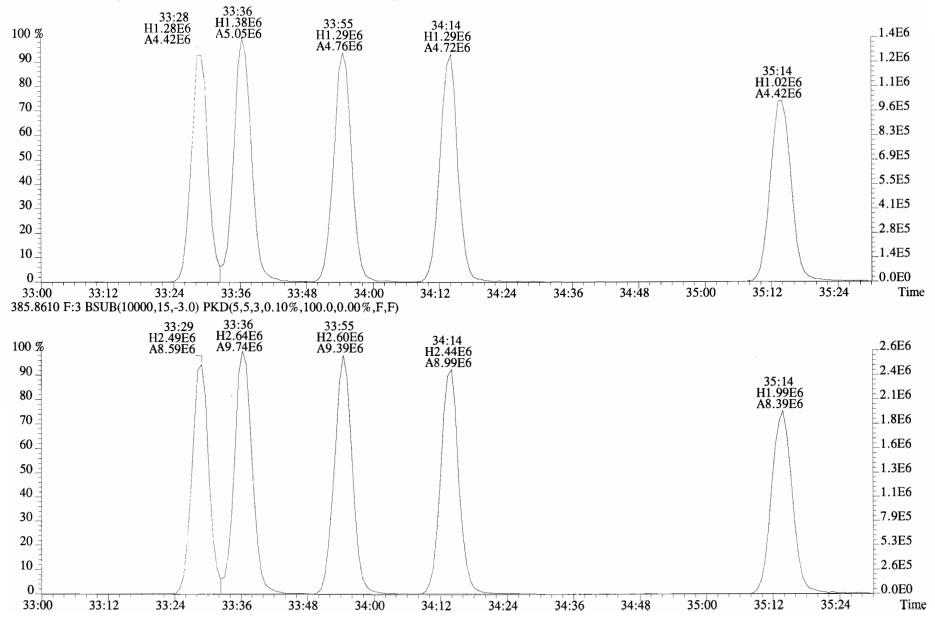

File:190701D2 #1-355 Acq: 1-JUL-2019 18:04:52 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190701D2-1 1613 CS3 19C2204 Exp:OCDD_DB5 401.8559 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

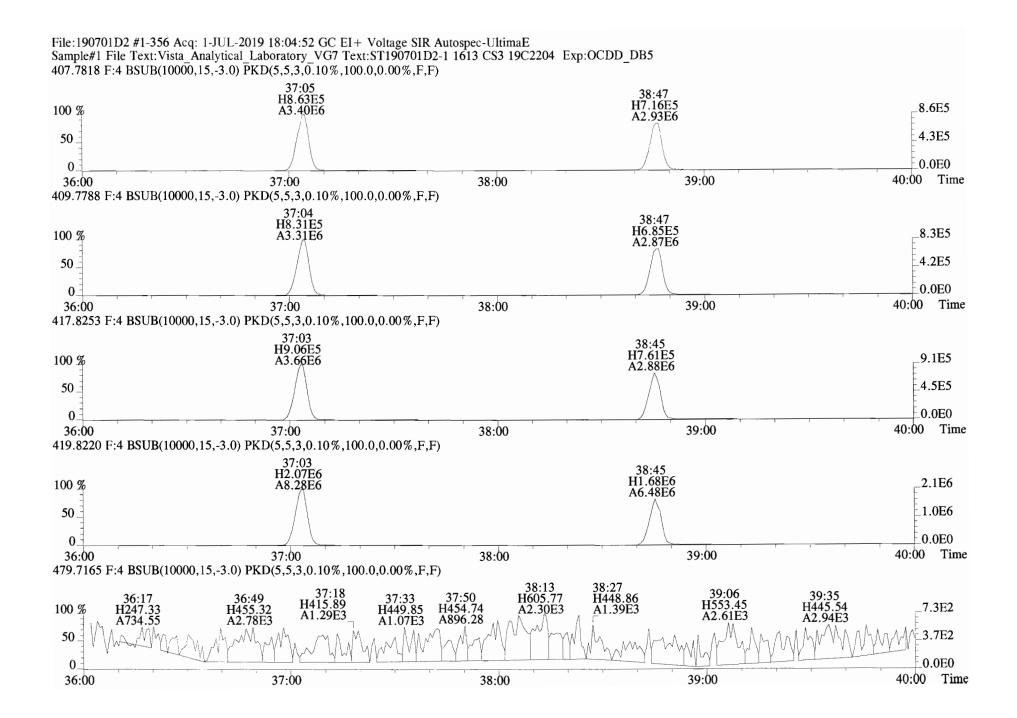


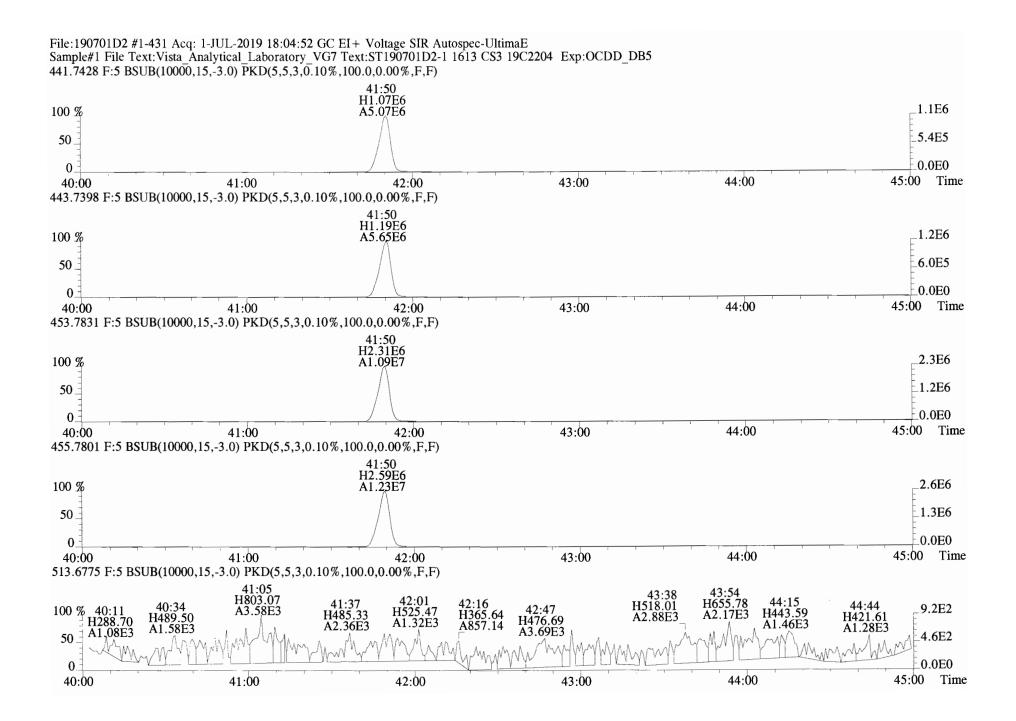
File:190701D2 #1-356 Acq: 1-JUL-2019 18:04:52 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190701D2-1 1613 CS3 19C2204 Exp:OCDD_DB5 423.7767 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

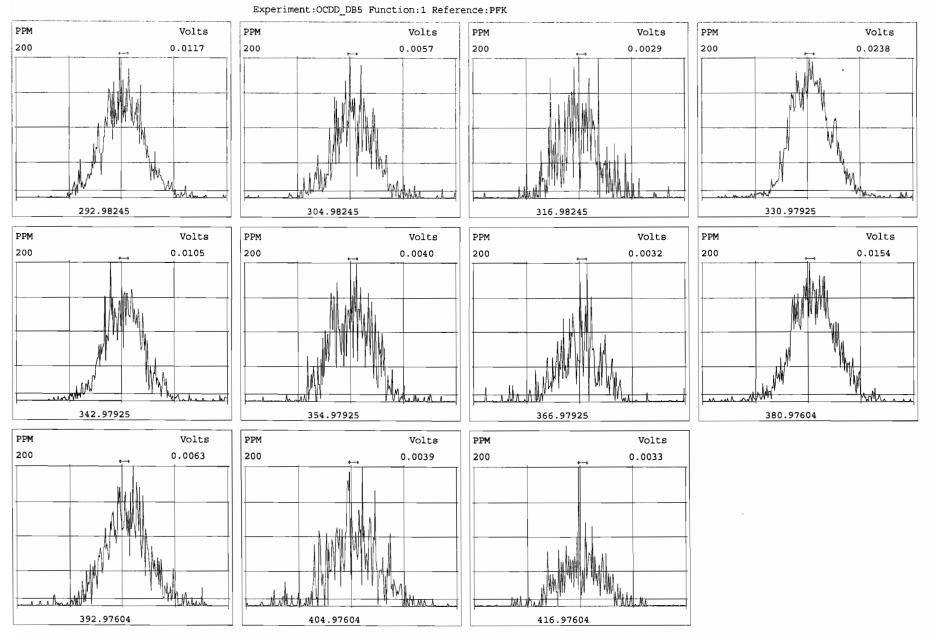




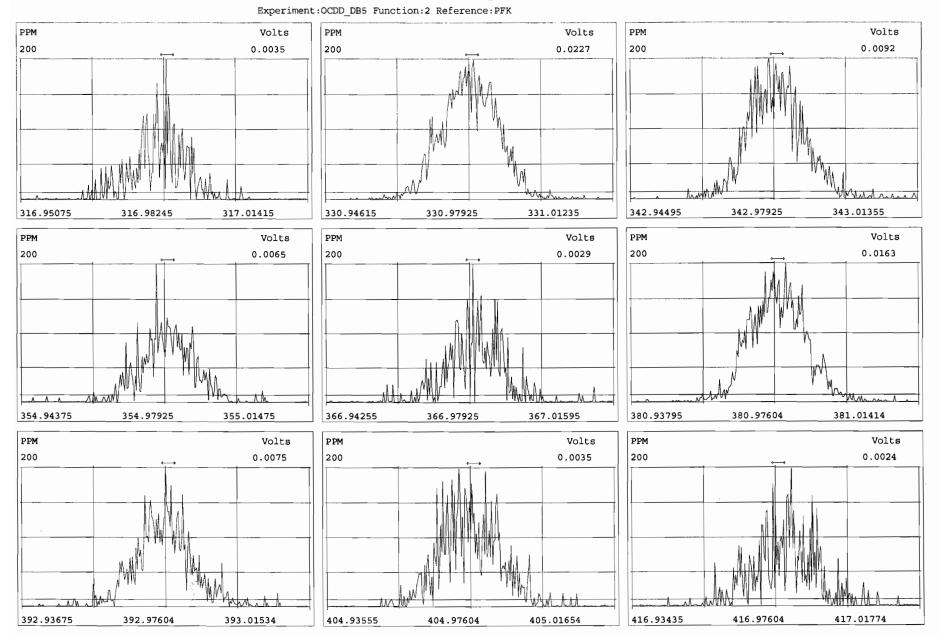

File:190701D2 #1-514 Acq: 1-JUL-2019 18:04:52 GC EI+ Voltage SIR Autospec-UltimaE

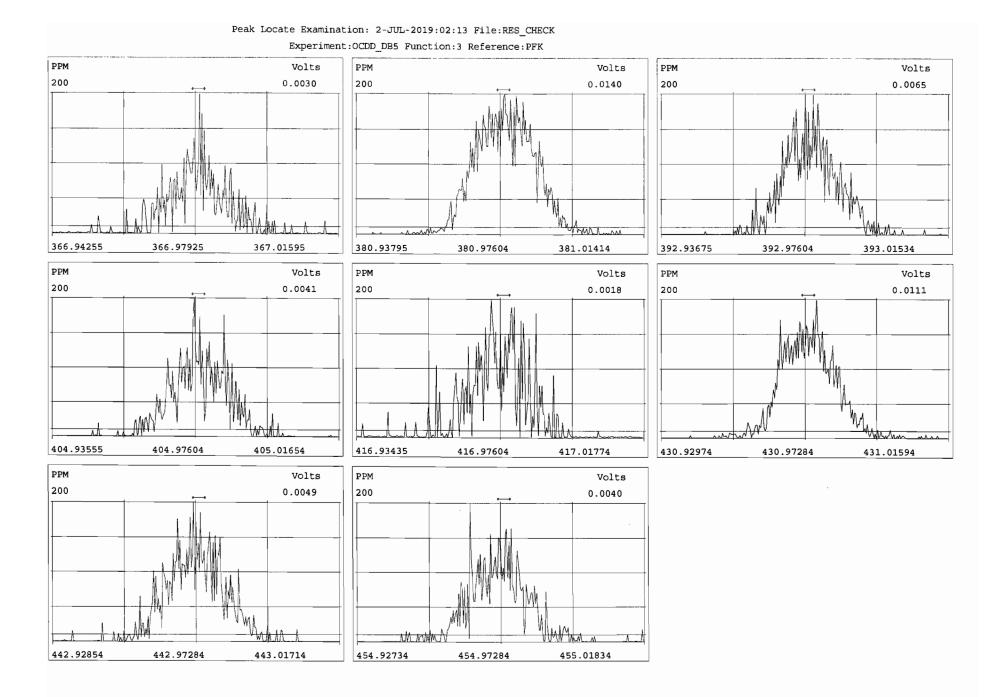

File:190701D2 #1-211 Acq: 1-JUL-2019 18:04:52 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190701D2-1 1613 CS3 19C2204 Exp:OCDD_DB5 339.8597 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)





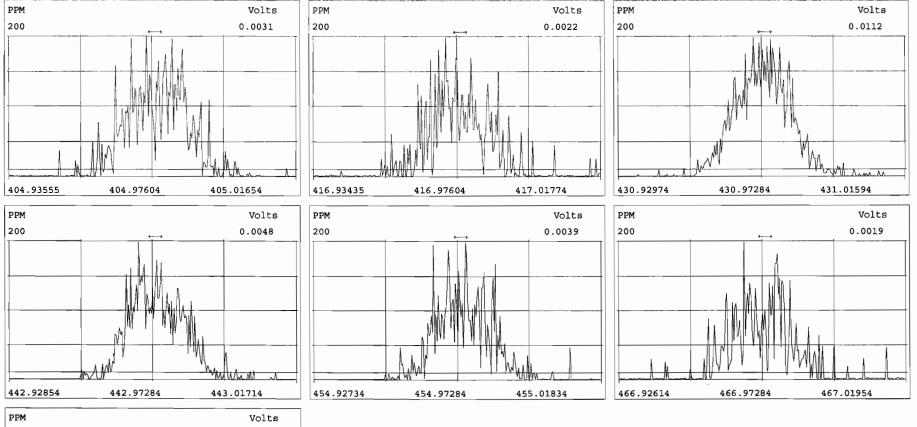
File:190701D2 #1-355 Acq: 1-JUL-2019 18:04:52 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190701D2-1 1613 CS3 19C2204 Exp:OCDD_DB5 383.8639 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

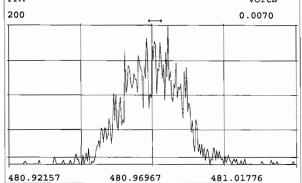


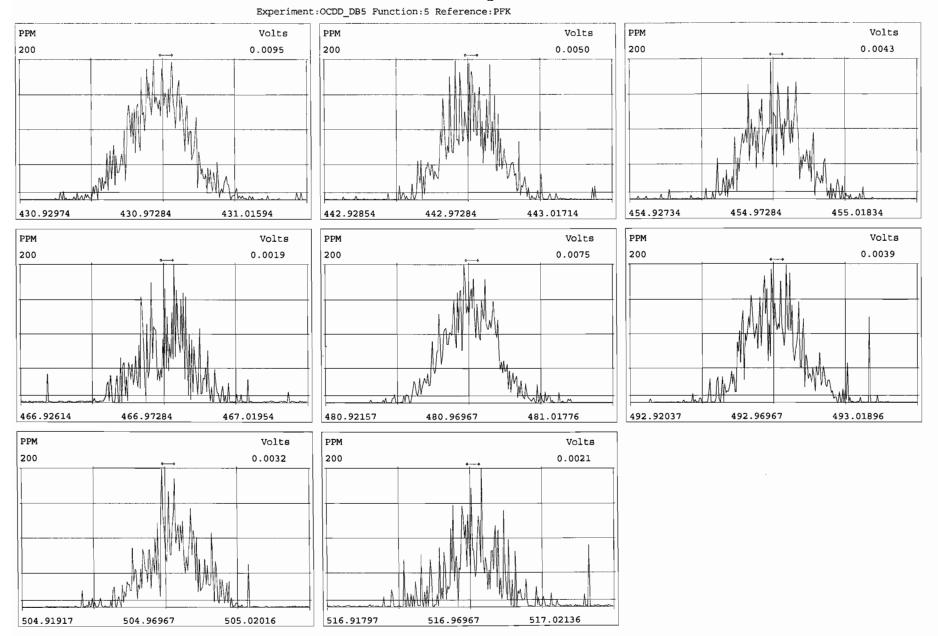


Peak Locate Examination: 2-JUL-2019:02:11 File:RES_CHECK

Work Order 1901248


Peak Locate Examination: 2-JUL-2019:02:12 File:RES_CHECK




Work Order 1901248

Peak Locate Examination: 2-JUL-2019:02:14 File:RES_CHECK

Experiment:OCDD_DB5 Function:4 Reference:PFK

Peak Locate Examination: 2-JUL-2019:02:15 File:RES_CHECK

Work Order 1901248

INITIAL CALIBRATION

Initial Calibration RRF	Summary (I	CAL)	Vista Analy	tical Labo	ratory			
Run: 190510D2	Analyte:		-	1613VG7-5-	-	Ingt	ID. VG-7	
			0011	1013467 5	10 19	11150.	10. 10.	
Data filename: 190510D2			Samp# 1	Samp# 2	Samp# 3	Samp# 4	Samp# 5	Samp# 6
			0.25	0.50	2.0	10	40	300
			0.25	0.50	2.0	10	40	500
Name	Mean RRF	%RSD	RRF#1	RRF#2	RRF#3	RRF#4	RRF#5	RRF#6
2,3,7,8-TCDD	0.90	6.57 %	0.90	0.80	0.95	0.86	0.94	0.95
1,2,3,7,8-PeCDD	0.87	6.42 %	0.89	0.94	0.90	0.78	0.85	0.87
1,2,3,4,7,8-HxCDD	1.05	9.29 %	0.96	0.97	0.98	1.04	1.17	1.17
1,2,3,6,7,8-HxCDD	0.93	8.35 %	0.88	0.88	0.91	0.86	0.99	1.05
1,2,3,7,8,9-HxCDD	0.96	8.79 %	0.98	0.89	0.89	0.89	1.05	1.07
1,2,3,4,6,7,8-HpCDD	0.99	10.09 %	0.94	0.89	0.90	0.99	1.10	1.12
OCDD	0.99	7.57 %	0.93	0.91	0.94	0.98	1.08	1.08
			0.000	0.72	0191	0.90	1.00	1.00
2,3,7,8-TCDF	0.94	5.57 %	0.97	0.91	0.92	0.87	1.00	0.99
1,2,3,7,8-PeCDF	0.92	4.71 %	0.86	0.94	0.94	0.88	0.96	0.96
2,3,4,7,8-PeCDF	0.96	4.77 %	0.95	0.93	0.97	0.88	0.99	1.01
1,2,3,4,7,8-HxCDF	1.15	9.95 %	1.10	1.08	1.02	1.13	1.28	1.31
1,2,3,6,7,8-HxCDF	1.04	13.16 %	0.94	0.91	0.92	1.06	1.18	1.21
2,3,4,6,7,8-HxCDF	1.10	11.28 %	1.03	0.97	0.97	1.14	1.23	1.24
1,2,3,7,8,9-HxCDF	1.03	10.60 %	0.93	0.95	0.92	1.10	1.13	1.16
1,2,3,4,6,7,8-HpCDF	1.06	8.75 %	0.98	0.94	1.03	1.12	1.15	1.16
1,2,3,4,7,8,9-HpCDF	1.23	10.34 %	1.16	1.12	1.07	1.26	1.38	1.35
OCDF	0.94	12.29 %	0.85	0.83	0.85	0.97	1.05	1.10
							1100	1110
13C-2,3,7,8-TCDD	1.11	2.01 %	1.12	1.09	1.10	1.14	1.08	1.11
13C-1,2,3,7,8-PeCDD	0.98	9.80 %	0.91	0.90	0.87	1.11	1.05	1.01
13C-1,2,3,4,7,8-HxCDD	0.68	4.26 %	0.67	0.65	0.72	0.70	0.64	0.67
13C-1,2,3,6,7,8-HxCDD	0.84	5.78 %	0.86	0.82	0.86	0.92	0.80	0.78
13C-1,2,3,7,8,9-HxCDD	0.81	4.72 %	0.82	0.78	0.85	0.85	0.77	0.79
13C-1,2,3,4,6,7,8-HpCDD	0.69	8.78 %	0.68	0.63	0.71	0.79	0.67	0.63
13C-OCDD	0.62	9.24 %	0.62	0.58	0.65	0.73	0.59	0.57
13C-2,3,7,8-TCDF	1.05	2.81 %	1.03	1.04	1.06	1.06	1.02	1.10
13C-1,2,3,7,8-PeCDF	0.95	4.06 %	0.92	0.95	0.95	1.03	0.95	0.93
13C-2,3,4,7,8-PeCDF	0.94	6.37 %	0.93	0.94	0.93	1.05	0.90	0.87
13C-1,2,3,4,7,8-HxCDF	0.86	4.27 %	0.87	0.83	0.90	0.89	0.83	0.82
13C-1,2,3,6,7,8-HxCDF	1.02	5.53 %	1.07	0.99	1.09	1.04	0.98	0.95
13C-2,3,4,6,7,8-HxCDF	0.95	2.98 %	0.94	0.90	0.96	0.96	0.98	0.97
13C-1,2,3,7,8,9-HxCDF	0.87	5.08 %	0.83	0.81	0.85	0.88	0.91	0.92
13C-1,2,3,4,6,7,8-HpCDF	0.81	12.94 %	0.70	0.71	0.74	0.90	0.94	0.86
13C-1,2,3,4,7,8,9-HpCDF	0.63	11.56 %	0.57	0.56	0.59	0.75	0.66	0.65
13C-OCDF	0.78	9.30 %	0.76	0.71	0.75	0.92	0.80	0.76
37Cl-2,3,7,8-TCDD	1.22	8.68 %	1.36	1.32	1.16	1.08	1.17	1.22
13C-1,2,3,4-TCDD	1.00	0.00 %	1.00	1.00	1.00	1.00	1.00	1.00
13C-1,2,3,4-TCDF	1.00	0.00 %	1.00	1.00	1.00	1.00	1.00	1.00
13C-1,2,3,4,6,9-HxCDF	1.00	0.00 %	1.00	1.00	1.00	1.00	1.00	1.00

7B 5/14/19 111 5/14/19

13C-2,3,4,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37C1-2,3,7,8-TCDD

13C-1,2,3,4-TCDD

13C-1,2,3,4-TCDF

13C-1,2,3,4,6,9-HxCDF

13C-OCDF

45

46

47

48

49

50

51

52

53

54

55

56

IS

IS

IS

IS

IS

IS

IS

IS

C/Up

RS/RT

RS/RT

RS

			1 4 4 14					
		e: 190510D2 S: 1 Acqui 90510D2 Analyte:		AY-19 14:24		Degul	- 100510	22
		text: ST190510D2-1 1613 CS		613VG7-5-10	-19	Resul	ts: 190510	02
	Sampre	Lext. 3119051002-1 1013 Ca	0 1902201					
	Тур	Name	Amount	Resp	RA	RT	RF	RRF
L	Unk	2,3,7,8-TCDD	0.25	1.72e+04	0.74 y	26:10	-	0.90
2	Unk	1,2,3,7,8-PeCDD	1.25	6.93e+04	0.69 y	30:37	-	0.89
3	Unk	1,2,3,4,7,8-HxCDD	1.25	6.06e+04	1.22 y	33:54	-	0.96
1	Unk	1,2,3,6,7,8-HxCDD	1.25	7.11e+04	1.08 y	34:01	-	0.88
5	Unk	1,2,3,7,8,9-HxCDD	1.25	7.57e+04	1.08 y	34:19	-	0.98
5	Unk	1,2,3,4,6,7,8-HpCDD	1.25	5.98e+04	0.98 y	37:46	-	0.94
7	Unk	OCDD	2.50	1.09e+05	0.79 y	41:03	-	0.93
3	Unk	2,3,7,8-TCDF	0.25	2.42e+04	0.84 y	25:25	_	0.97
- -	Unk	1,2,3,7,8-PeCDF	1.25	9.56e+04	1.75 y	29:26	-	0.86
10	Unk	2,3,4,7,8-PeCDF	1.25	1.07e+05	1.35 y	30:20	-	0.95
11	Unk	1,2,3,4,7,8-HxCDF	1.25	9.07e+04	1.11 y	33:01	-	1.10
12	Unk	1,2,3,6,7,8-HxCDF	1.25	9.46e+04	1.15 y	33:08	-	0.94
13	Unk	2,3,4,6,7,8-HxCDF	1.25	9.04e+04	1.26 y	33:44	-	1.03
14	Unk	1,2,3,7,8,9-HxCDF	1.25	7.29e+04	1.32 y	34:44	-	0.93
15	Unk	1,2,3,4,6,7,8-HpCDF	1.25	6.46e+04	0.93 y	36:33	-	0.98
16	Unk	1,2,3,4,7,8,9-HpCDF	1.25	6.19e+04	0.96 y	38:19	-	1.16
17	Unk	OCDF	2.50	1.21e+05	0.84 y	41:17	-	0.85
36	IS	13C-2,3,7,8-TCDD	100.00	7.65e+06	0.78 y	26:10	-	1.12
37	IS	13C-1,2,3,7,8-PeCDD	100.00	6.21e+06	0.61 y	30:36	-	0.91
38	IS	13C-1,2,3,4,7,8-HxCDD	100.00	5.03e+06	1.22 y	33:54	-	0.67
39	IS	13C-1,2,3,6,7,8-HxCDD	100.00	6.47e+06	1.23 y	34:01	-	0.86
10	IS	13C-1,2,3,7,8,9-HxCDD	100.00	6.21e+06	1.22 y	34:19	-	0.82
11	IS	13C-1,2,3,4,6,7,8-HpCDD	100.00	5.11e+06	1.07 y	37:45	-	0.68
12	IS	13C-OCDD	200.00	9.40e+06	0.90 y	41:02	-	0.62
13	IS	13C-2,3,7,8-TCDF	100.00	1.00e+07	0.80 y	25:25	-	1.03
44	IS	13C-1,2,3,7,8-PeCDF	100.00	8.93e+06	1.58 y	29:26	-	0.92

100.00

100.00

100.00

100.00

100.00

100.00

100.00

200.00

0.25

100.00

100.00

100.00

9.01e+06

6.58e+06

8.07e+06

7.05e+06

6.28e+06

5.25e+06

4.27e+06

1.14e+07

2.32e+04

6.82e+06

9.73e+06

7.52e+06

1.65 y

0.51 y

0.52 y

0.52 y

0.52 y

0.42 y

0.39 y

0.78 y

0.81 y

0.89 y 41:17

0.52 y 33:26

30:20

33:00

33:08

33:44

34:44

36:32

38:19

26:10

25:35

24:11

-

-

-

-

_

-

-

_

_

0.93

0.87

1.07

0.94

0.83

0.70

0.57

0.76

1.36

1.00

1.00

1.00

Эв 5/14/19

RS/RT 13C-1,2,3,4,6,9-HxCDF

13C-1,2,3,4-TCDD

13C-1,2,3,4-TCDF

100.00

100.00

6.37e+06

9.03e+06

100.00 7.15e+06 0.50 y 33:25

0.81 y 25:35

0.81 y 24:12

1.00

1.00

1.00

_

~

54

55

56

RS/RT

RS

	llename: Run: 190	-		AY-19 15:12 613VG7-5-10-		Pogul	ts: 190510	¢ ת
		text: ST190510D2-2 1613 CS		513VG7-5-10	-19	Resul	LS: 190510	
	sampre i	Lext. 5119051052-2 1015 CS	1 1902202					
	Тур	Name	Amount	Resp	RA	RT	RF	RRF
	Unk	2,3,7,8-TCDD	0.50	2.78e+04	0.80 y	26:10	-	0.80
	Unk	1,2,3,7,8-PeCDD	2.50	1.35e+05	0.63 y	30:36	-	0.94
	Unk	1,2,3,4,7,8-HxCDD	2.50	1.13e+05	1.21 y	33:54	-	0.97
	Unk	1,2,3,6,7,8-HxCDD	2.50	1.29e+05	1.12 y	34:00	-	0.88
5	Unk	1,2,3,7,8,9-HxCDD	2.50	1.24e+05	1.23 y	34:19	-	0.89
5	Unk	1,2,3,4,6,7,8-HpCDD	2.50	9.95e+04	1.02 y	37:45	-	0.89
,	Unk	OCDD	5.00	1.90e+05	0.90 Y	41:02	-	0.91
	Unk	2,3,7,8-TCDF	0.50	4.28e+04	0.81 y	25:25	-	0.91
Ð	Unk	1,2,3,7,8-PeCDF	2.50	2.02e+05	1.60 y	29:27	-	0.94
10	Unk	2,3,4,7,8-PeCDF	2.50	1.98e+05	1.64 y	30:20	-	0.93
11	Unk	1,2,3,4,7,8-HxCDF	2.50	1.59e+05	1.26 y	33:01	-	1.08
.2	Unk	1,2,3,6,7,8-HxCDF	2.50	1.61e+05	1.10 y	33:08	-	0.91
13	Unk	2,3,4,6,7,8-HxCDF	2.50	1.56e+05	1.24 y	33:44	-	0.97
4	Unk	1,2,3,7,8,9-HxCDF	2.50	1.36e+05	1.18 y	34:44	-	0.95
15	Unk	1,2,3,4,6,7,8-HpCDF	2.50	1.19e+05	0.99 y	36:32	-	0.94
16	Unk	1,2,3,4,7,8,9-HpCDF	2.50	1.13e+05	1.00 y	38:19	-	1.12
.7	Unk	OCDF	5.00	2.10e+05	0.93 Y	41:16	-	0.83
86	IS	13C-2,3,7,8-TCDD	100.00	6.94e+06	0.78 y	26:09	-	1.09
37	IS	13C-1,2,3,7,8-PeCDD	100.00	5.74e+06	0.63 Y	30:36	-	0.90
38	IS	13C-1,2,3,4,7,8-HxCDD	100.00	4.64e+06	1.23 y	33:53	-	0.65
39	IS	13C-1,2,3,6,7,8-HxCDD	100.00	5.87e+06	1.26 y	34:00	-	0.82
10	IS	13C-1,2,3,7,8,9-HxCDD	100.00	5.55e+06	1.23 y	34:19	-	0.78
11	IS	13C-1,2,3,4,6,7,8-HpCDD	100.00	4.49e+06	1.03 y	37:45	-	0.63
12	IS	13C-OCDD	200.00	8.35e+06	0.91 y	41:02	-	0.58
13	IS	13C-2,3,7,8-TCDF	100.00	9.42e+06	0.82 y	25:25		1.04
4	IS	13C-1,2,3,7,8-PeCDF	100.00	8.60e+06	1.60 y	29:27	-	0.95
5	IS	13C-2,3,4,7,8-PeCDF	100.00	8.49e+06	1.58 y	30:20	-	0.94
16	IS	13C-1,2,3,4,7,8-HxCDF	100.00	5.90e+06	0.52 y	32:60	-	0.83
7	IS	13C-1,2,3,6,7,8-HxCDF	100.00	7.06e+06	0.50 y	33:08	-	0.99
8	IS	13C-2,3,4,6,7,8-HxCDF	100.00	6.44e+06	0.51 y	33:44	-	0.90
9	IS	13C-1,2,3,7,8,9-HxCDF	100.00	5.76e+06	0.51 y	34:43	-	0.81
50	IS	13C-1,2,3,4,6,7,8-HpCDF	100.00	5.08e+06	0.43 y	36:32	-	0.71
51	IS	13C-1,2,3,4,7,8,9-HpCDF	100.00	4.01e+06	0.41 y	38:18	-	0.56
52	IS	13C-OCDF	200.00	1.01e+07	0.89 Y	41:16	-	0.71
3	C/Up	37Cl-2,3,7,8-TCDD	0.50	4.20e+04		26:10	-	1.32
	/							

Filename: 190510D2 S: 3 Run: 190510D2 Analyte:

Sample text: ST190510D2-3 1613 CS2 19C2203

Page	3	of	6
------	---	----	---

	•							
	Тур	Name	Amount	Resp	RA	RT	RF	RRF
1	Unk	2,3,7,8-TCDD	2.00	1.38e+05	0.86 y	26:11	-	0.95
2	Unk	1,2,3,7,8-PeCDD	10.00	5.22e+05	0.63 y	30:36	-	0.90
3	Unk	1,2,3,4,7,8-HxCDD	10.00	4.65e+05	1.19 y	33:54	-	0.98
4	Unk	1,2,3,6,7,8-HxCDD	10.00	5.21e+05	1.27 y	34:01	-	0.91
5	Unk	1,2,3,7,8,9-HxCDD	10.00	4.98e+05	1.14 y	34:19	-	0.89
6	Unk	1,2,3,4,6,7,8-HpCDD	10.00	4.24e+05	0.99 y	37:45	-	0.90
7	Unk	OCDD	20.00	8.06e+05	0.93 y	41:02	-	0.94
8	Unk	2,3,7,8-TCDF	2.00	1.80e+05	0.77 y	25:26	-	0.92
9	Unk	1,2,3,7,8-PeCDF	10.00	8.13e+05	1.63 y	29:27	-	0.94
10	Unk	2,3,4,7,8-PeCDF	10.00	8.19e+05	1.61 y	30:21	-	0.97
11	Unk	1,2,3,4,7,8-HxCDF	10.00	6.06e+05	1.12 y	33:01	-	1.02
12	Unk	1,2,3,6,7,8-HxCDF	10.00	6.63e+05	1.20 y	33:08	-	0.92
13	Unk	2,3,4,6,7,8-HxCDF	10.00	6.18e+05	1.17 y	33:45	-	0.97
14	Unk	1,2,3,7,8,9-HxCDF	10.00	5.17e+05	1.14 y	34:44	-	0.92
15	Unk	1,2,3,4,6,7,8-HpCDF	10.00	5.02e+05	0.99 y	36:32	-	1.03
16	Unk	1,2,3,4,7,8,9-HpCDF	10.00	4.21e+05	0.92 y	38:18	-	1.07
17	Unk	OCDF	20.00	8.37e+05	0.91 y	41:16	-	0.85
36	IS	13C-2,3,7,8-TCDD	100.00	7.28e+06	.0.80 Y	26:10	-	1.10
37	IS	13C-1,2,3,7,8-PeCDD	100.00	5.80e+06	0.63 Y	30:36	-	0.87
38	IS	13C-1,2,3,4,7,8-HxCDD	100.00	4.74e+06	1.22 y	33:53	-	0.72
39	IS	13C-1,2,3,6,7,8-HxCDD	100.00	5.70e+06	1.25 y	33:60	-	0.86
40	IS	13C-1,2,3,7,8,9-HxCDD	100.00	5.63e+06	1.20 y	34:18	-	0.85
41	IS	13C-1,2,3,4,6,7,8-HpCDD	100.00	4.70e+06	1.04 y	37:44	-	0.71
42	IS	13C-OCDD	200.00	8.55e+06	0.90 Y	41:01	-	0.65
43	IS	13C-2,3,7,8-TCDF	100.00	9.73e+06	0.80 Y	25:25	-	1.06
44	IS	13C-1,2,3,7,8-PeCDF	100.00	8.68e+06	1.58 y	29:27	-	0.95
45	IS	13C-2,3,4,7,8-PeCDF	100.00	8.48e+06	1.56 y	30:20	-	0.93
46	IS	13C-1,2,3,4,7,8-HxCDF	100.00	5.93e+06	0.51 y	32:60	-	0.90
47	IS	13C-1,2,3,6,7,8-HxCDF	100.00	7.20e+06	0.50 y	33:07	-	1.09
48	IS	13C-2,3,4,6,7,8-HxCDF	100.00	6.35e+06	0.50 y	33:44	-	0.96
49	IS	13C-1,2,3,7,8,9-HxCDF	100.00	5.60e+06	0.50 y	34:42	-	0.85
50	IS	13C-1,2,3,4,6,7,8-HpCDF	100.00	4.87e+06	0.42 y	36:32	-	0.74
51	IS	13C-1,2,3,4,7,8,9-HpCDF	100.00	3.92e+06	0.42 y	38:18	-	0.59
52	IS	13C-OCDF	200.00	9.89e+06	0.89 Y	41:16	-	0.75
53	C/Up	37C1-2,3,7,8-TCDD	2.00	1.54e+05		26.11		1 16
	C) 0P	3,CI-2,3,7,0-ICDD	2.00	1.246+02		26:11	-	1.16
54	RS/RT	13C-1,2,3,4-TCDD	100.00	6.64e+06	0.79 y	25:35		1.00
55	RS RS	13C-1,2,3,4-TCDF	100.00	9.16e+06	0.79 y 0.80 y	25:35	_	1.00
56	RS/RT	13C-1,2,3,4,6,9-HxCDF	100.00	6.60e+06	0.80 y 0.51 y	33:25	-	1.00
	100,101	130 1/2/3/4/0/9 ILCDF	100.00	0.0000000	0.51 Y	55:25	-	1.00

Acquired: 10-MAY-19 16:00:06

Cal: 1613VG7-5-10-19

Results: 190510D2

)B 5/14/19

Page	4	of	6
------	---	----	---

 Filename: 190510D2 S: 4
 Acquired: 10-MAY-19 16:47:52

 Run: 190510D2 Analyte:
 Cal: 1613VG7-5-10-19

 Sample text: ST190510D2-4 1613 CS3 19C2204

Results:	190510D2
100041001	10001000

	Тур	Name	Amount	Resp	RA	RT	RF	RRF
1	Unk	2,3,7,8-TCDD	10.00	3.27e+05	0.78 y	26:10	_	0.86
2	Unk	1,2,3,7,8-PeCDD	50.00	1.43e+06	0.62 y	30:36	-	0.78
3	Unk	1,2,3,4,7,8-HxCDD	50.00	1.14e+06	1.20 y	33:54	-	1.04
4	Unk	1,2,3,6,7,8-HxCDD	50.00	1.23e+06	1.23 y	34:01	-	0.86
5	Unk	1,2,3,7,8,9-HxCDD	50.00	1.20e+06	1.18 y	34:19	-	0.89
6	Unk	1,2,3,4,6,7,8-HpCDD	50.00	1.22e+06	1.03 y	37:45	-	0.99
7	Unk	OCDD	100.00	2.22e+06	0.92 y	41:02	_	0.98
8	Unk	2,3,7,8-TCDF	10.00	3.81e+05	0.78 y	25:26	-	0.87
9	Unk	1,2,3,7,8-PeCDF	50.00	1.89e+06	1.51 y	29:27	_	0.88
10	Unk	2,3,4,7,8-PeCDF	50.00	1.93e+06	1.57 y	30:20	-	0.88
11	Unk	1,2,3,4,7,8-HxCDF	50.00	1.58e+06	1.20 y	33:01	-	1.13
12	Unk	1,2,3,6,7,8-HxCDF	50.00	1.74e+06	1.24 y	33:08	-	1.06
13	Unk	2,3,4,6,7,8-HxCDF	50.00	1.71e+06	1.19 y	33:44	-	1.14
14	Unk	1,2,3,7,8,9-HxCDF	50.00	1.51e+06	1.26 y	34:44	-	1.10
15	Unk	1,2,3,4,6,7,8-HpCDF	50.00	1.58e+06	1.01 y	36:32	-	1.12
16	Unk	1,2,3,4,7,8,9-HpCDF	50.00	1.49e+06	1.05 y	38:19	-	1.26
17	Unk	OCDF	100.00	2.79e+06	0.91 y	41:16	-	0.97
36	IS	13C-2,3,7,8-TCDD	100.00	3.78e+06	0.75 y	26:09	-	1.14
37	IS	13C-1,2,3,7,8-PeCDD	100.00	3.68e+06	0.61 y	30:35	-	1.11
38	IS	13C-1,2,3,4,7,8-HxCDD	100.00	2.19e+06	1.25 y	33:53	-	0.70
39	IS	13C-1,2,3,6,7,8-HxCDD	100.00	2.87e+06	1.18 y	33:60	-	0.92
40	IS	13C-1,2,3,7,8,9-HxCDD	100.00	2.67e+06	1.23 y	34:18	-	0.85
41	IS	13C-1,2,3,4,6,7,8-HpCDD	100.00	2.48e+06	1.05 y	37:44	-	0.79
42	IS	13C-OCDD	200.00	4.55e+06	0.90 y	41:01	-	0.73
43	IS	13C-2,3,7,8-TCDF	100.00	4.40e+06	0.81 y	25:25	-	1.06
44	IS	13C-1,2,3,7,8-PeCDF	100.00	4.28e+06	1.54 y	29:26	-	1.03
45	IS	13C-2,3,4,7,8-PeCDF	100.00	4.36e+06	1.61 y	30:19	-	1.05
46	IS	13C-1,2,3,4,7,8-HxCDF	100.00	2.80e+06	0.51 y	32:60	-	0.89
47	IS	13C-1,2,3,6,7,8-HxCDF	100.00	3.27e+06	0.51 y	33:07	-	1.04
48	IS	13C-2,3,4,6,7,8-HxCDF	100.00	3.01e+06	0.51 y	33:44	-	0.96
49	IS	13C-1,2,3,7,8,9-HxCDF	100.00	2.76e+06	0.53 y	34:42	-	0.88
50	IS	13C-1,2,3,4,6,7,8-HpCDF	100.00	2.81e+06	0.43 y	36:31	-	0.90
51	IS	13C-1,2,3,4,7,8,9-HpCDF	100.00	2.36e+06	0.44 y	38:18	-	0.75
52	IS	13C-OCDF	200.00	5.75e+06	0.93 y	41:15	-	0.92
53	C/Up	37C1-2,3,7,8-TCDD	10.00	3.57e+05		26:10	-	1.08
54	RS/RT	13C-1,2,3,4-TCDD	100.00	3.32e+06	0.80 y	25:35	-	1.00
55	RS	13C-1,2,3,4-TCDF	100.00	4.16e+06	0.82 y	24:11	-	1.00
56	RS/RT	13C-1,2,3,4,6,9-HxCDF	100.00	3.13e+06	0.53 y	33:25	-	1.00

)В 5|14|19

 Filename: 190510D2 S: 5
 Acquired: 10-MAY-19 17:35:29

 Run: 190510D2
 Analyte:
 Cal: 1613VG7-5-10-19

 Sample text: ST190510D2-5
 1613 CS4 19C2205

Results: 190510D2

	Тур	Name	Amount	Resp	RA	RT	RF	RRF
1	Unk	2,3,7,8-TCDD	40.00	1.65e+06	0.80 y	26:10	- KF	0.94
2	Unk	1,2,3,7,8-PeCDD	200.00	7.26e+06	0.62 y	30:36	_	0.85
3	Unk	1,2,3,4,7,8-HxCDD	200.00	6.64e+06	1.22 y	33:54	-	1.17
4	Unk	1,2,3,6,7,8-HxCDD	200.00	7.06e+06	1.22 y 1.22 y	34:01	-	0.99
5	Unk	1,2,3,7,8,9-HxCDD	200.00	7.15e+06	1.22 y 1.23 y	34:19	_	1.05
6	Unk	1,2,3,4,6,7,8-HpCDD	200.00	6.52e+06	1.06 y	37:44	-	1.10
7	Unk	OCDD	400.00	1.12e+07	0.93 y	41:01	-	1.08
	onn	0000	100.00	1.120107	0.25 y	41.01		1.00
8	Unk	2,3,7,8-TCDF	40.00	2.32e+06	0.78 y	25:26	_	1.00
9	Unk	1,2,3,7,8-PeCDF	200.00	1.03e+07	1.57 y	29:27	-	0.96
10	Unk	2,3,4,7,8-PeCDF	200.00	1.02e+07	1.59 y	30:20	-	0.99
11	Unk	1,2,3,4,7,8-HxCDF	200.00	9.33e+06	1.19 y	33:00	-	1.28
12	Unk	1,2,3,6,7,8-HxCDF	200.00	1.02e+07	1.22 y	33:08	-	1.18
13	Unk	2,3,4,6,7,8-HxCDF	200.00	1.07e+07	1.21 y	33:44	-	1.23
14	Unk	1,2,3,7,8,9-HxCDF	200.00	9.08e+06	1.21 y	34:43	-	1.13
15	Unk	1,2,3,4,6,7,8-HpCDF	200.00	9.58e+06	0.99 y	36:32	-	1.15
16	Unk	1,2,3,4,7,8,9-HpCDF	200.00	8.06e+06	1.03 y	38:18	-	1.38
17	Unk	OCDF	400.00	1.48e+07	0.91 y	41:16	-	1.05
					-			
36	IS	13C-2,3,7,8-TCDD	100.00	4.37e+06	0.77 y	26:09	-	1.08
37	IS	13C-1,2,3,7,8-PeCDD	100.00	4.27e+06	0.62 y	30:35	-	1.05
38	IS	13C-1,2,3,4,7,8-HxCDD	100.00	2.85e+06	1.22 y	33:53	-	0.64
39	IS	13C-1,2,3,6,7,8-HxCDD	100.00	3.55e+06	1.25 y	33:59	-	0.80
40	IS	13C-1,2,3,7,8,9-HxCDD	100.00	3.39e+06	1.25 y	34:17	-	0.77
41	IS	13C-1,2,3,4,6,7,8-HpCDD	100.00	2.96e+06	1.01 y	37:44	-	0.67
42	IS	13C-OCDD	200.00	5.20e+06	0.92 y	41:01	-	0.59
43	IS	13C-2,3,7,8-TCDF	100.00	5.78e+06	0.80 y	25:25	-	1.02
44	IS	13C-1,2,3,7,8-PeCDF	100.00	5.38e+06	1.59 y	29:26	-	0.95
45	IS	13C-2,3,4,7,8-PeCDF	100.00	5.12e+06	1.55 y	30:19	-	0.90
46	IS	13C-1,2,3,4,7,8-HxCDF	100.00	3.66e+06	0.49 y	32:59	-	0.83
47	IS	13C-1,2,3,6,7,8-HxCDF	100.00	4.32e+06	0.51 y	33:07	-	0.98
48	IS	13C-2,3,4,6,7,8-HxCDF	100.00	4.33e+06	0.51 y	33:44	-	0.98
49	IS	13C-1,2,3,7,8,9-HxCDF	100.00	4.02e+06	0.52 y	34:42	-	0.91
50	IS	13C-1,2,3,4,6,7,8-HpCDF	100.00	4.15e+06	0.43 y	36:31	-	0.94
51	IS	13C-1,2,3,4,7,8,9-HpCDF	100.00	2.91e+06	0.46 y	38:17		0.66
52	IS	13C-OCDF	200.00	7.04e+06	0.91 y	41:15	-	0.80
53	C/Up	37Cl-2,3,7,8-TCDD	40.00	1.89e+06		26:10	-	1.17
54	RS/RT		100.00	4.05e+06	0.77 y	25:35	-	1.00
55	RS	13C-1,2,3,4-TCDF	100.00	5.68e+06	0.82 y	24:12	-	1.00
56	RS/RT	13C-1,2,3,4,6,9-HxCDF	100.00	4.42e+06	0.52 y	33:25	-	1.00

)В 5/14/19

Page 6 01 6			б	of	б
-------------	--	--	---	----	---

 Filename:
 190510D2
 S:
 Acquired:
 10-MAY-19
 18:23:05

 Run:
 190510D2
 Analyte:
 Cal:
 1613VG7-5-10-19
 Results:
 190510D2

 Sample
 text:
 ST190510D2-6
 1613
 CS5
 19C2206
 1613
 1613

	Тур	Name	Amount	Resp	RA	RT	RF	RRF
1	Unk	2,3,7,8-TCDD	300.00	1.49e+07	0.80 y	26:10	-	0.95
2	Unk	1,2,3,7,8-PeCDD	1500.00	6.20e+07	0.63 y	30:36	-	0.87
3	Unk	1,2,3,4,7,8-HxCDD	1500.00	6.57e+07	1.25 y	33:54	_	1.17
4	Unk	1,2,3,6,7,8-HxCDD	1500.00	6.86e+07	1.23 y	33:60	-	1.05
5	Unk	1,2,3,7,8,9-HxCDD	1500.00	7.06e+07	1.23 y	34:18	-	1.07
6	Unk	1,2,3,4,6,7,8-HpCDD	1500.00	5.88e+07	1.05 y	37:44	-	1.12
7	Unk	OCDD	3000.00	1.03e+08	0.92 y	41:01	-	1.08
	01111	0.022	5000100	1.000.00	0.72]	11.01		1.00
8	Unk	2,3,7,8-TCDF	300.00	2.15e+07	0.81 y	25:26	-	0.99
9	Unk	1,2,3,7,8-PeCDF	1500.00	8.84e+07	1.57 y	29:27	_	0.96
10	Unk	2,3,4,7,8-PeCDF	1500.00	8.73e+07	1.58 y	30:20	-	1.01
11	Unk	1,2,3,4,7,8-HxCDF	1500.00	8.94e+07	1.21 y	33:00	-	1.31
12	Unk	1,2,3,6,7,8-HxCDF	1500.00	9.62e+07	1.21 y	33:08	-	1.21
13	Unk	2,3,4,6,7,8-HxCDF	1500.00	9.98e+07	1.20 y	33:44	-	1.24
14	Unk	1,2,3,7,8,9-HxCDF	1500.00	8.85e+07	1.20 y	34:42	-	1.16
15	Unk	1,2,3,4,6,7,8-HpCDF	1500.00	8.29e+07	1.00 y	36:32	_	1.16
16	Unk	1,2,3,4,7,8,9-HpCDF	1500.00	7.36e+07	1.03 y	38:18	-	1.35
17	Unk	OCDF	3000.00	1.39e+08	0.91 y	41:15	-	1.10
36	IS	13C-2,3,7,8-TCDD	100.00	5.24e+06	0.77 y	26:09	-	1.11
37	IS	13C-1,2,3,7,8-PeCDD	100.00	4.77e+06	0.60 y	30:35	-	1.01
38	IS	13C-1,2,3,4,7,8-HxCDD	100.00	3.73e+06	1.27 y	33:53	-	0.67
39	IS	13C-1,2,3,6,7,8-HxCDD	100.00	4.34e+06	1.27 y	33:59	-	0.78
40	IS	13C-1,2,3,7,8,9-HxCDD	100.00	4.39e+06	1.28 y	34:17	~	0.79
41	IS	13C-1,2,3,4,6,7,8-HpCDD	100.00	3.51e+06	1.06 y	37:43	-	0.63
42	IS	13C-OCDD	200.00	6.38e+06	0.94 y	41:01	-	0.57
43	IS	13C-2,3,7,8-TCDF	100.00	7.23e+06	0.83 y	25:25	-	1.10
44	IS	13C-1,2,3,7,8-PeCDF	100.00	6.13e+06	1.59 y	29:26	-	0.93
45	IS	13C-2,3,4,7,8-PeCDF	100.00	5.74e+06	1.61 y	30:19	-	0.87
46	IS	13C-1,2,3,4,7,8-HxCDF	100.00	4.54e+06	0.53 y	32:59	-	0.82
47	IS	13C-1,2,3,6,7,8-HxCDF	100.00	5.28e+06	0.53 y	33:07	-	0.95
48	IS	13C-2,3,4,6,7,8-HxCDF	100.00	5.37e+06	0.52 y	33:43	-	0.97
49	IS	13C-1,2,3,7,8,9-HxCDF	100.00	5.09e+06	0.52 y	34:41	-	0.92
50	IS	13C-1,2,3,4,6,7,8-HpCDF	100.00	4.78e+06	0.44 y	36:30	-	0.86
51	IS	13C-1,2,3,4,7,8,9-HpCDF	100.00	3.63e+06	0.43 y	38:17	-	0.65
52	IS	13C-OCDF	200.00	8.43e+06	0.90 y	41:15	-	0.76
53	C/Up	37Cl-2,3,7,8-TCDD	199.80	1.16e+07		26:10	-	1.22
54	R\$/RT	13C-1,2,3,4-TCDD	100.00	4.74e+06	0.82 Y	25:35	-	1.00
55	RS	13C-1,2,3,4-TCDF	100.00	6.56e+06	0.84 y	24:12	-	1.00
56	R\$/RT	13C-1,2,3,4,6,9-HxCDF	100.00	5.55e+06	0.52 y	33:25	-	1.00

DB 5/14/19

Initial Calibration RRF	Summary (ICAL)	Vista Analy	tical Labo	ratory			
Run: 190510D2	Analyte:	-	1613VG7-5-3	-	Inst	ID. VG-7	
	initially co.	cur.	101300, 5		11150.	10. 00 /	
Data filename: 190510D2		Samp# 1	Samp# 2	Samp# 3	Samp# 4	Samp# 5	Samp# 6
		0.25	0.50	2.0	10	40	300
	RRT Limits	0.23	0.50	2.0	10	10	500
Name	Lower Upper	RRT#1	RRT#2	RRT#3	RRT#4	RRT#5	RRT#6
2,3,7,8-TCDD	0.999 -1.002	1.000	1.000	1.001	1.001	1.001	1.001
1,2,3,7,8-PeCDD	0.999 -1.002	1.000	1.000	1.000	1.001	1.001	1.001
1,2,3,4,7,8-HxCDD	0.999 -1.001	1.000	1.000	1.000	1.000	1.001	1.001
1,2,3,6,7,8-HxCDD	0.998 -1.004	1.000	1.000	1.000	1.000	1.001	1.000
1,2,3,7,8,9-HxCDD	0.998 -1.004	1.000	1.000	1.001	1.000	1.001	1.000
1,2,3,4,6,7,8-HpCDD	0.999 -1.001	1.000	1.000	1.000	1.000	1.000	1.000
OCDD	0.999 -1.001	1.000	1.000	1.000	1.000	1.000	1.000
		1.000	11000	1.000	1.000	1,000	1.000
2,3,7,8-TCDF	0.999 -1.003	1.000	1.000	1.001	1.001	1.001	1.001
1,2,3,7,8-PeCDF	0.999 -1.002	1.000	1.000	1.000	1.001	1.000	1.000
2,3,4,7,8-PeCDF	0.999 -1.002	1.000	1.000	1.000	1.001	1.000	1.001
1,2,3,4,7,8-HxCDF	0.999 -1.001	1.000	1.001	1.000	1.000	1.000	1.000
1,2,3,6,7,8-HxCDF	0.997 -1.005	1.000	1.000	1.000	1.000	1.000	1.001
2,3,4,6,7,8-HxCDF	0.999 -1.001	1.000	1.000	1.000	1.000	1.000	1.001
1,2,3,7,8,9-HxCDF	0.999 -1.001	1.000	1.001	1.001	1.001	1.000	1.001
1,2,3,4,6,7,8-HpCDF	0.999 -1.001	1.000	1.000	1.000	1.000	1.001	1.001
1,2,3,4,7,8,9-HpCDF	0.999 -1.001	1.000	1.000	1.000	1.001	1.000	1.000
OCDF	0.999 -1.001	1.000	1.000	1.000	1.000	1.000	1.000
			11000	2.000	1.000	21000	
13C-2,3,7,8-TCDD	0.976 -1.043	1.023	1.023	1.022	1.022	1.022	1.022
13C-1,2,3,7,8-PeCDD	1.000 -1.567	1.196	1.196	1.196	1.196	1.196	1.196
13C-1,2,3,4,7,8-HxCDD	1.002 -1.026	1.014	1.014	1.014	1.014	1.014	1.014
13C-1,2,3,6,7,8-HxCDD	1.007 -1.029	1.017	1.017	1.017	1.017	1.017	1.017
13C-1,2,3,7,8,9-HxCDD	1.014 -1.038	1.027	1.027	1.027	1.027	1.026	1.026
13C-1,2,3,4,6,7,8-HpCDD	1.117 -1.141	1.130	1.129	1.129	1.129	1.129	1.129
13C-OCDD	1.085 -1.365	1.228	1.228	1.228	1.228	1.228	1.227
13C-2,3,7,8-TCDF	0.923 -1.103	0.993	0.993	0.993	0.993	0.993	0.993
13C-1,2,3,7,8-PeCDF	1.000 -1.425	1.151	1.151	1.151	1.151	1.151	1.150
13C-2,3,4,7,8-PeCDF	1.011 -1.526	1.186	1.186	1.186	1.185	1.185	1.185
13C-1,2,3,4,7,8-HxCDF	0.975 -1.001	0.987	0.987	0.988	0.987	0.987	0.987
13C-1,2,3,6,7,8-HxCDF	0.979 -1.005	0.991	0.991	0.991	0.991	0.991	0.991
13C-2,3,4,6,7,8-HxCDF	1.001 -1.020	1.009	1.009	1.010	1.009	1.010	1.009
13C-1,2,3,7,8,9-HxCDF	1.002 -1.072	1.039	1.039	1.039	1.039	1.039	1.038
13C-1,2,3,4,6,7,8-HpCDF	1.069 -1.111	1.093	1.093	1.093	1.093	1.093	1.093
13C-1,2,3,4,7,8,9-HpCDF	1.098 -1.192	1.146	1.146	1.146	1.146	1.146	1.146
13C-OCDF	1.091 -1.371	1.235	1.235	1.235	1.235	1.235	1.234
37Cl-2,3,7,8-TCDD	0.989 -1.052	1.023	1.023	1.023	1.023	1.023	1.023
13C-1,2,3,4-TCDD	0.000 -0.000	*	*	*	*	*	*
13C-1,2,3,4-TCDF	0.000 -0.000	*	*	*	*	*	*
13C-1,2,3,4,6,9-HxCDF	0.000 -0.000	*	*	*	*	*	*

DB 5/14/19

Page 1 of 1

FORM 5 PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

- Lab Name: Vista Analytical Laboratory Episode No.:
- Contract No.: SAS No.:
- Instrument ID: VG-7 Initial Calibration Date: 5-10-19

RT Window Data Filename: 190510D2 S#4 Analysis Date: 10-MAY-19 Time: 16:47:52

ZB-5MS IS Data Filename: 190510D2 S#4 Analysis Date: 10-MAY-19 Time: 16:47:52

DB_225 IS Data Filename: Analysis Date: Time:

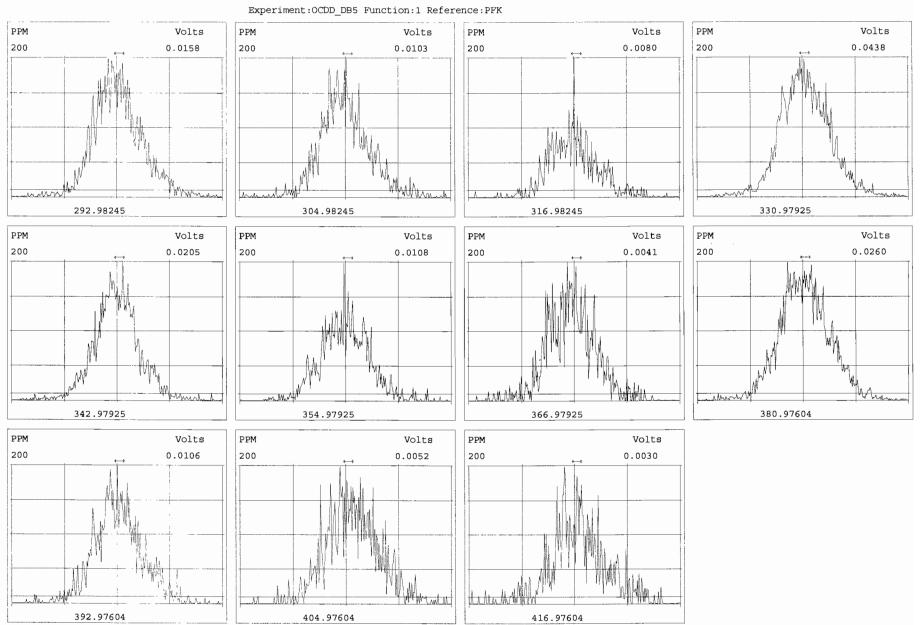
ZB-5MS RT WINDOW DEFINING STANDARDS RESULTS

	ABSOLUTE		ABSOLUTE
ISOMERS	RT	ISOMERS	RT
1,3,6,8-TCDD (F)	22:50	1,3,6,8-TCDF (F)	20:45
1,2,8,9-TCDD (L)	27:01	1,2,8,9-TCDF (L)	27:11
1,2,4,7,9-PeCDD (F)	28:35	1,3,4,6,8-PeCDF (F)	27:05
1,2,3,8,9-PeCDD (L)	30:58	1,2,3,8,9-PeCDF (L)	31:13
1,2,4,6,7,9-HxCDD (F)	32:21	1,2,3,4,6,8-HxCDF (F)	31:49
1,2,3,7,8,9-HxCDD (L)	34:19	1,2,3,7,8,9-HxCDF (L)	34:44
1,2,3,4,6,7,9-HpCDD (F)	36:54	1,2,3,4,6,7,8-HpCDF (F)	36:32
1,2,3,4,6,7,8-HpCDD (L)	37:45	1,2,3,4,7,8,9-HpCDF (L)	38:19

(F) = First eluting isomer (ZB-5MS); (L) = Last eluting isomer (ZB-5MS).

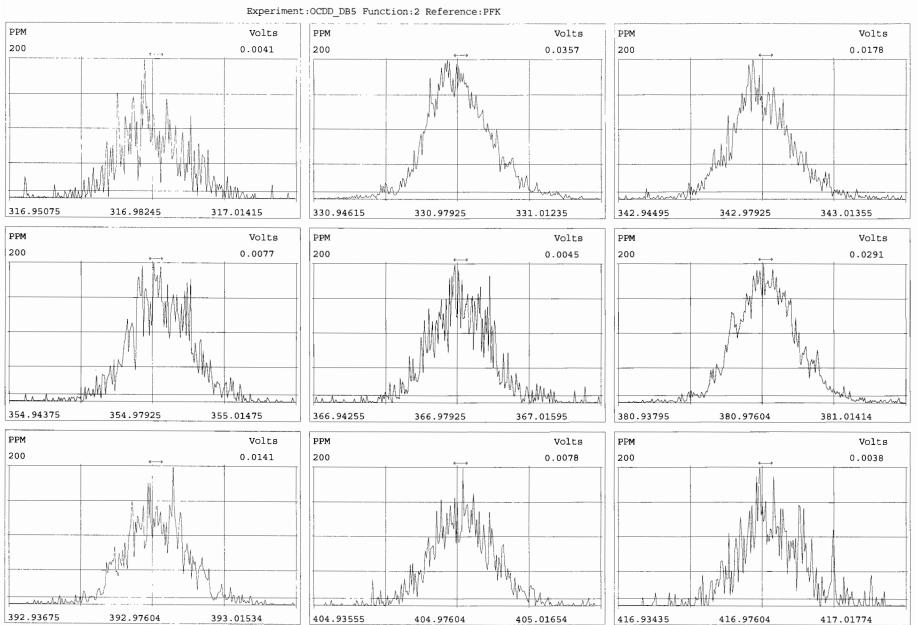
ISOMER SPECIFICITY (IS) TEST STANDARD RESULTS

% VALLEY HEIGHT BETWEEN COMPARED PEAKS (1)

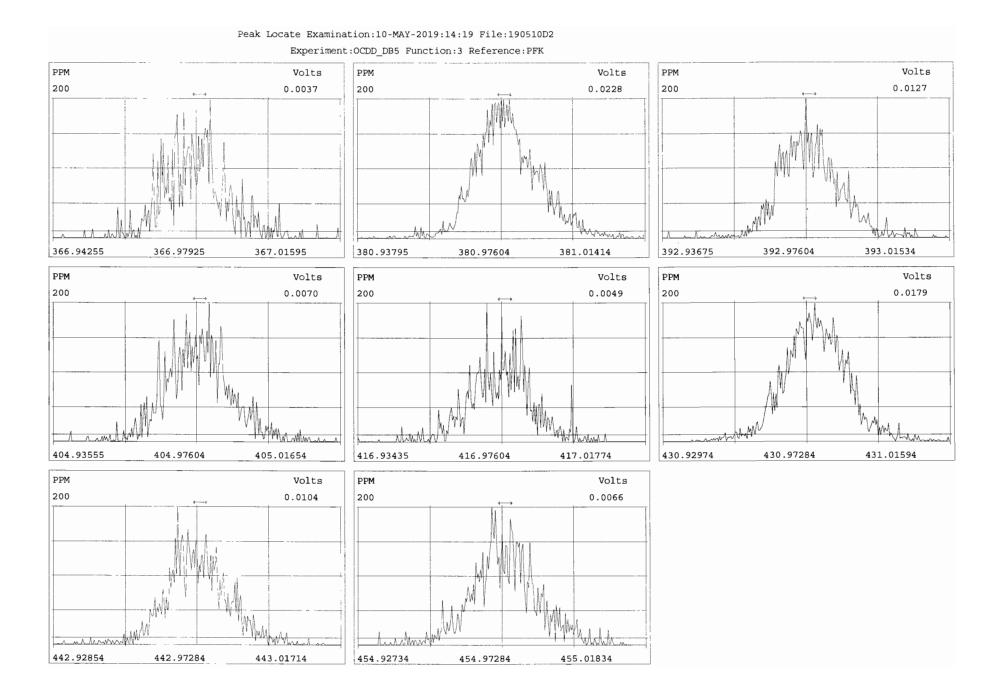

<25%

(1) To meet contract requirements, %Valley Height Between Compared Peaks shall not exceed 25% (section 15.4.2.2, Method 1613).

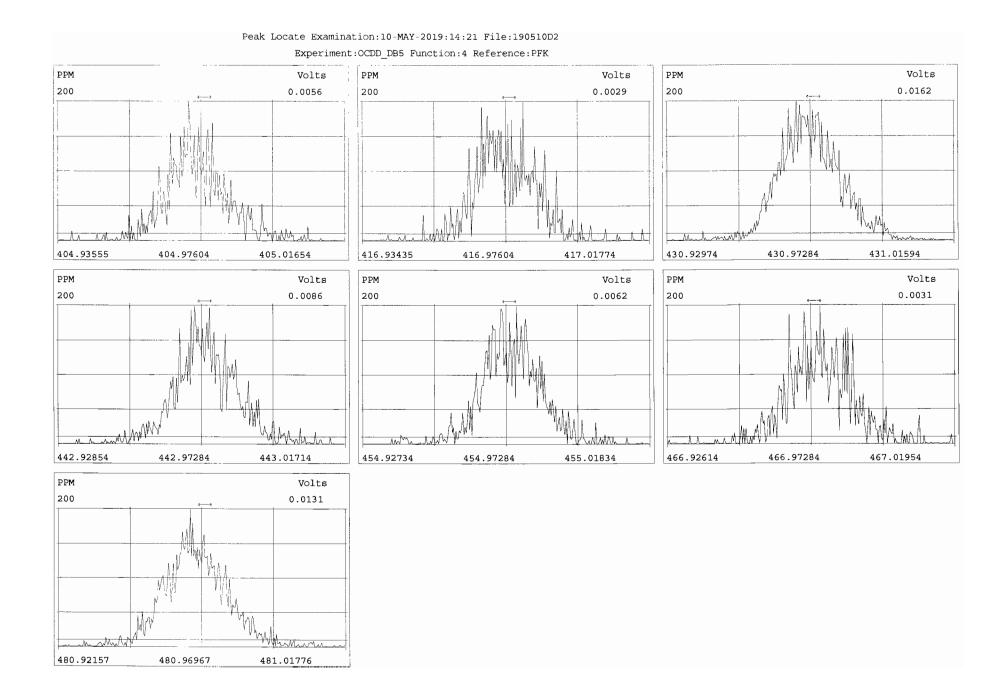
Analyst: <u>)B</u> Date: <u>5/13/19</u>

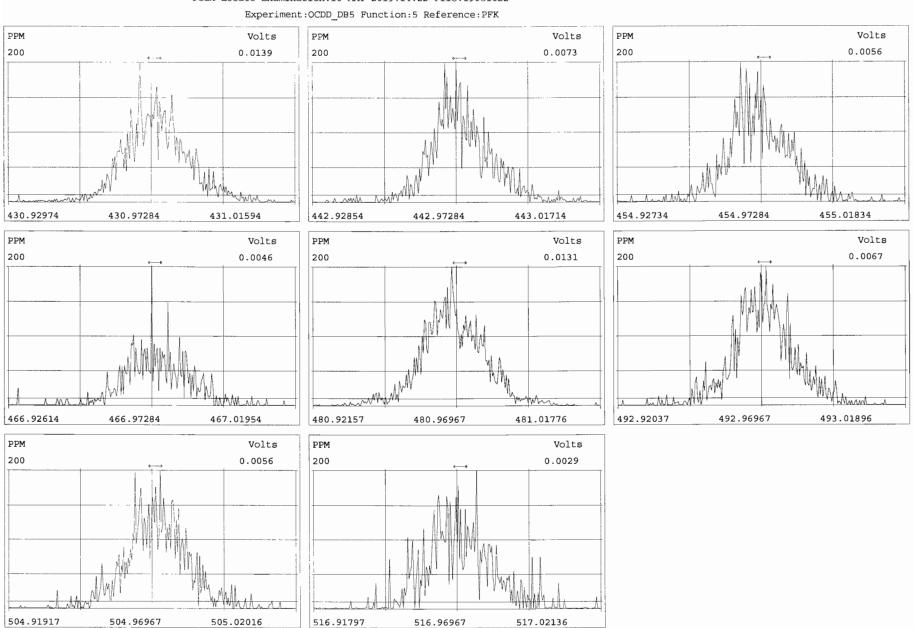

Vista Analytical Laboratory - Injection Log Run file: 190510D2 Instrument ID: VG-7 GC Column ID: ZB-5MS

Data file	S#	Sample ID	Analyst	Acq date	Acq time	CCal	ECal
190510D2	1	ST190510D2-1	DB	10-MAY-19	14:24:45	ST190510D2-4	NA
190510D2	2	ST190510D2-2	DB	10-MAY-19	15:12:30	ST190510D2-4	NA
190510D2	3	ST190510D2-3	DB	10-MAY-19	16:00:06	ST190510D2-4	NA
190510D2	4	ST190510D2-4	DB	10-MAY-19	16:47:52	ST190510D2-4	ST190510D2-7
190510D2	5	ST190510D2-5	DB	10-MAY-19	17:35:29	ST190510D2-4	NA
190510D2	6	ST190510D2-6	DB	10-MAY-19	18:23:05	ST190510D2-4	NA
190510D2	7	SOLVENT BLANK	DB	10-MAY-19	19:10:42	NA	NA
190510D2	8	SS190510D2-1	DB	10-MAY-19	19:58:17	ST190510D2-4	NA
190510D2	9	B9E0067-BS1	DB	10-MAY-19	20:45:54	ST190510D2-4	ST190510D2-7
190510D2	10	SOLVENT BLANK	DB	10-MAY-19	21:33:30	NA	NA
190510D2	11	B9E0067-BLK1	DB	10-MAY-19	22:21:10	ST190510D2-4	ST190510D2-7
190510D2	12	1900874-01	DB	10-MAY-19	23:08:45	ST190510D2-4	ST190510D2-7
190510D2	13	1900832-01	DB	10-MAY-19	23:56:25	ST190510D2-4	NA
190510D2	14	1901011-01	DB	11-MAY-19	00:44:00	ST190510D2-4	NA
190510D2	15	1901009-01	DB	11-MAY-19	01:31:38	ST190510D2-4	NA
190510D2	16	1901010-01	DB	11-MAY-19	02:19:20	ST190510D2-4	NA
190510D2	17	SOLVENT BLANK	DB	11-MAY-19	03:06:55	NA	NA
190510D2	18	ST190510D2-7	DB	11-MAY-19	03:54:32	ST190510D2-4	ST190510D2-7

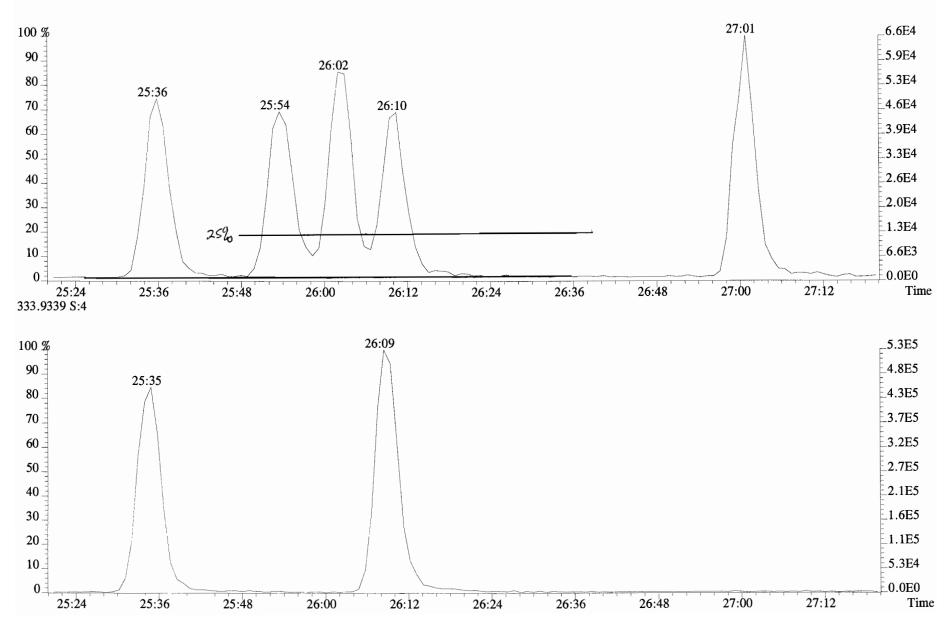

Peak Locate Examination:10-MAY-2019:14:15 File:190510D2

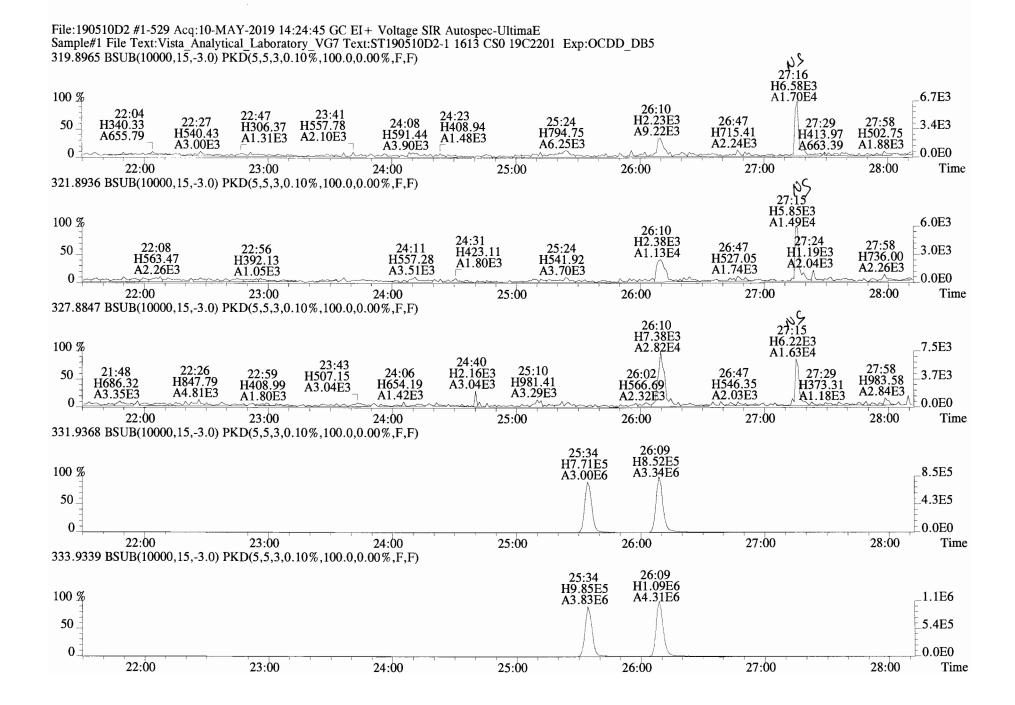
Work Order 1901248

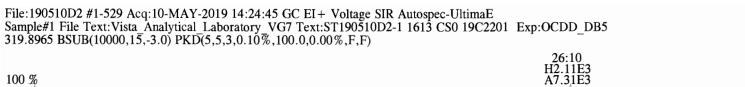

Peak Locate Examination:10-MAY-2019:14:18 File:190510D2

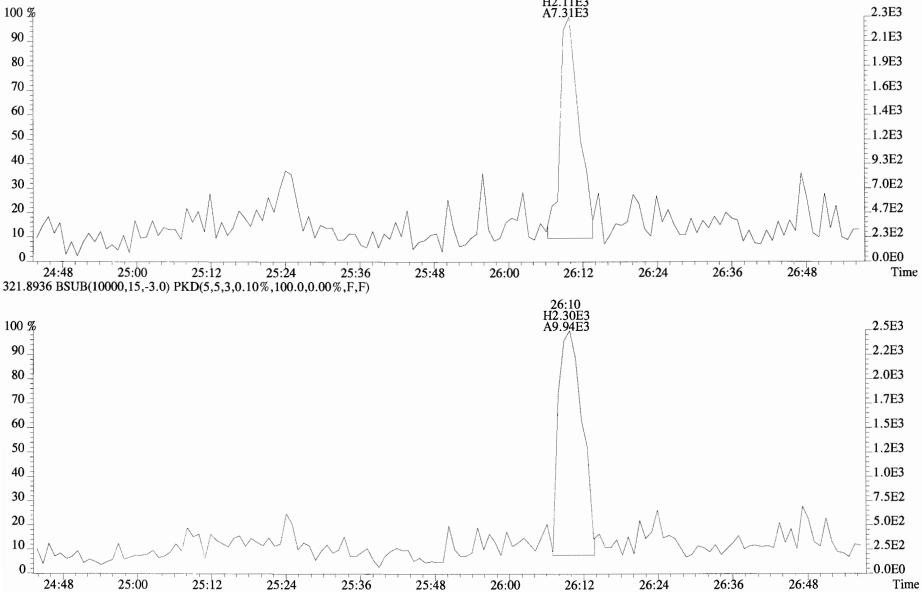

Work Order 1901248

Work Order 1901248

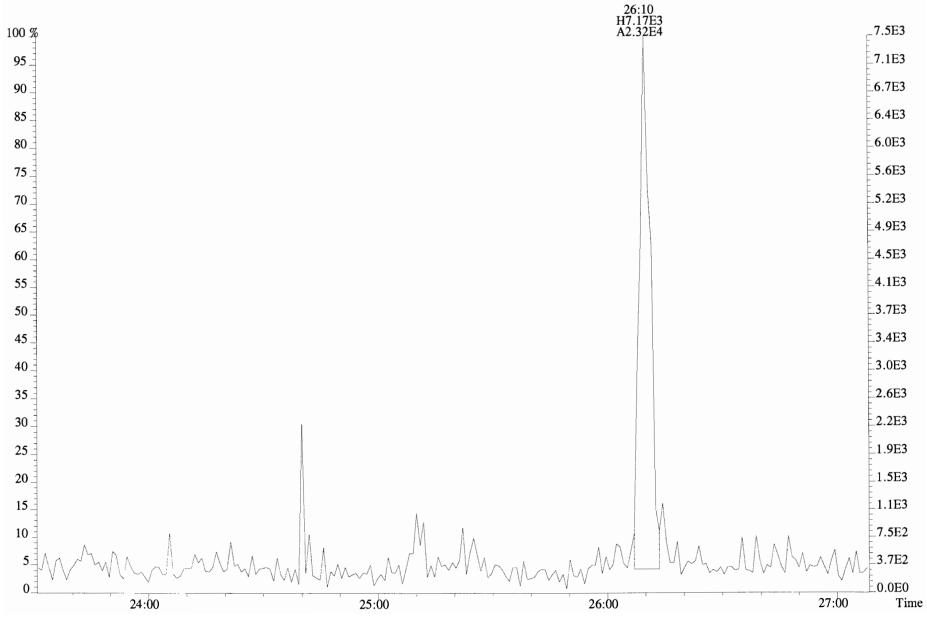

Page 347 of 534



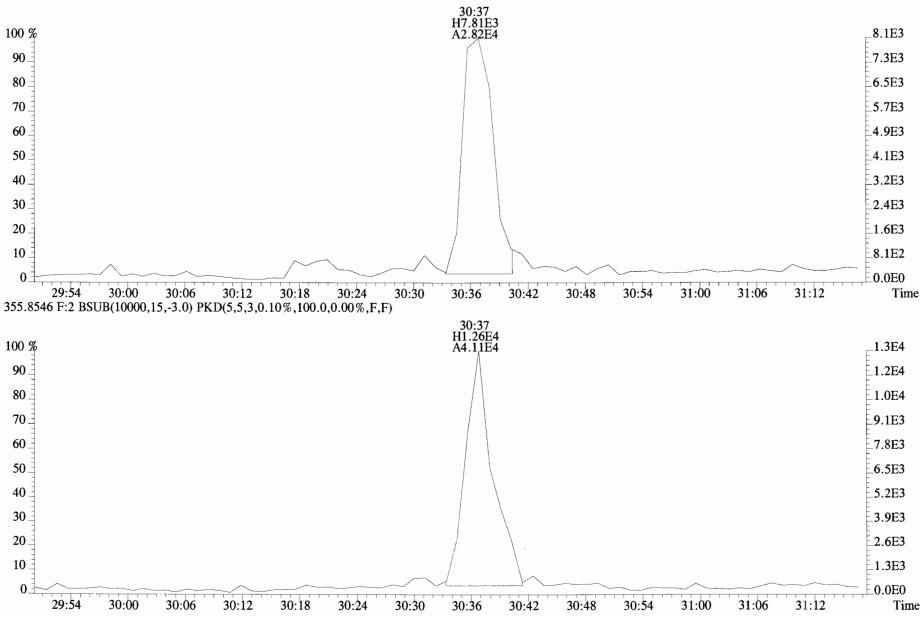


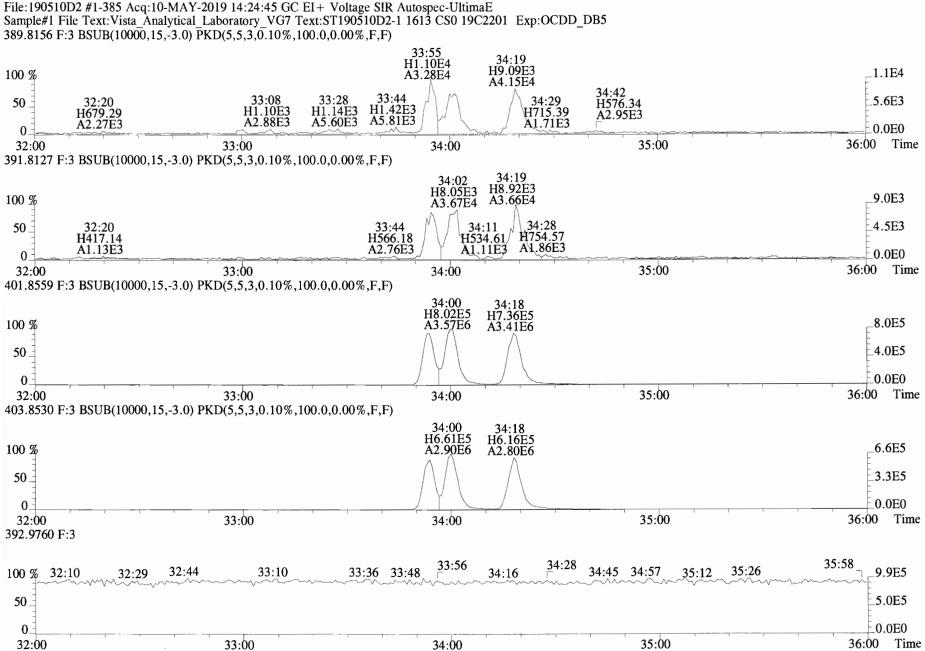

Peak Locate Examination:10-MAY-2019:14:22 File:190510D2

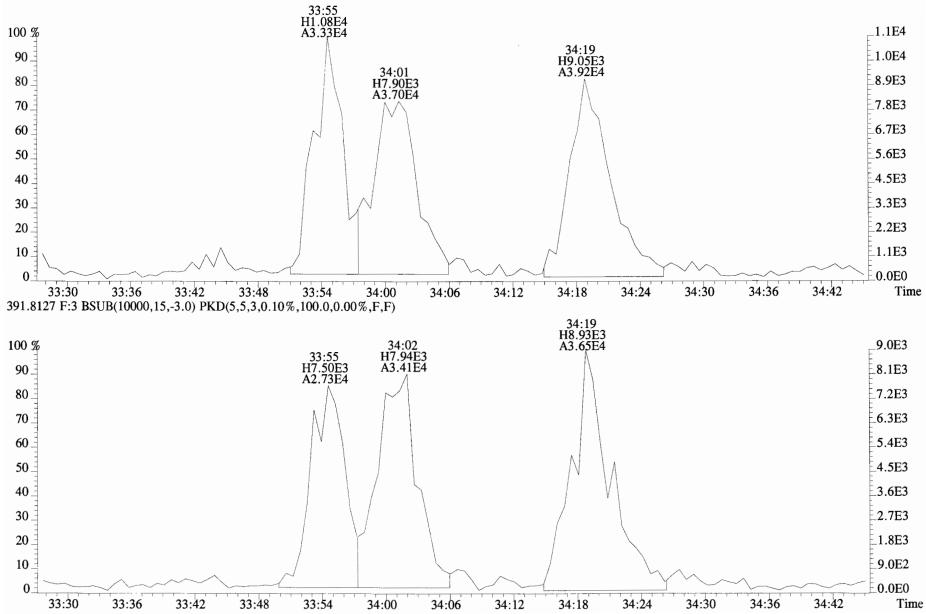
File:190510D2 #1-530 Acq:10-MAY-2019 16:47:52 GC EI + Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-4 1613 CS3 19C2204 Exp:OCDD_DB5 321.8936 S:4



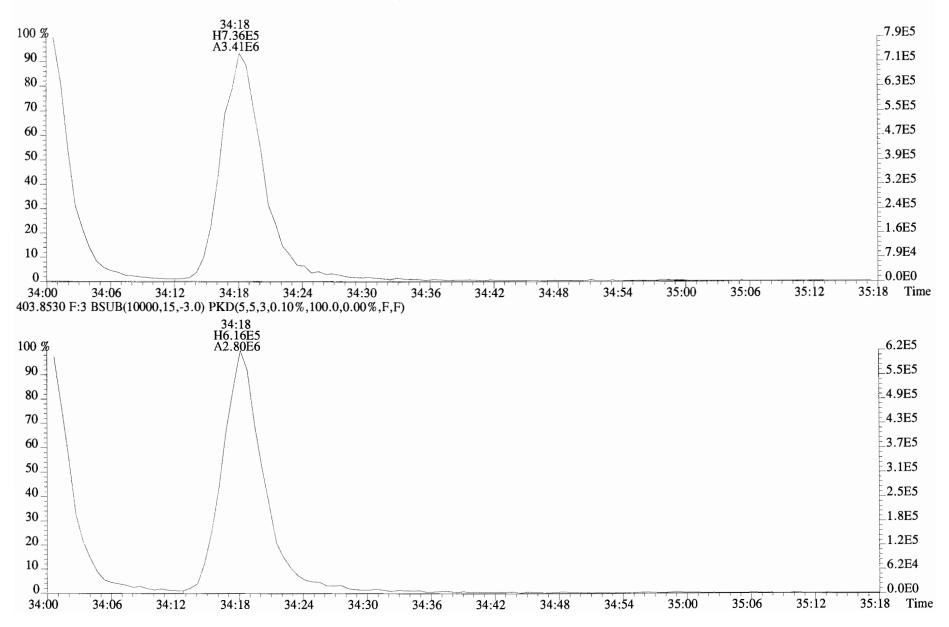


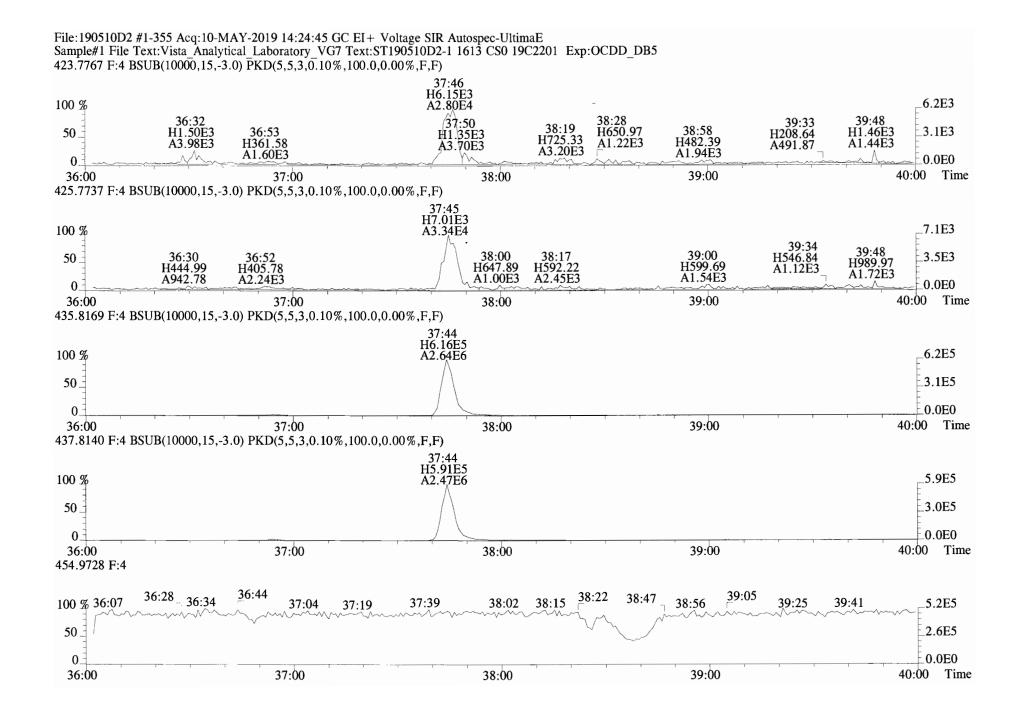

File:190510D2 #1-529 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 327.8847 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



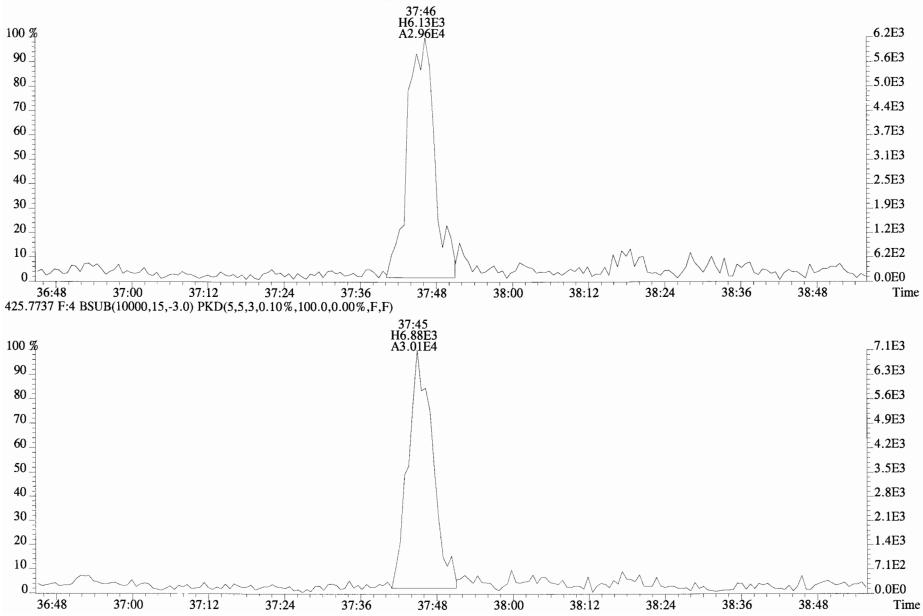

File:190510D2 #1-180 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory_VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 353.8576 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

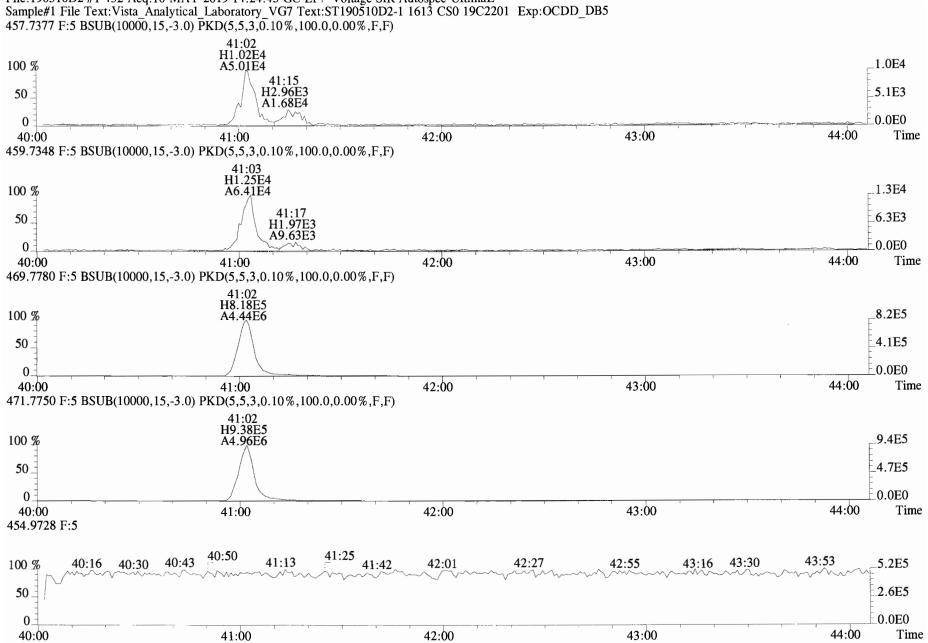
File:190510D2 #1-180 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 353.8576 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

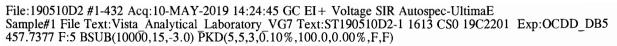


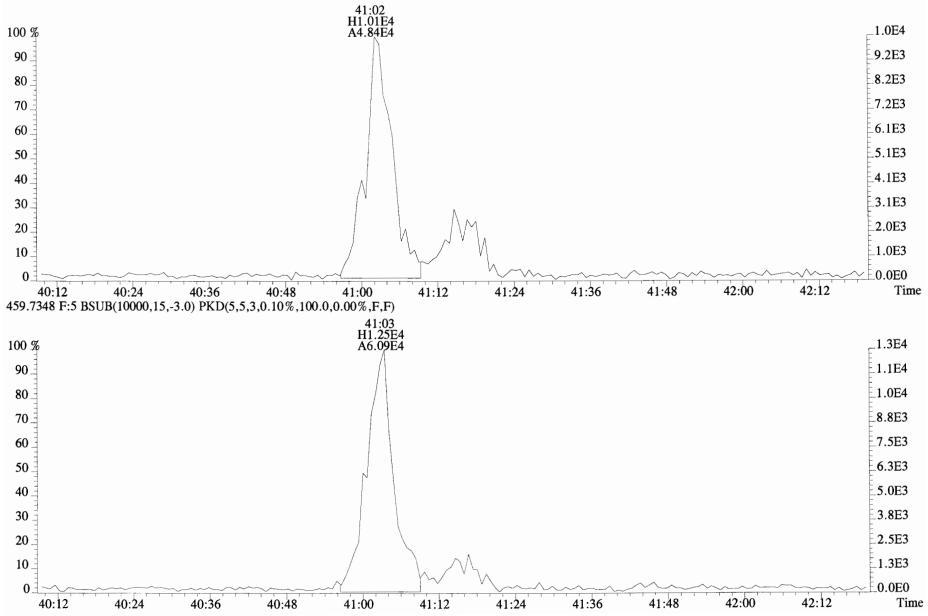


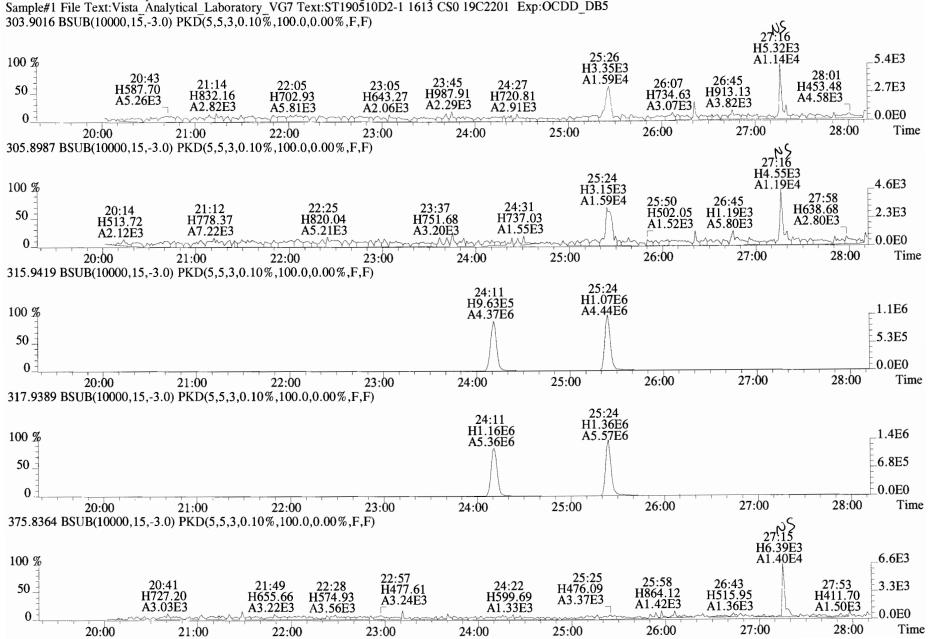
File:190510D2 #1-385 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 389.8156 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

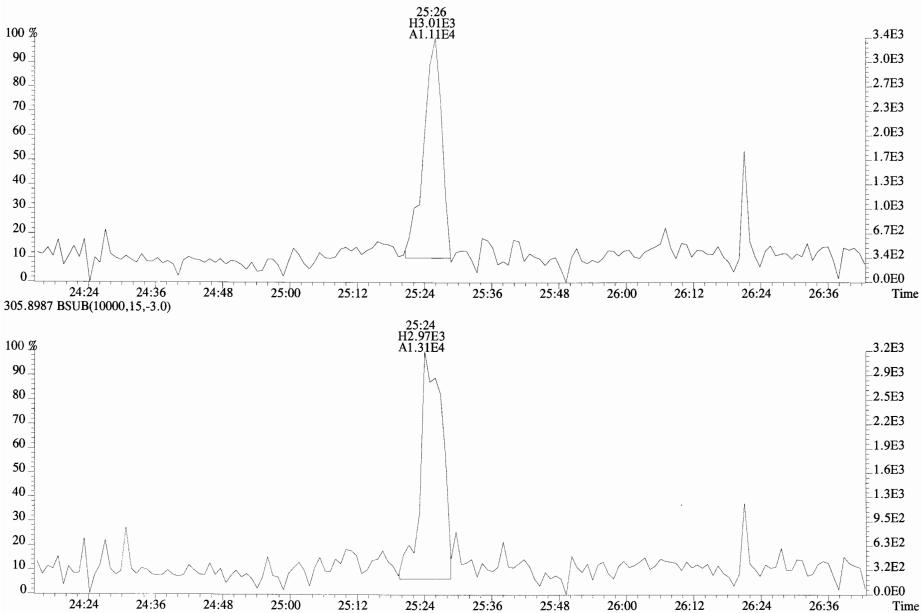


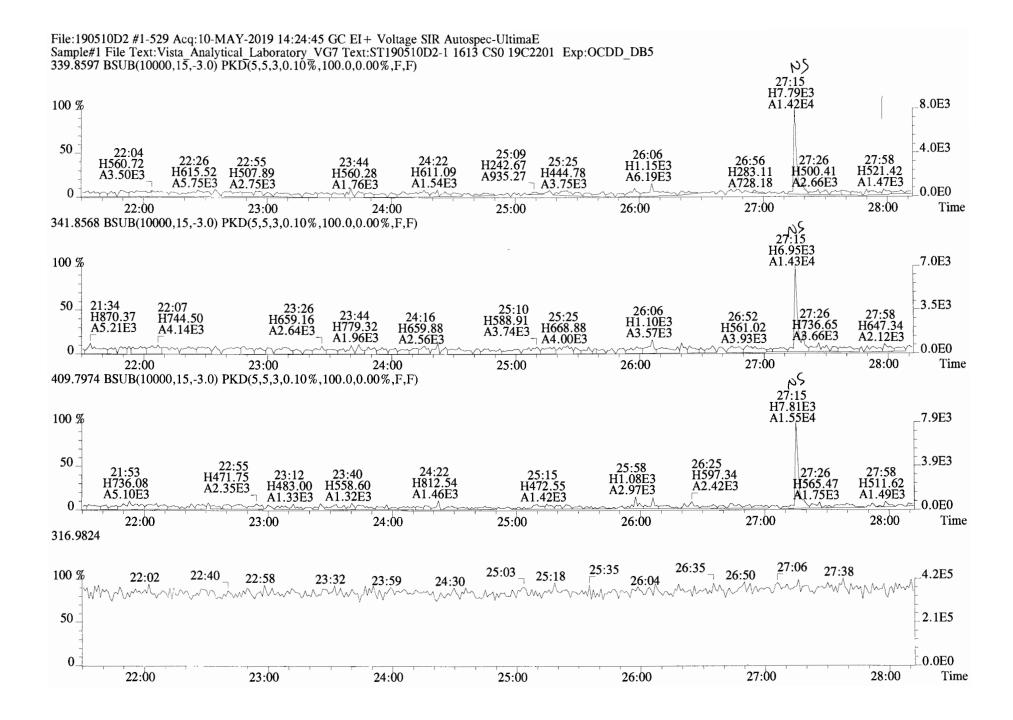

File:190510D2 #1-385 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 401.8559 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

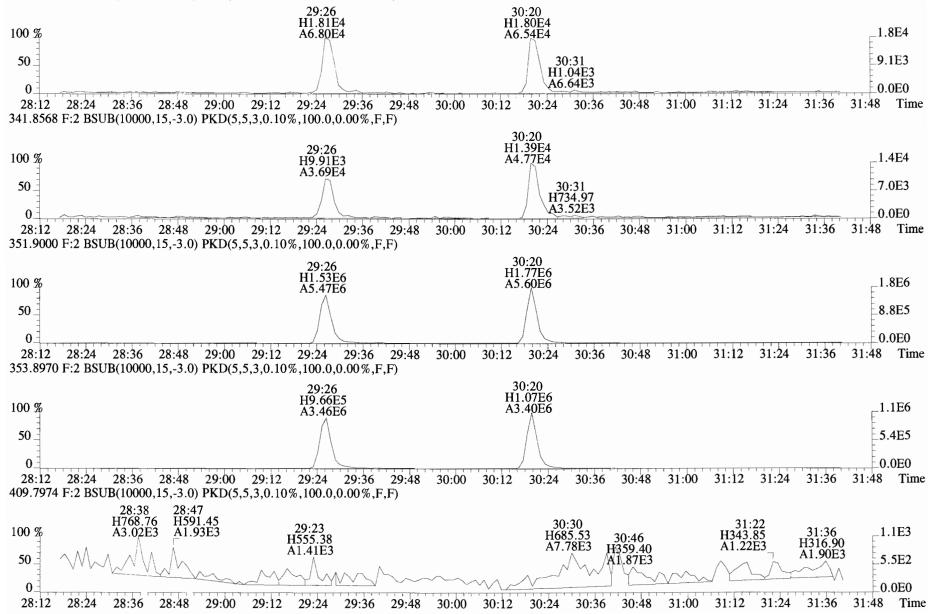


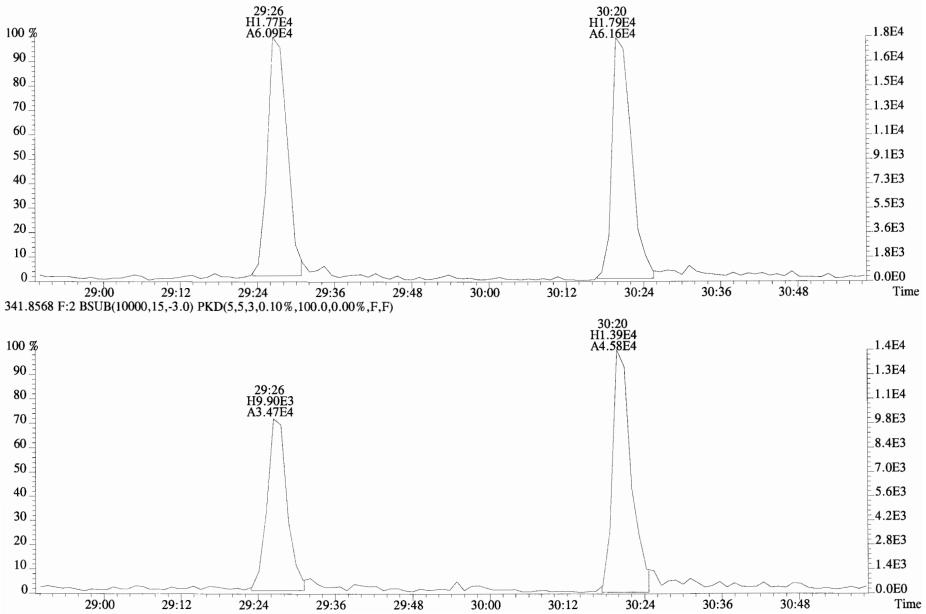



File:190510D2 #1-355 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 423.7767 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

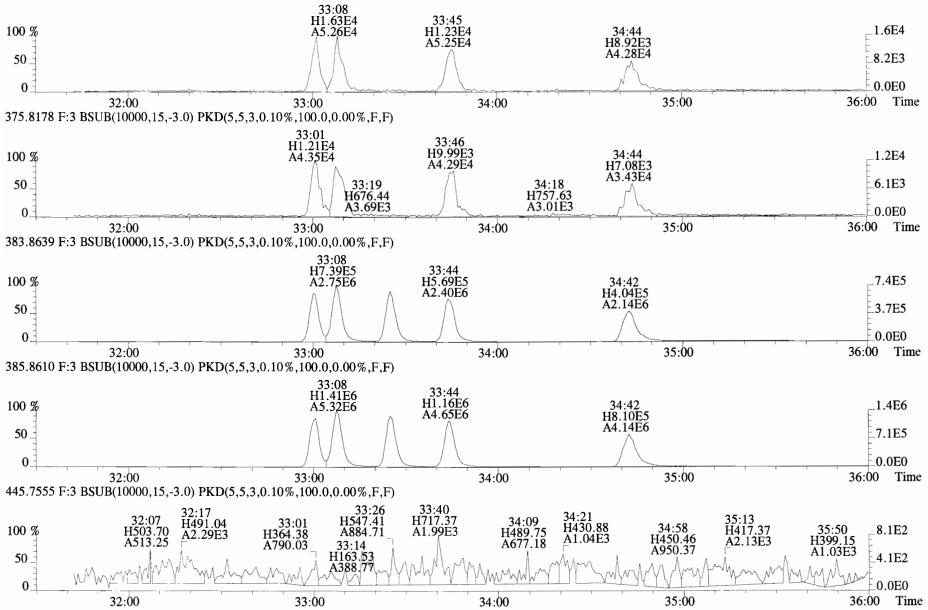


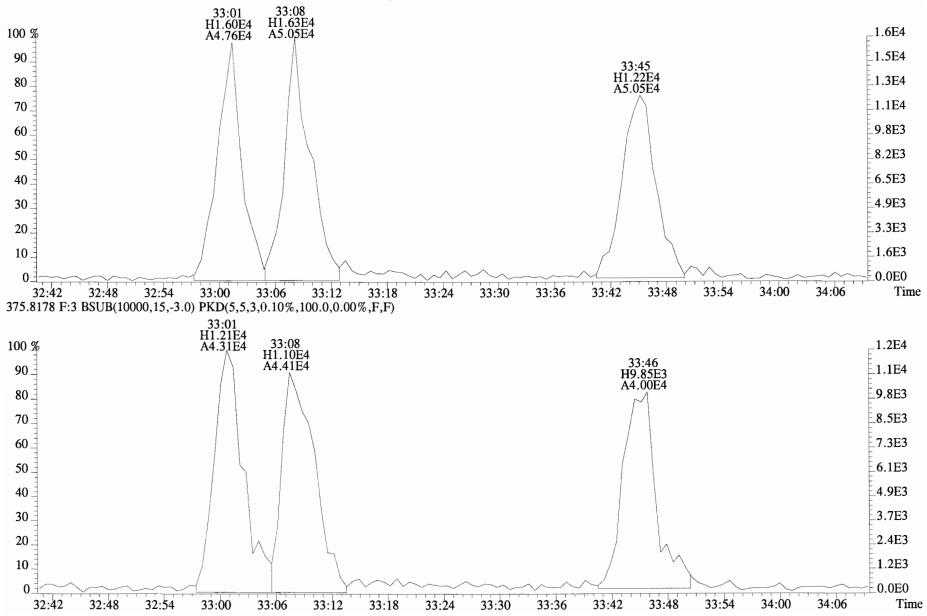


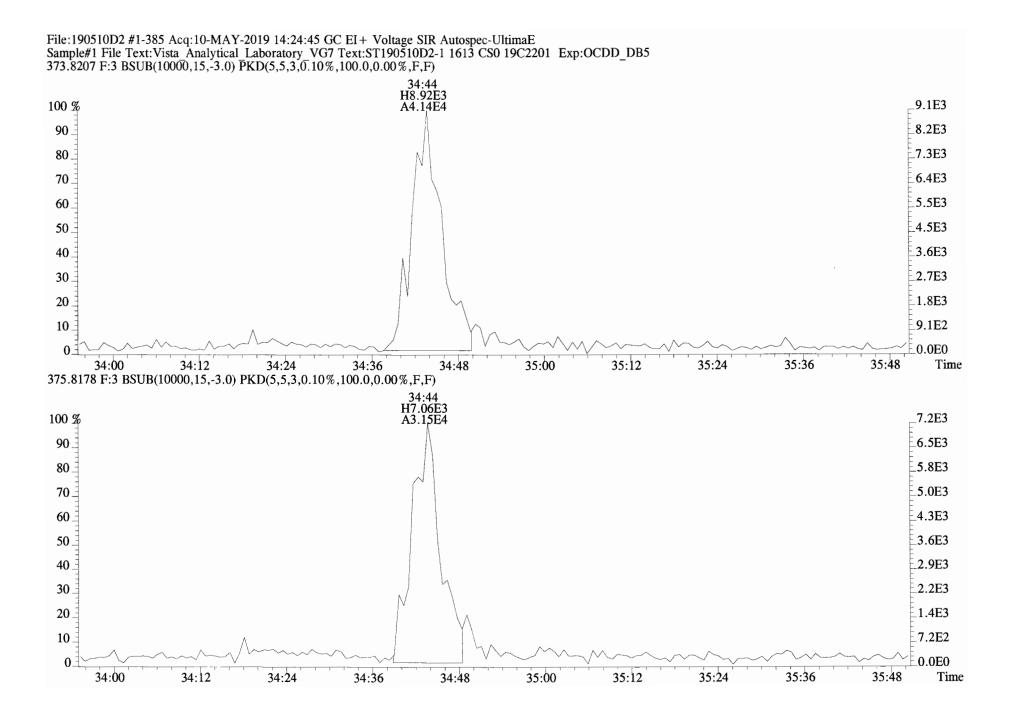

File:190510D2 #1-529 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text: Vista Analytical Laboratory_VG7 Text: ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 File:190510D2 #1-529 Acq:10-MAY-2019 14:24:45 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical_Laboratory_VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 303.9016 BSUB(10000,15,-3.0)



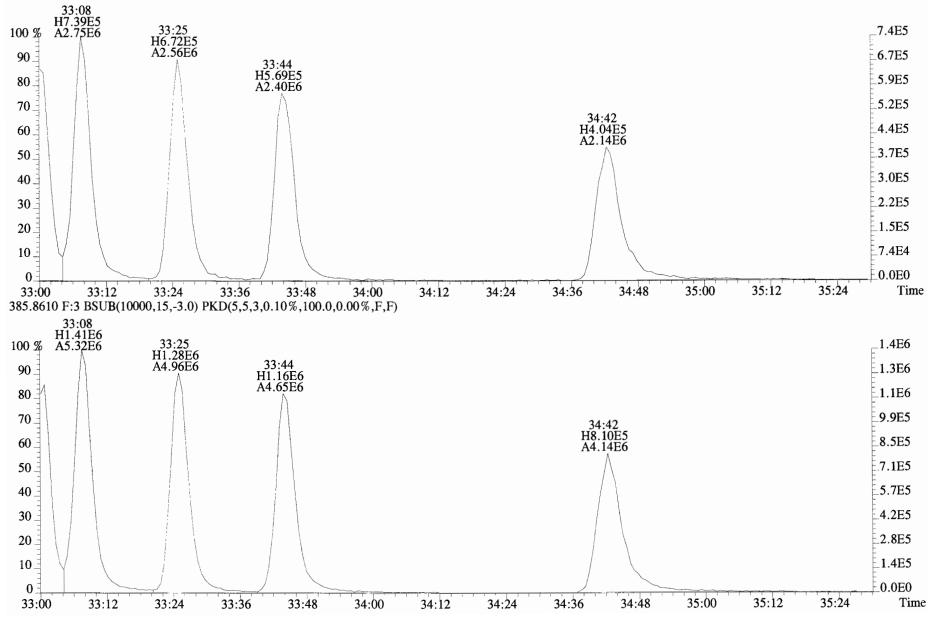
Work Order 1901248

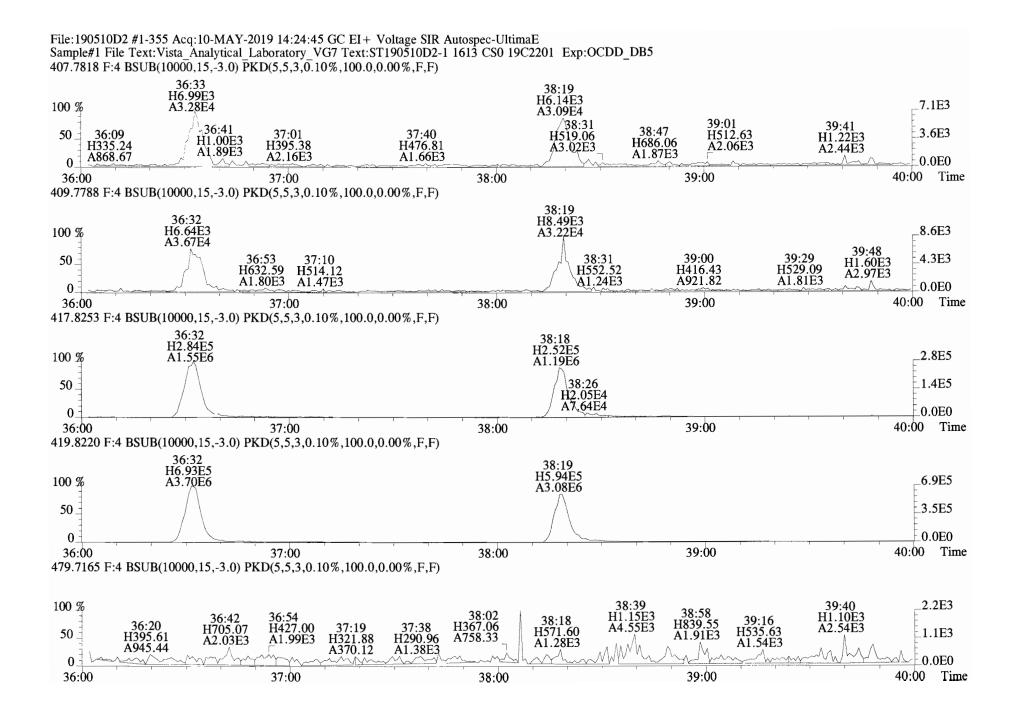

File:190510D2 #1-180 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 339.8597 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

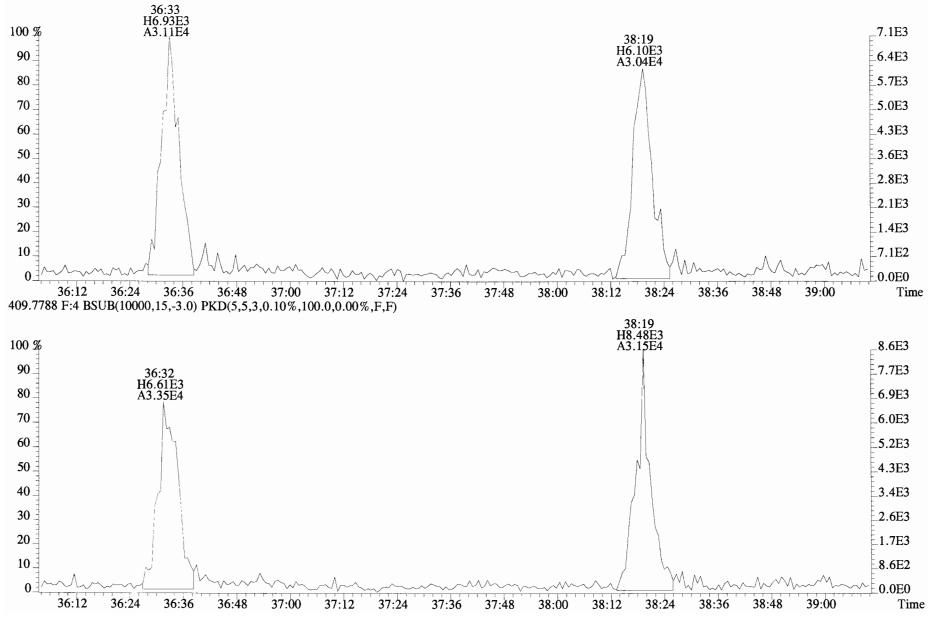

File:190510D2 #1-180 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 339.8597 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

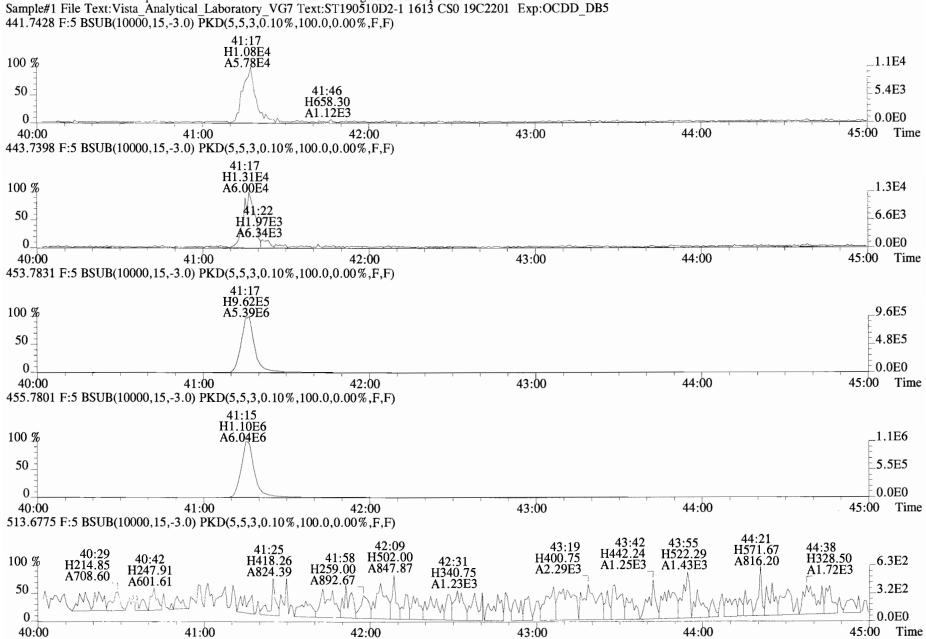


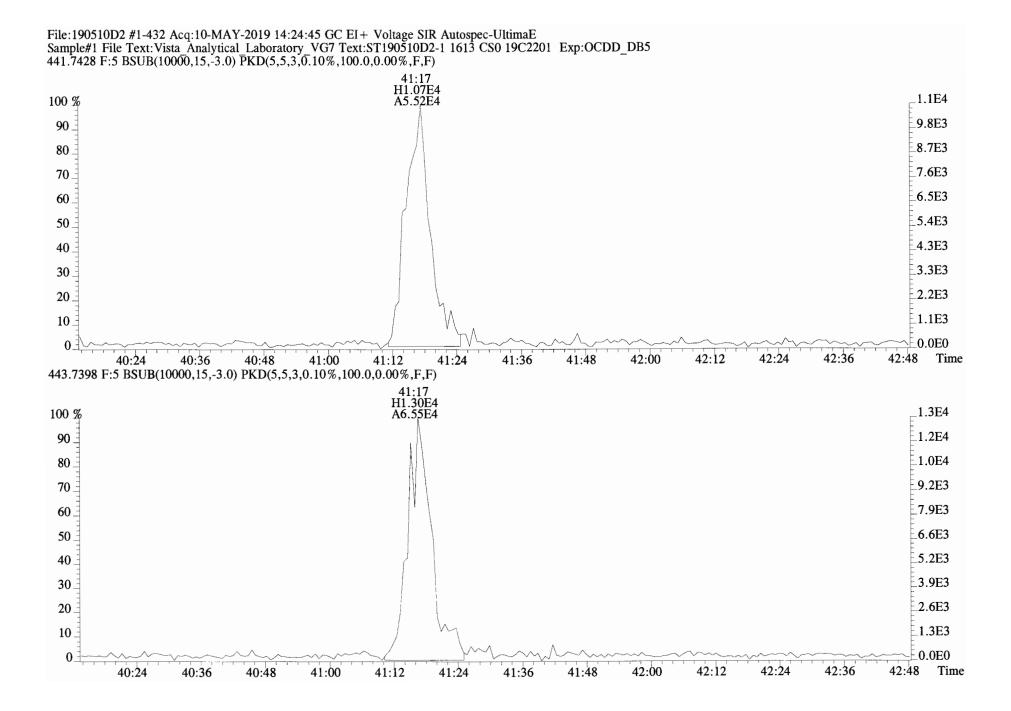
File:190510D2 #1-385 Acq:10-MAY-2019 14:24:45 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 373.8207 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



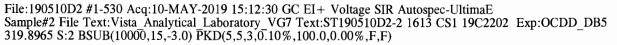

File:190510D2 #1-385 Acq:10-MAY-2019 14:24:45 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 373.8207 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

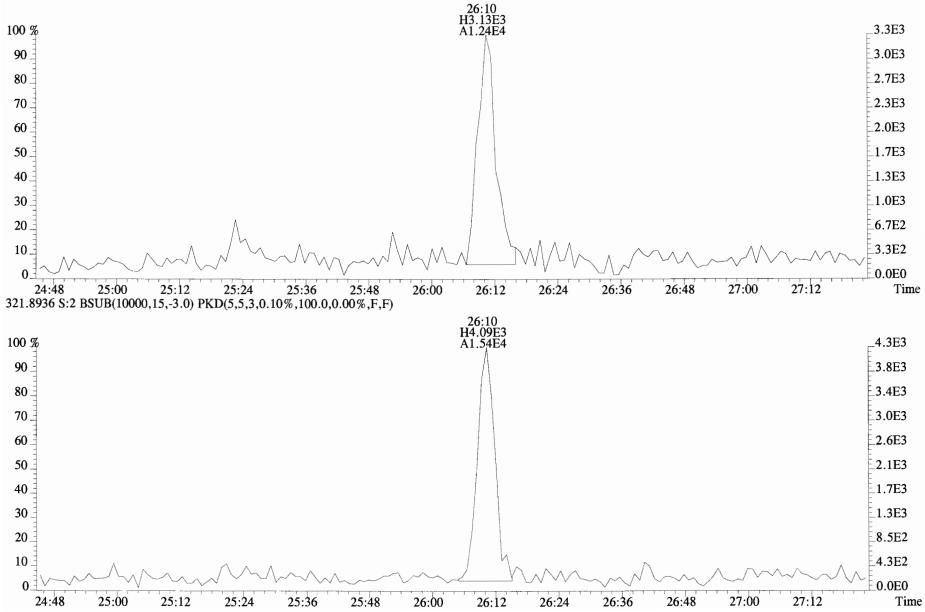

File:190510D2 #1-385 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 383.8639 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

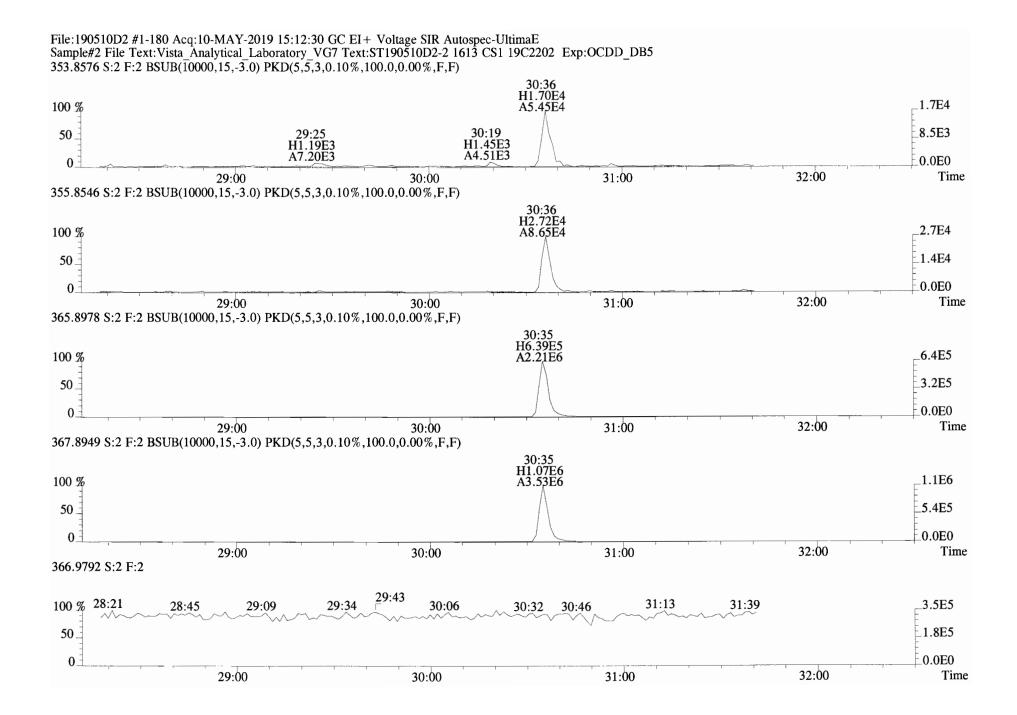


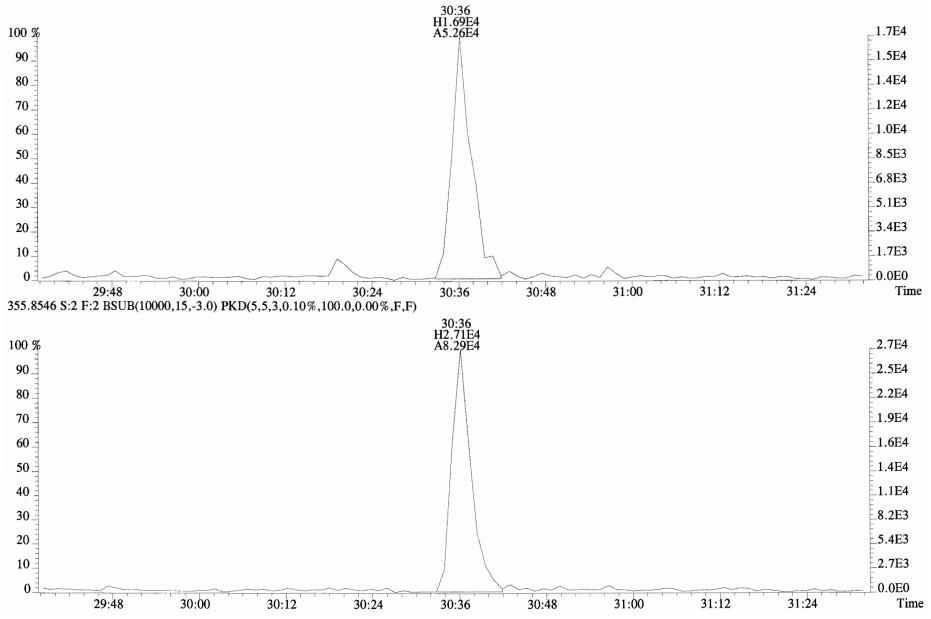

Work Order 1901248

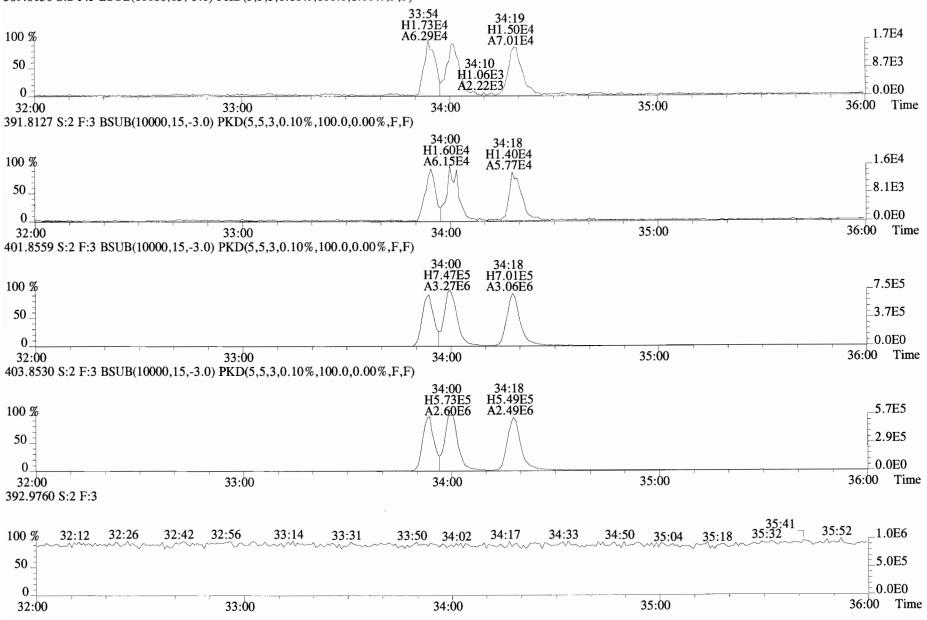
File:190510D2 #1-355 Acq:10-MAY-2019 14:24:45 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-1 1613 CS0 19C2201 Exp:OCDD_DB5 407.7818 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



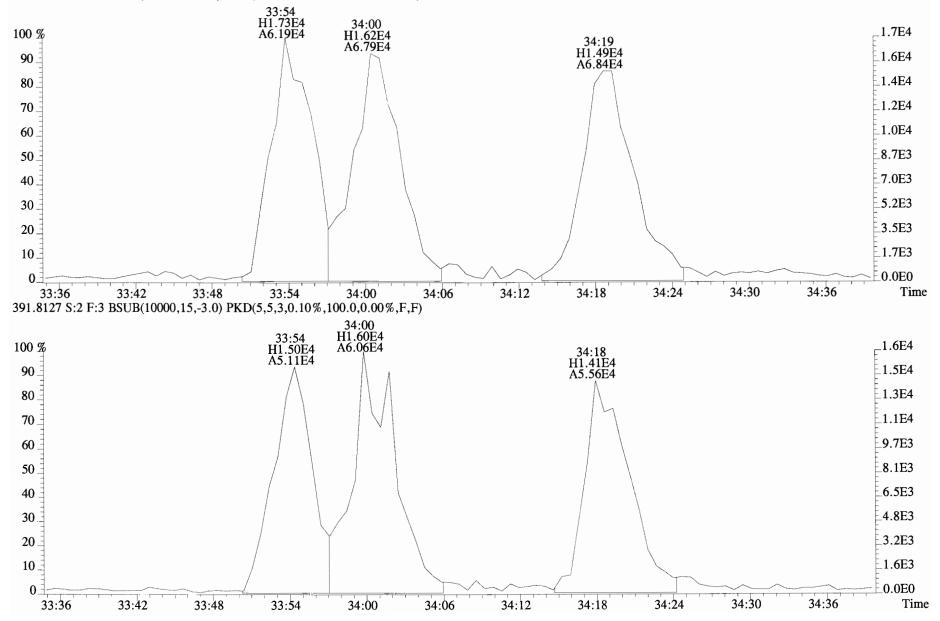


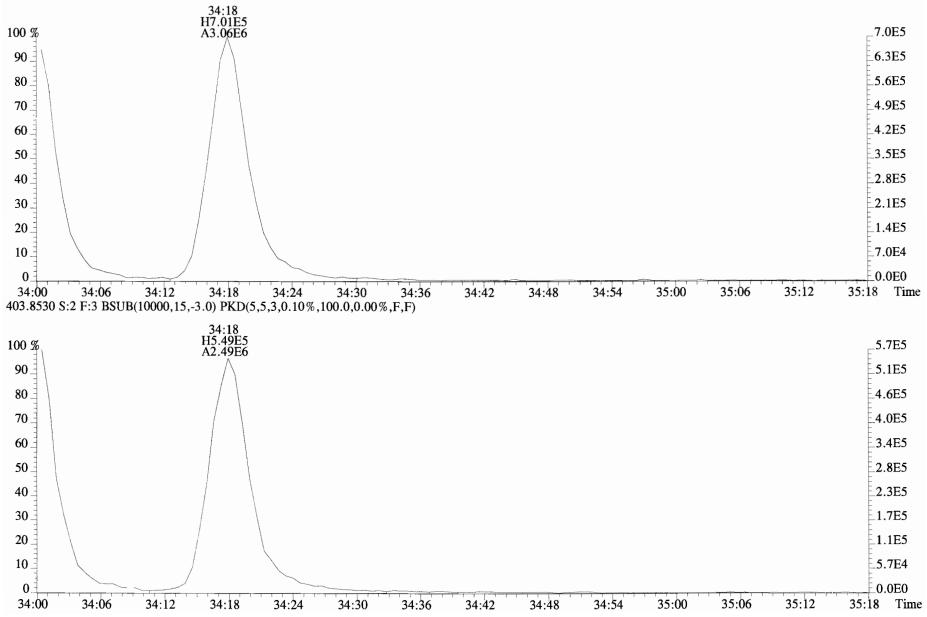

File:190510D2 #1-432 Acq:10-MAY-2019 14:24:45 GC EI+ Voltage SIR Autospec-UltimaE

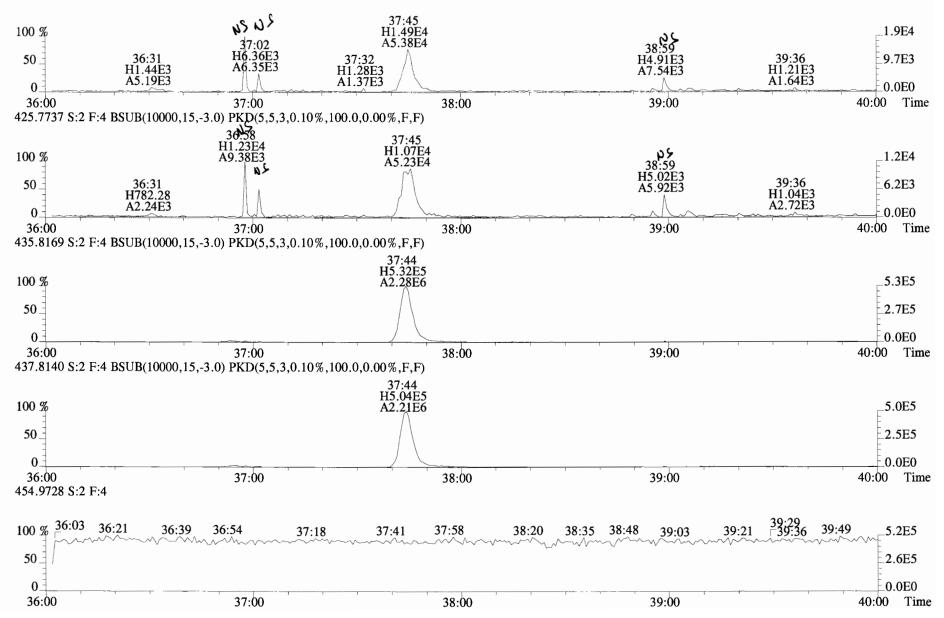


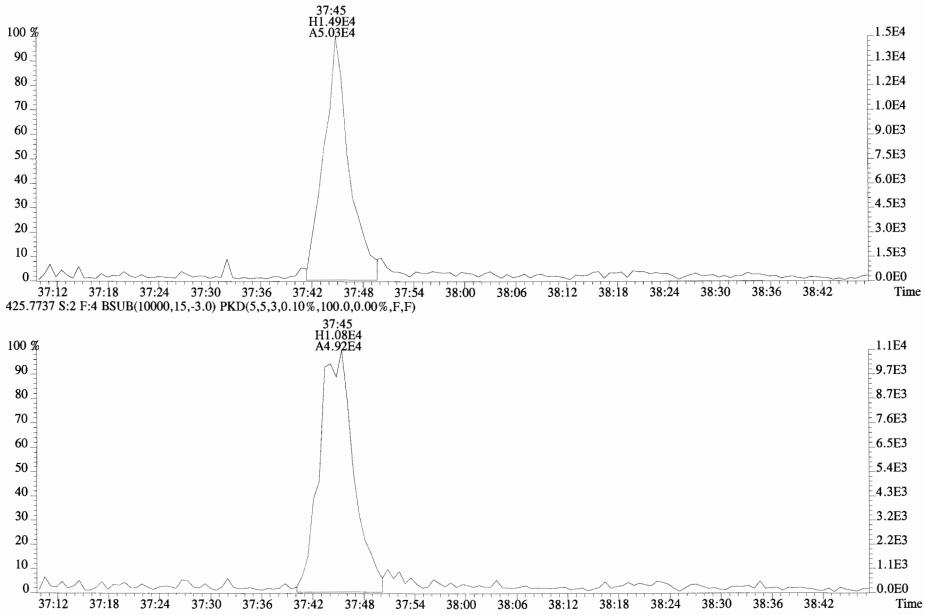


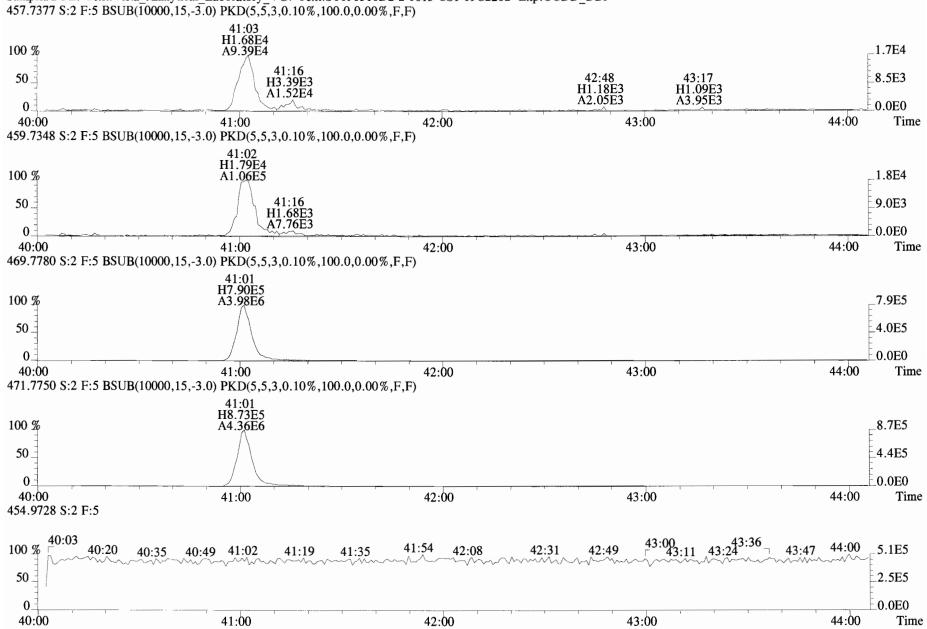
Work Order 1901248


File:190510D2 #1-180 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 353.8576 S:2 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

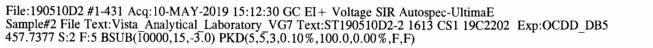

File:190510D2 #1-384 Acq:10-MAY-2019 15:12:30 GC EI + Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 389.8156 S:2 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

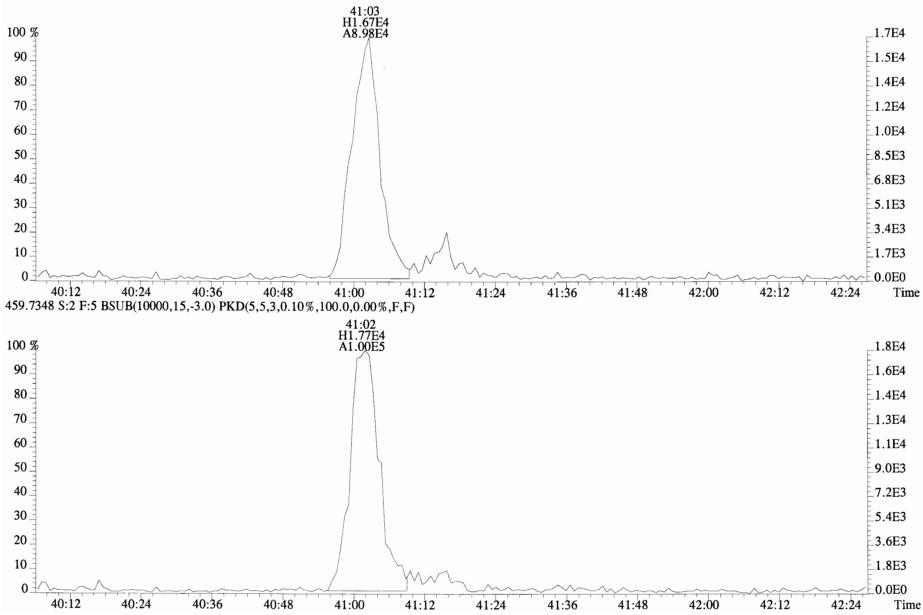

File:190510D2 #1-384 Acq:10-MAY-2019 15:12:30 GC EI + Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 389.8156 S:2 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

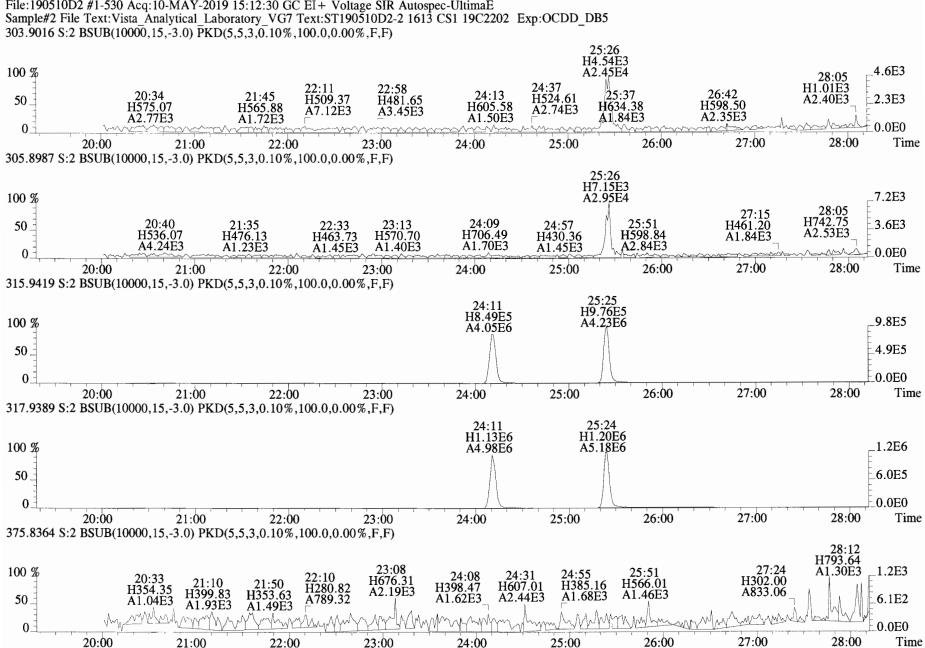

File:190510D2 #1-384 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista Analytical Laboratory_VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 401.8559 S:2 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



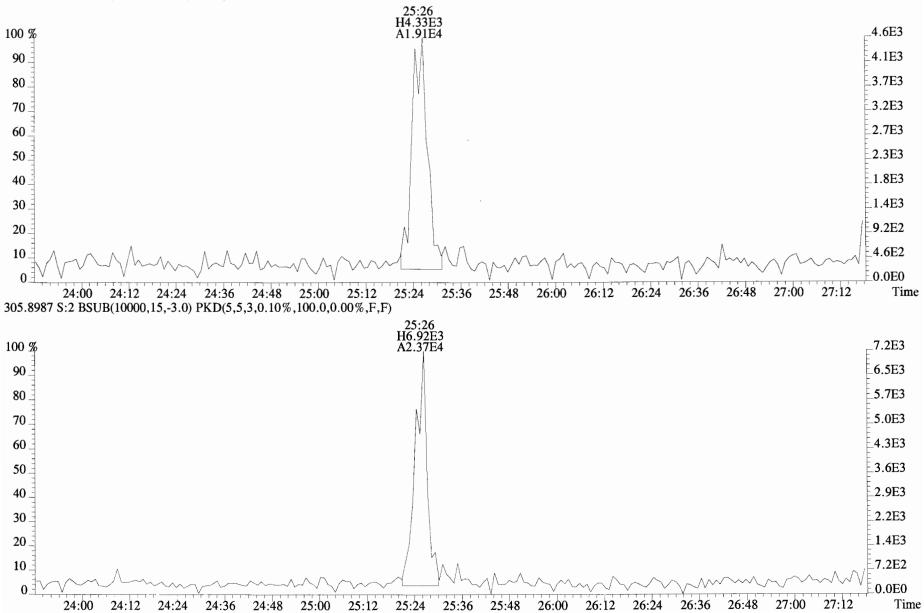
File:190510D2 #1-356 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 423.7767 S:2 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

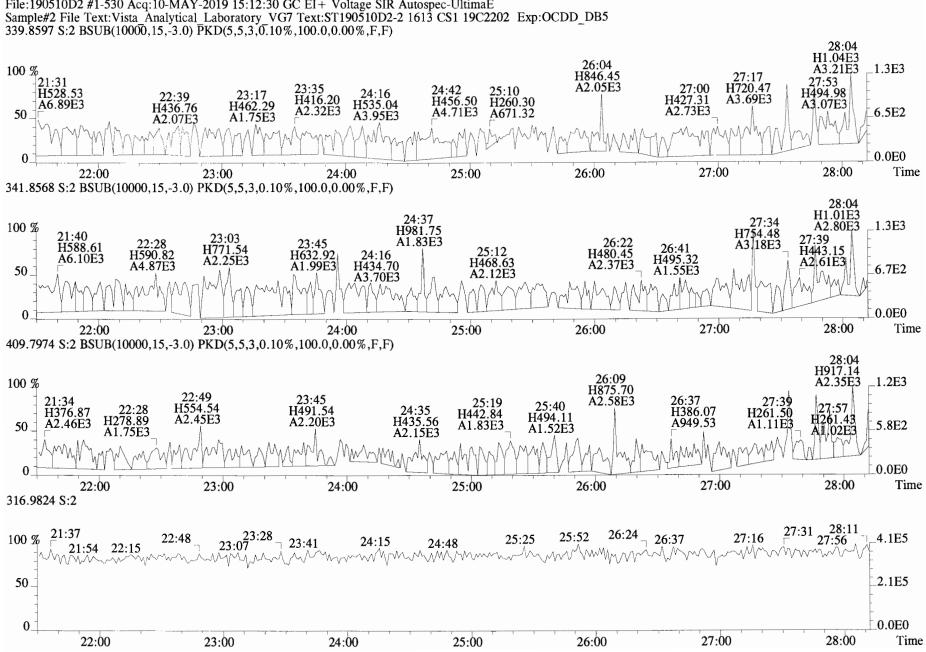


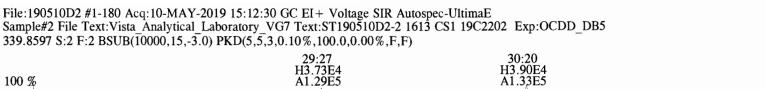

File:190510D2 #1-356 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 423.7767 S:2 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

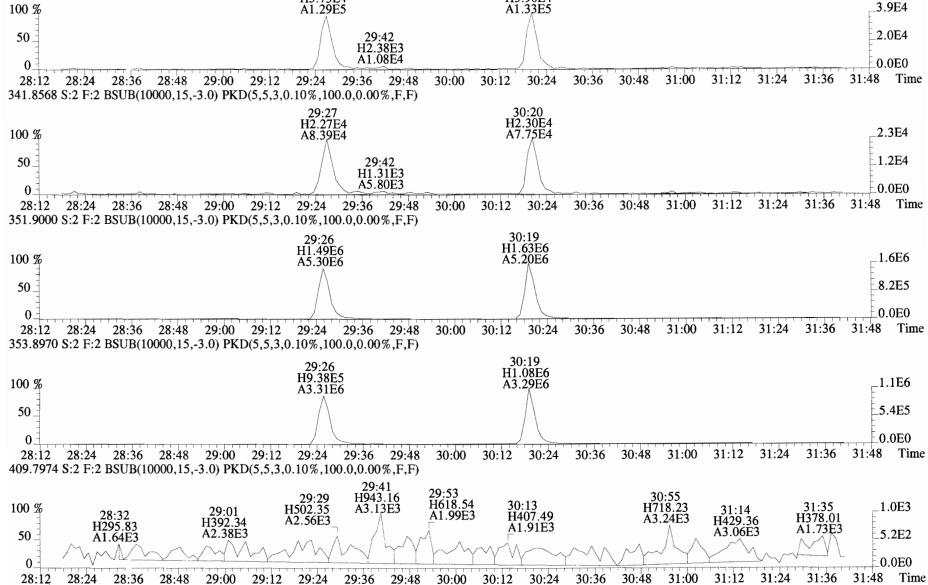


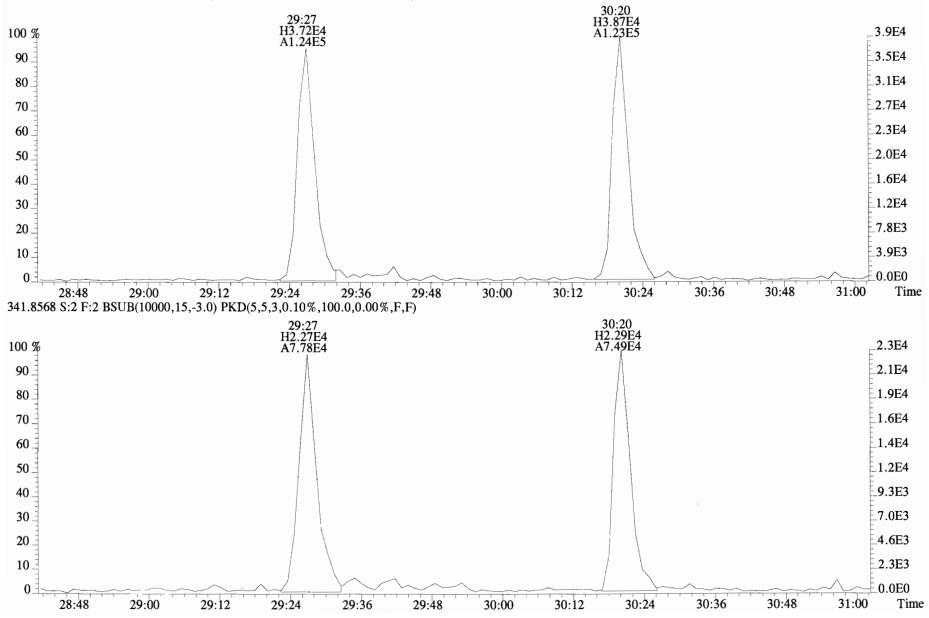
File:190510D2 #1-431 Acq:10-MAY-2019 15:12:30 GC EI + Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 457.7377 S:2 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

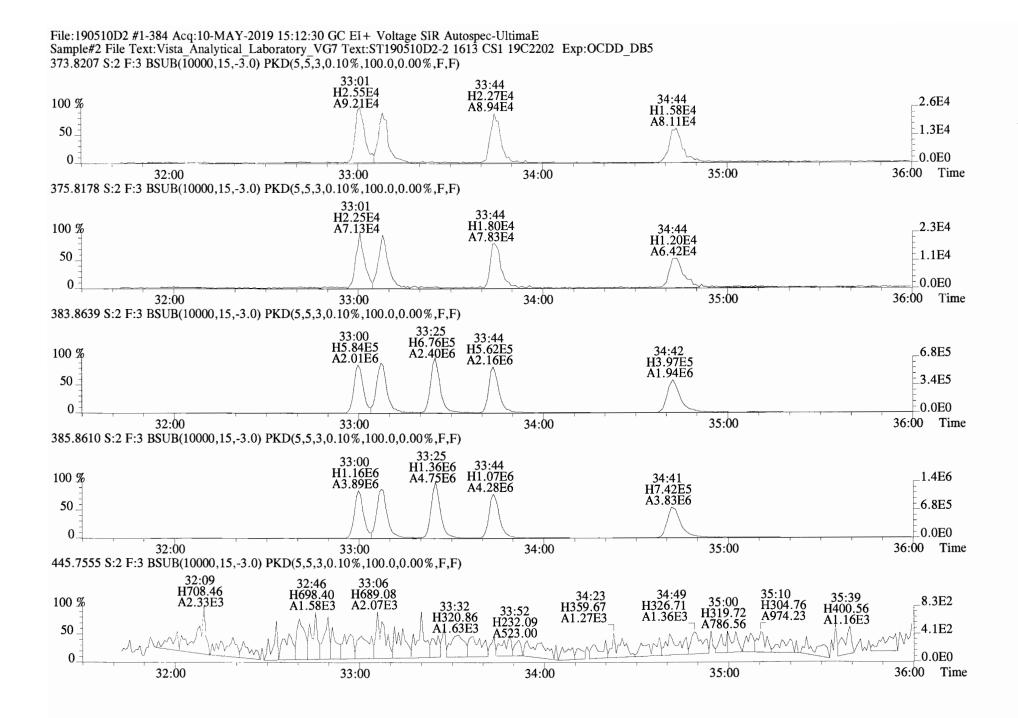


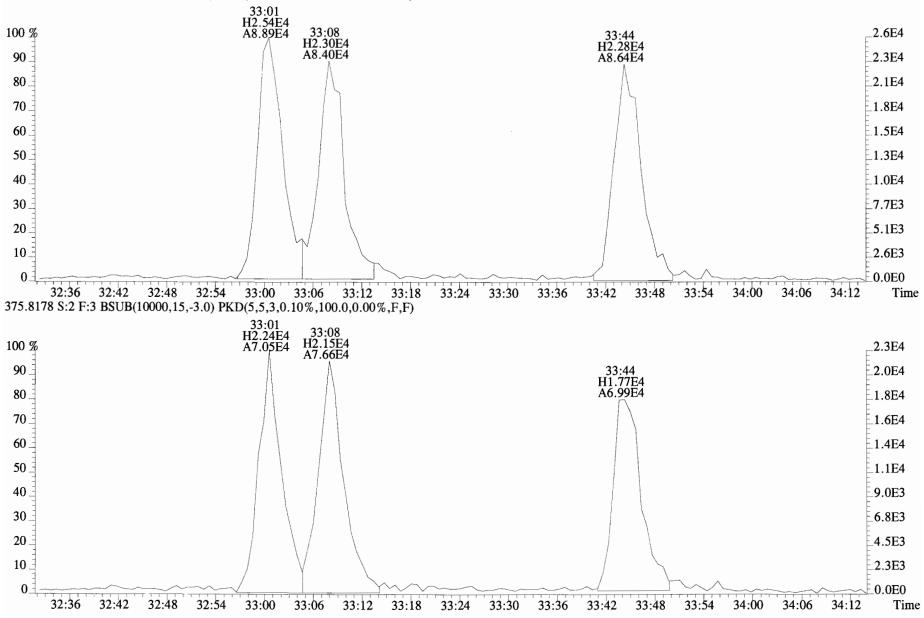


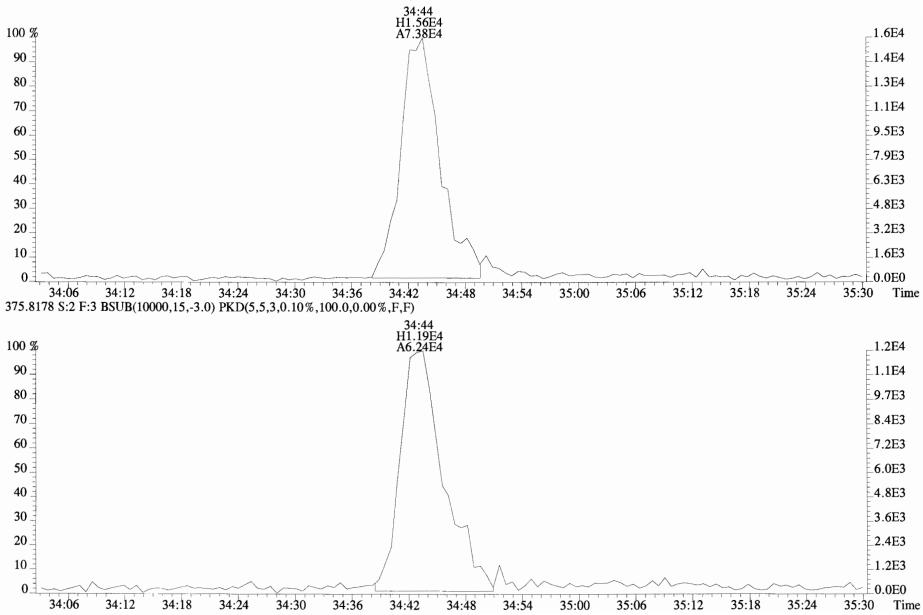

File:190510D2 #1-530 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE

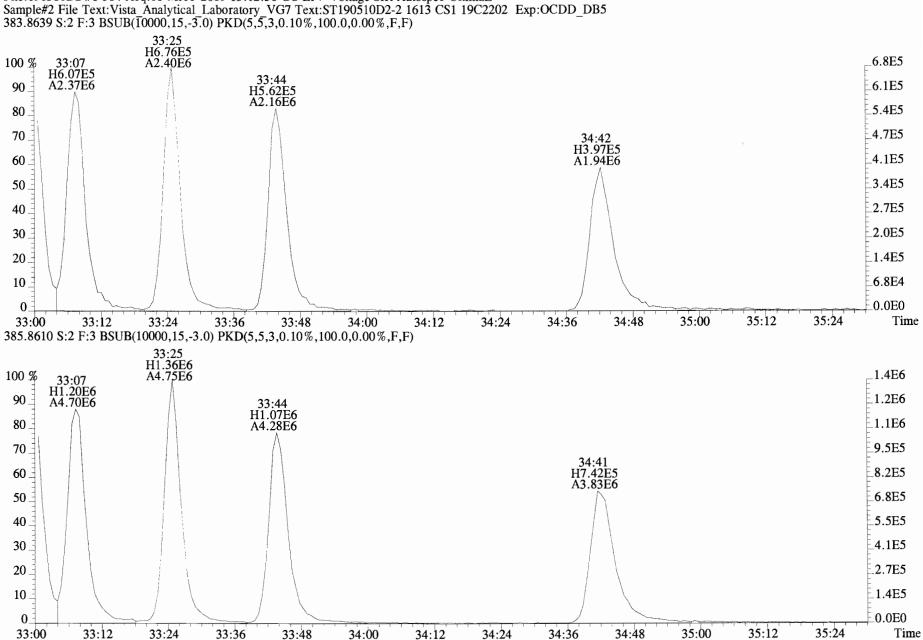

File:190510D2 #1-530 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 303.9016 S:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

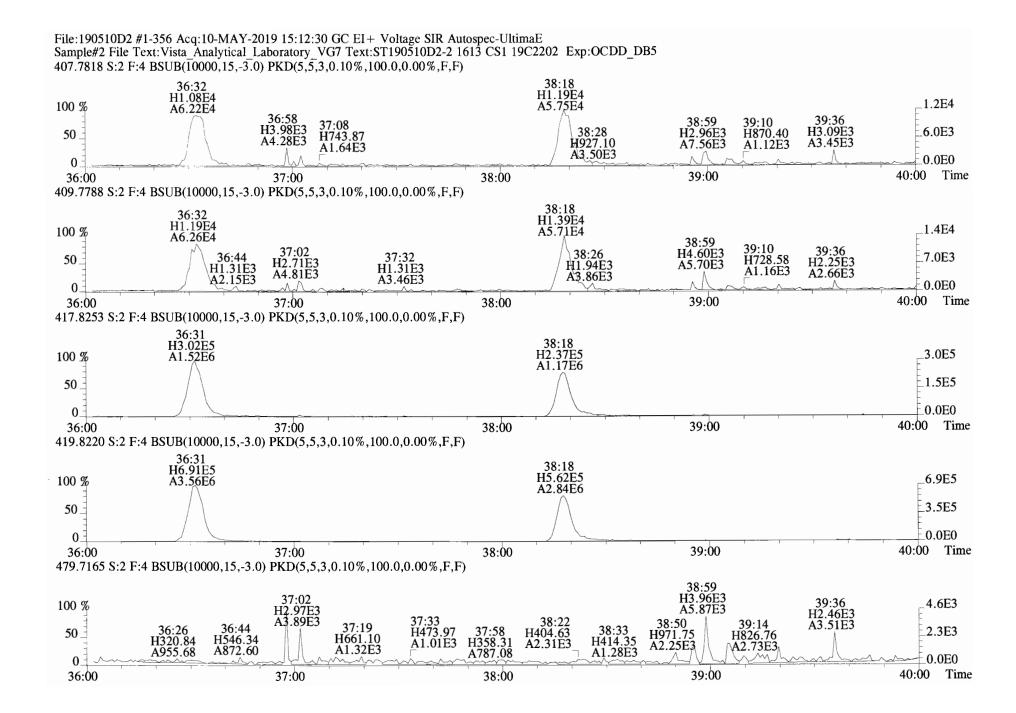


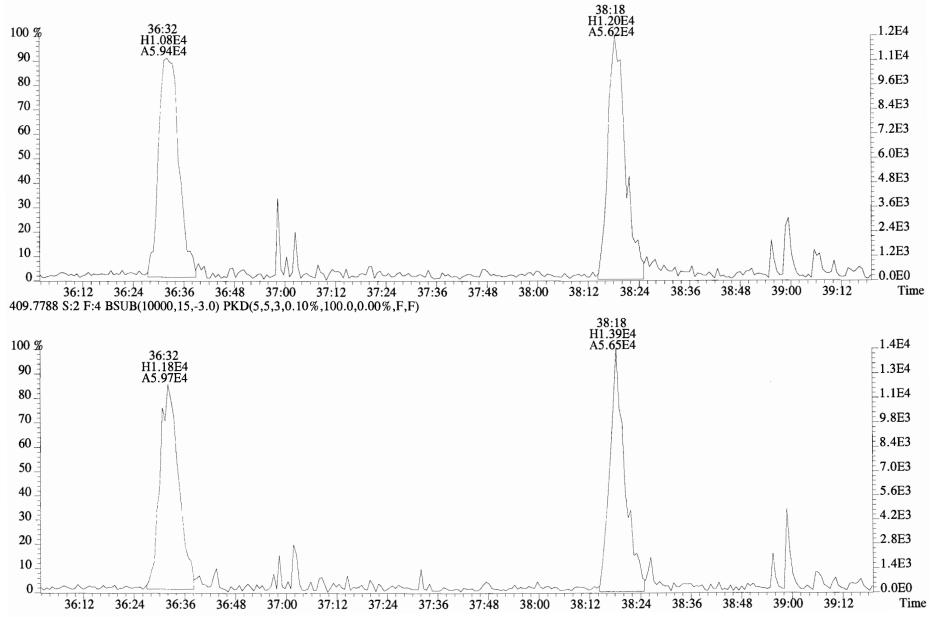

File:190510D2 #1-530 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE

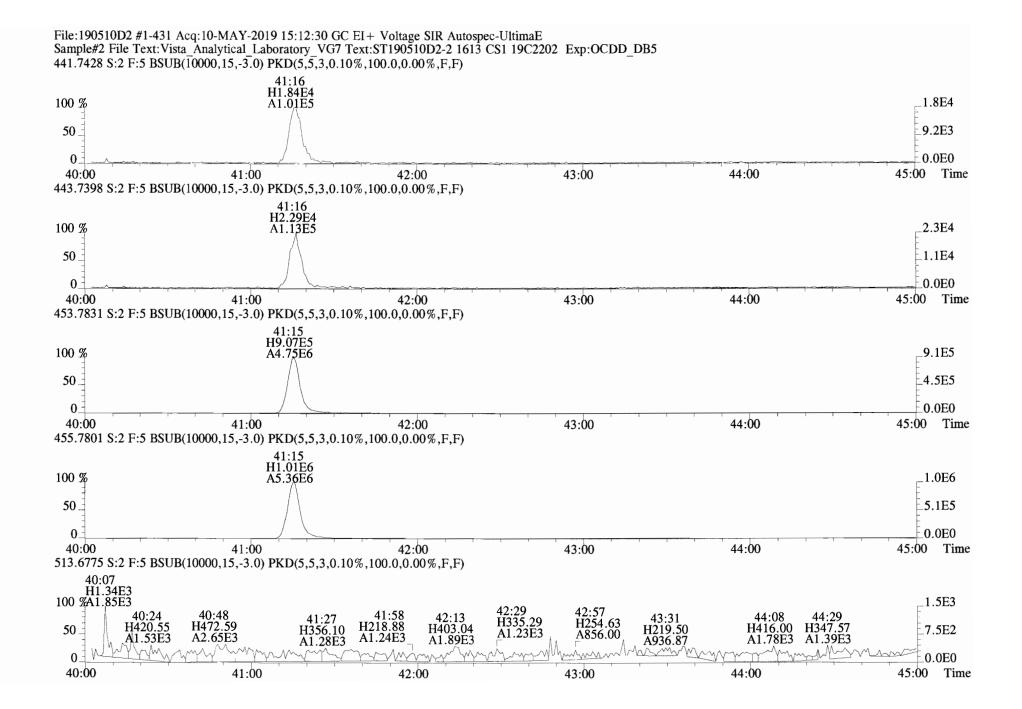

File:190510D2 #1-180 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 339.8597 S:2 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

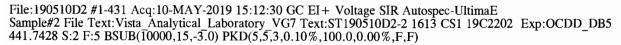


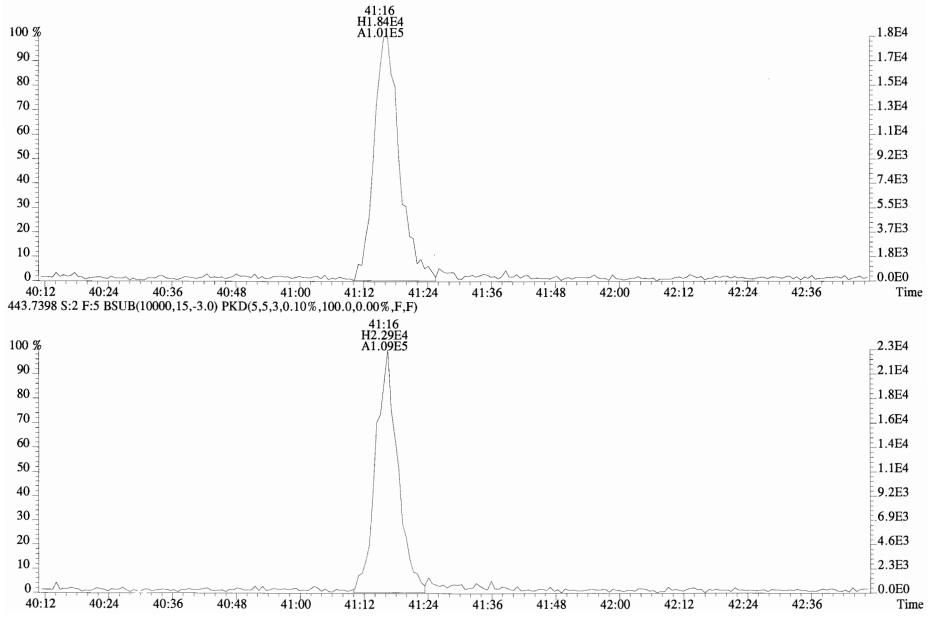

Work Order 1901248


File:190510D2 #1-384 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 373.8207 S:2 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

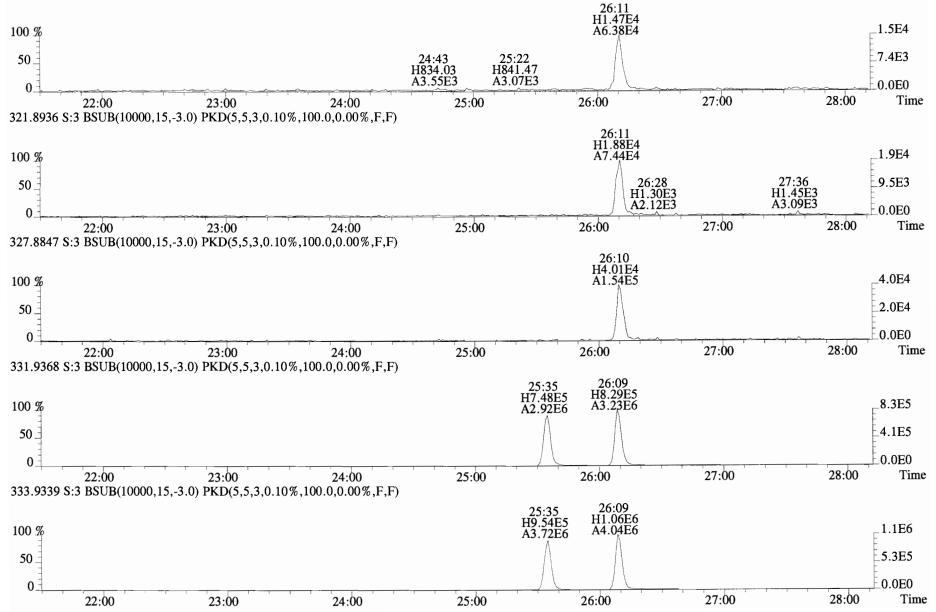

File:190510D2 #1-384 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 373.8207 S:2 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

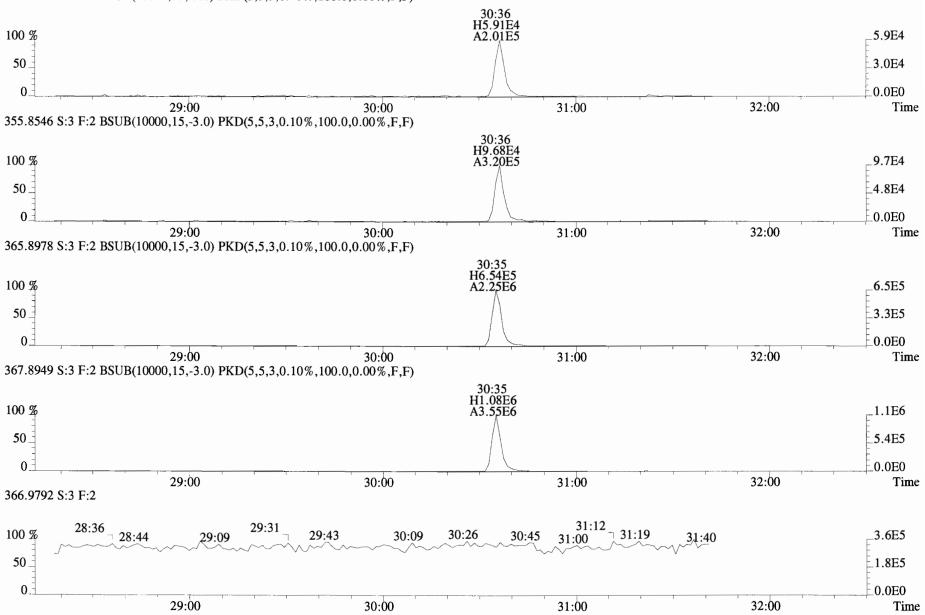


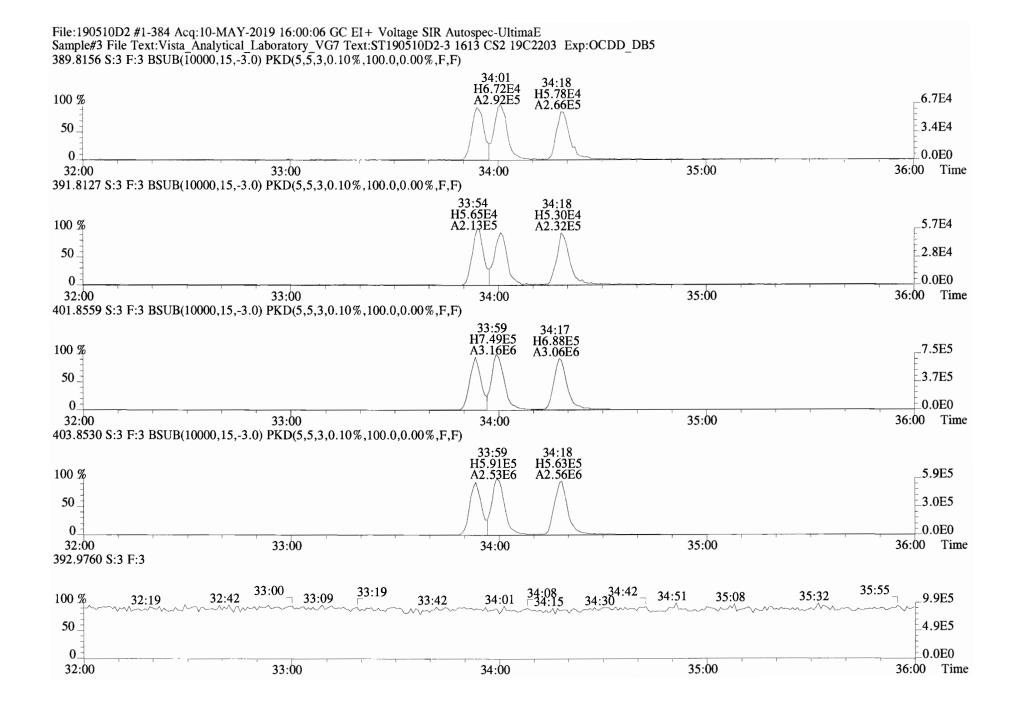




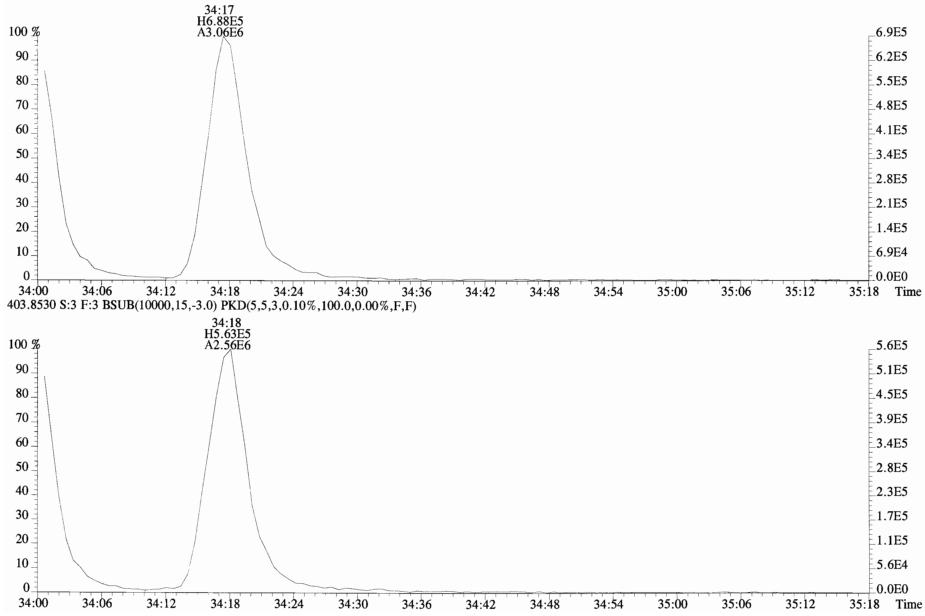
File:190510D2 #1-356 Acq:10-MAY-2019 15:12:30 GC EI+ Voltage SIR Autospec-UltimaE Sample#2 File Text:Vista Analytical Laboratory_VG7 Text:ST190510D2-2 1613 CS1 19C2202 Exp:OCDD_DB5 407.7818 S:2 F:4 BSUB(T0000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

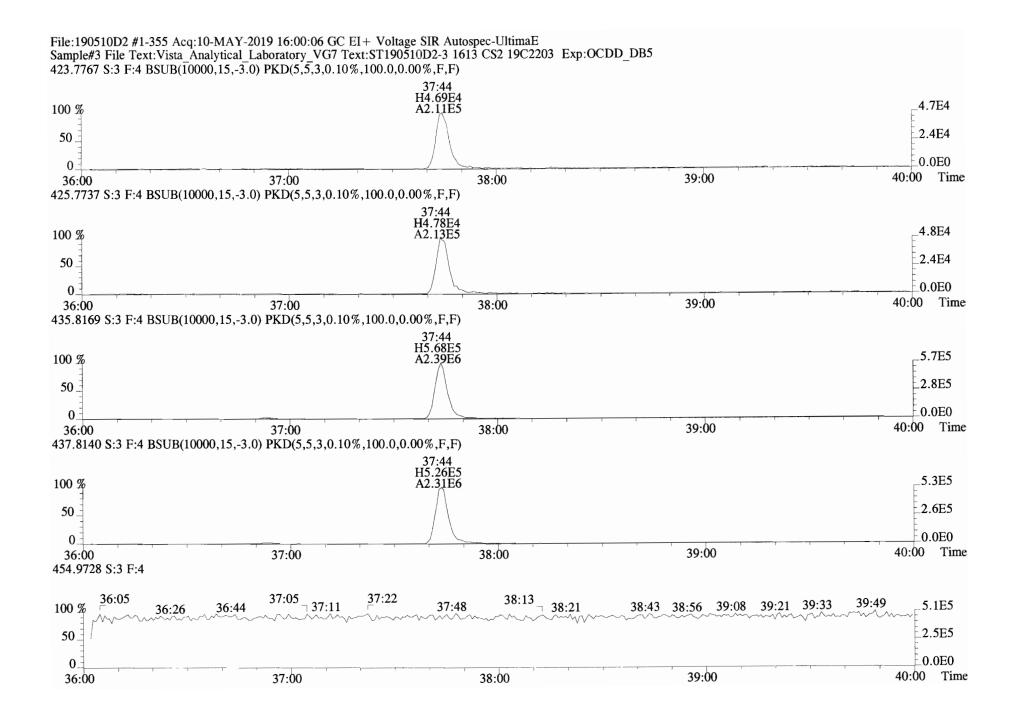


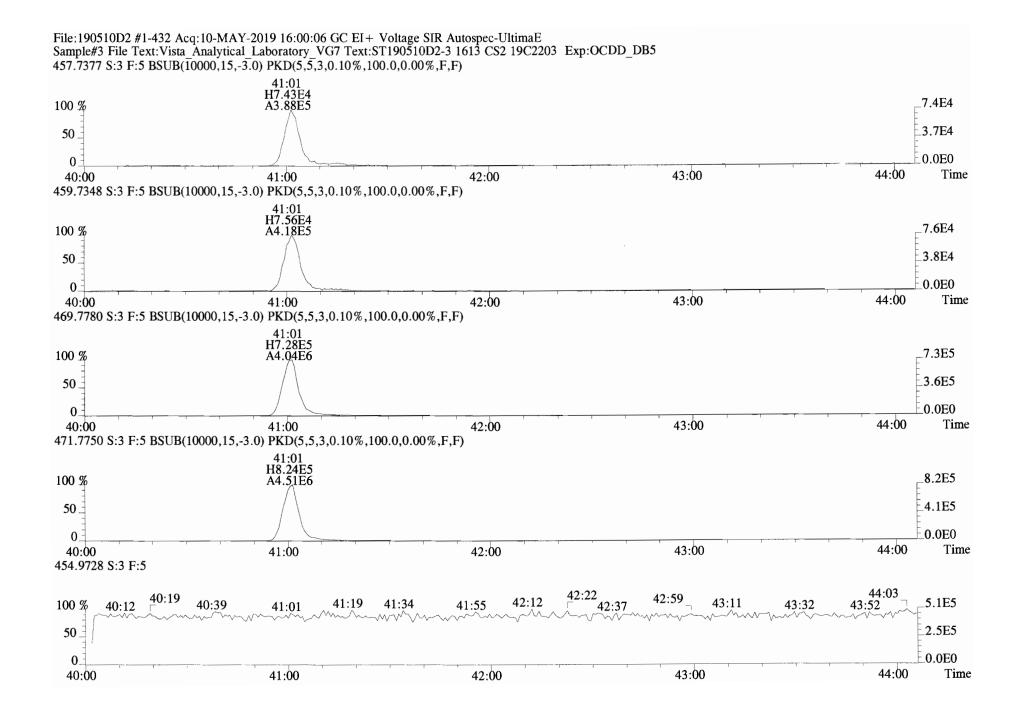


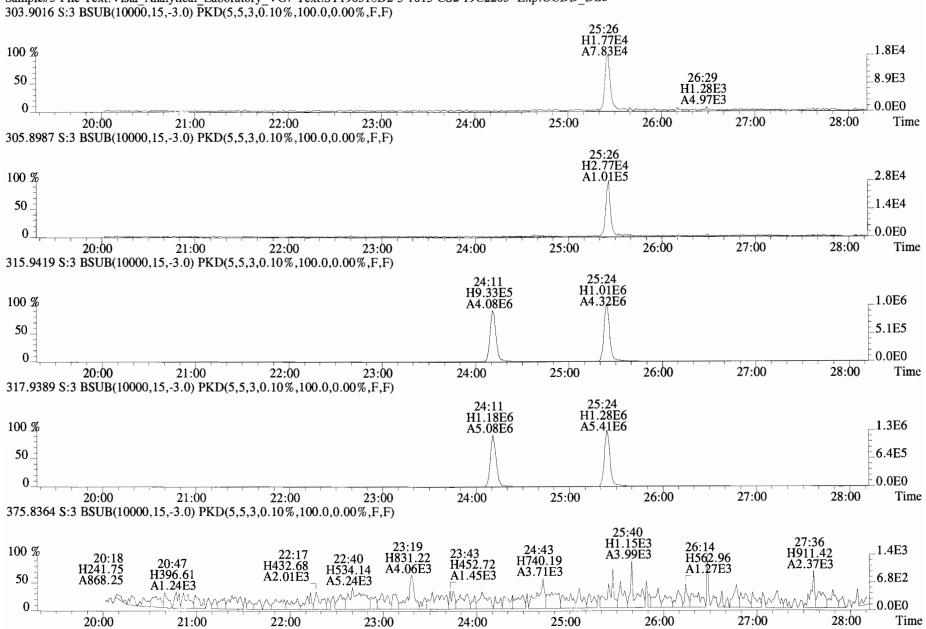


File:190510D2 #1-530 Acq:10-MAY-2019 16:00:06 GC EI+ Voltage SIR Autospec-UltimaE Sample#3 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-3 1613 CS2 19C2203 Exp:OCDD_DB5 319.8965 S:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

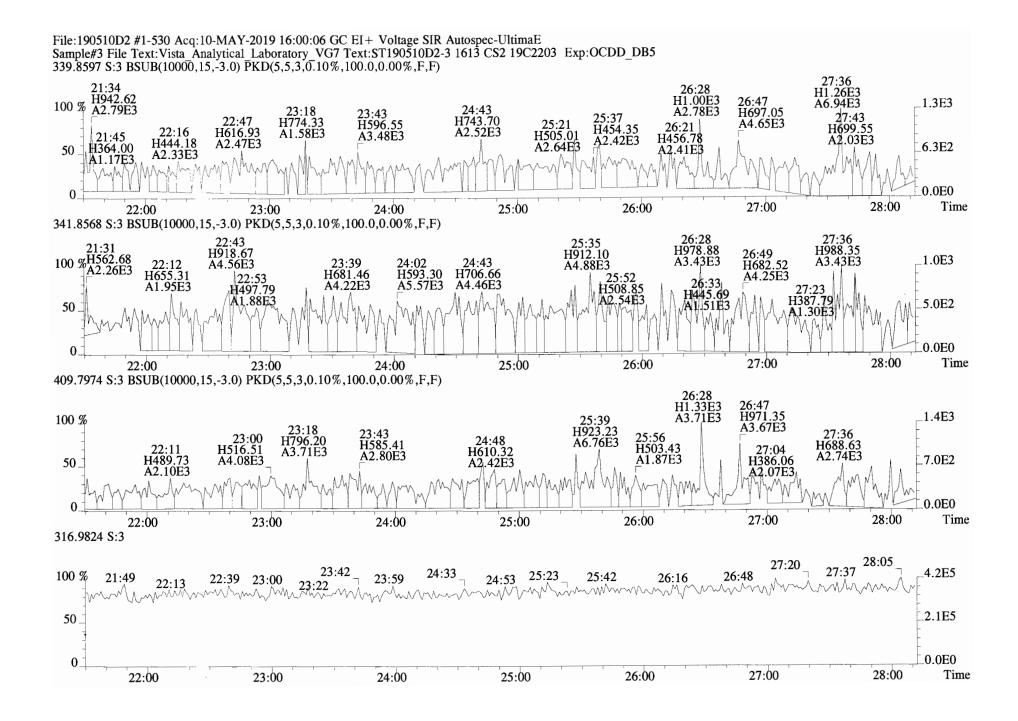


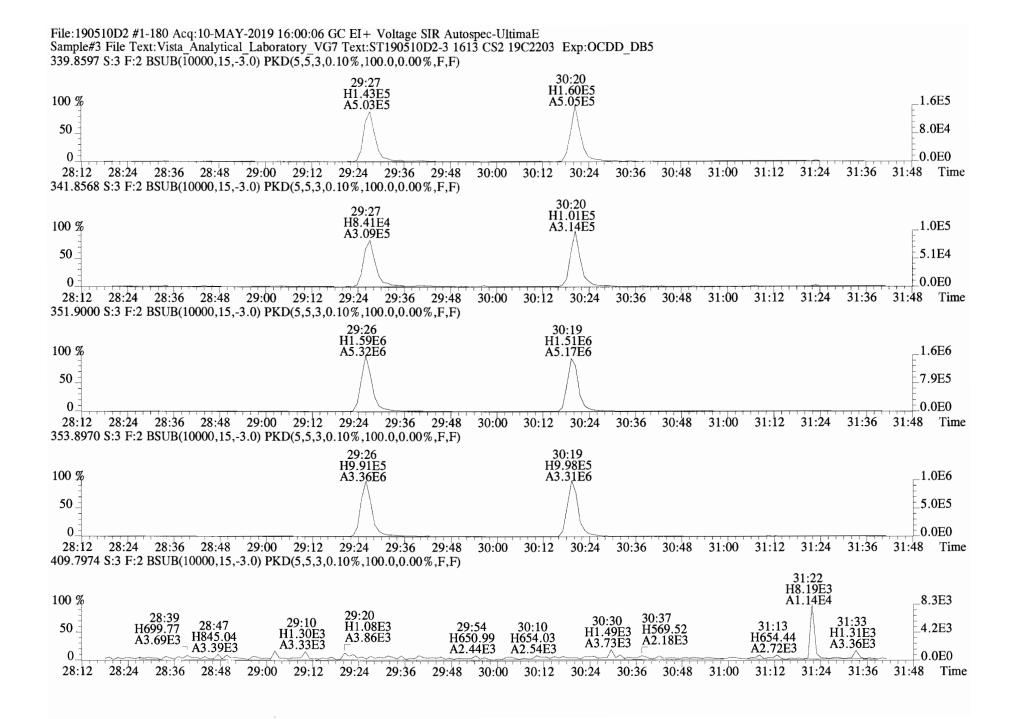


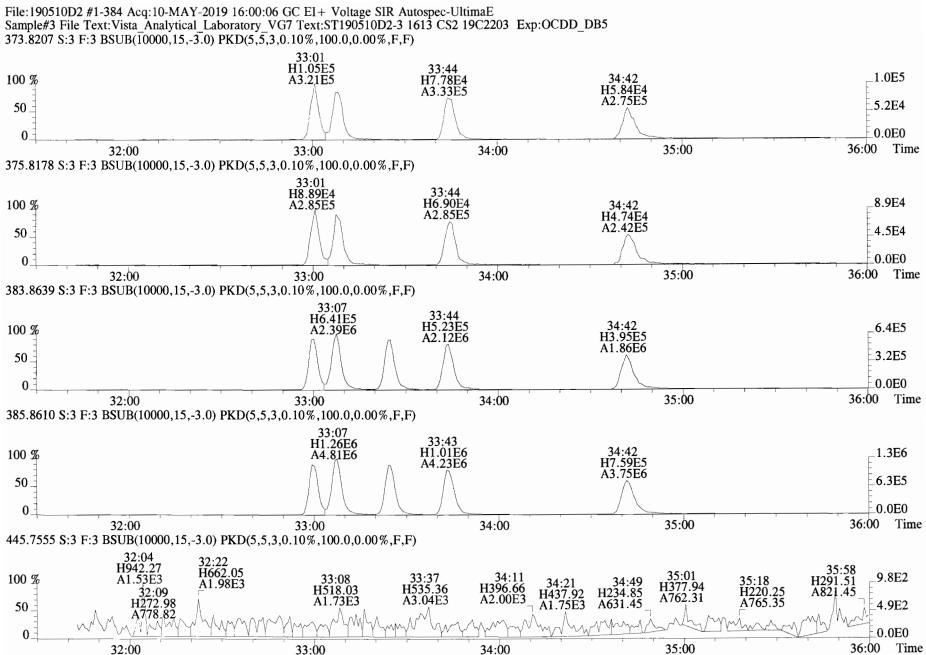

File:190510D2 #1-180 Acq:10-MAY-2019 16:00:06 GC EI+ Voltage SIR Autospec-UltimaE Sample#3 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-3 1613 CS2 19C2203 Exp:OCDD_DB5 353.8576 S:3 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

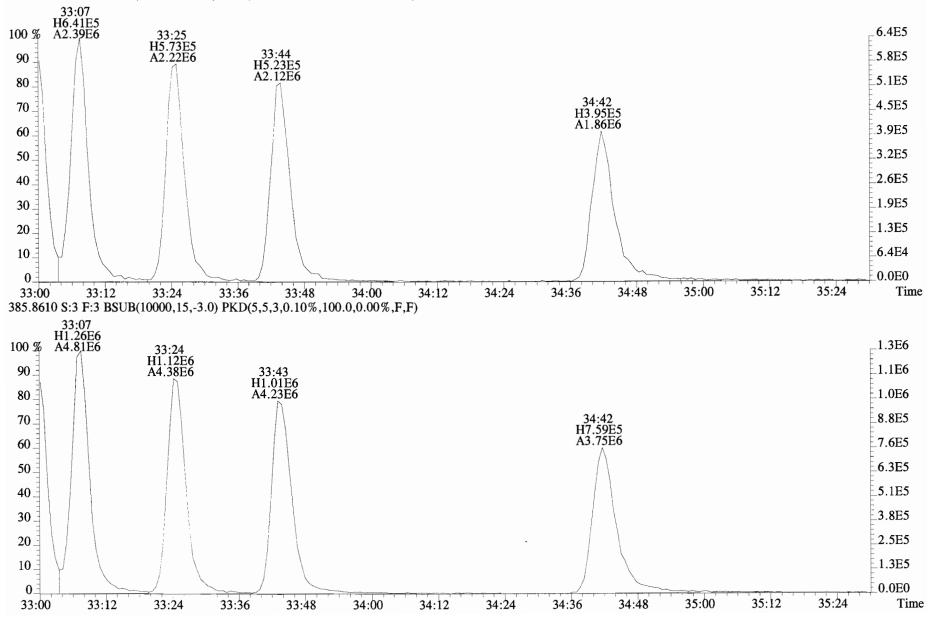


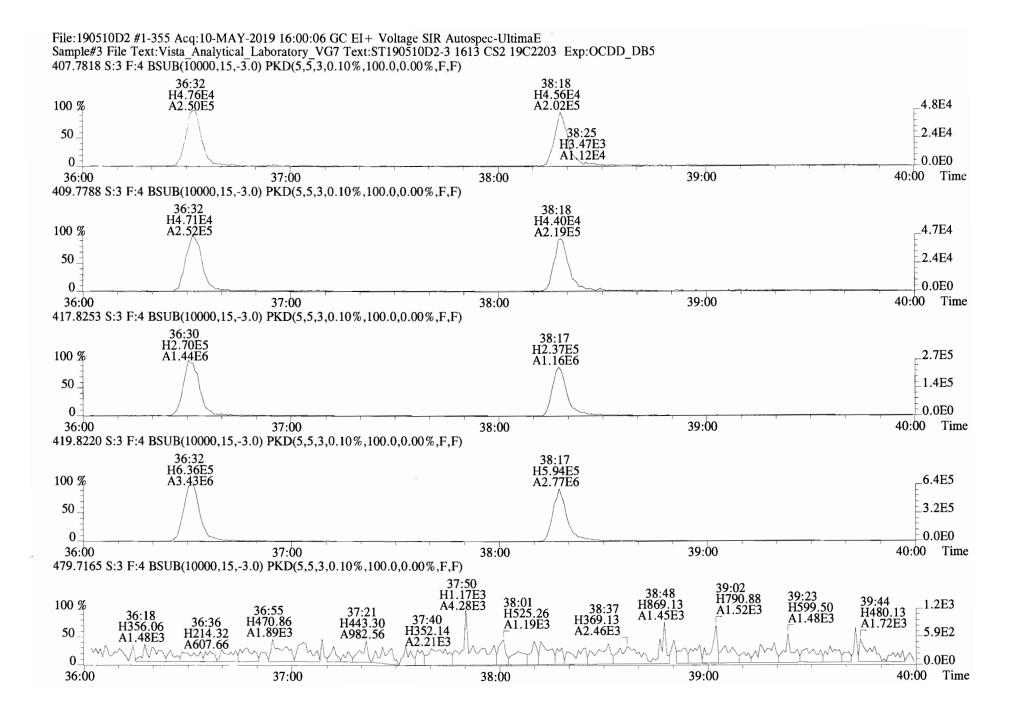
File:190510D2 #1-384 Acq:10-MAY-2019 16:00:06 GC EI+ Voltage SIR Autospec-UltimaE Sample#3 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-3 1613 CS2 19C2203 Exp:OCDD_DB5 401.8559 S:3 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

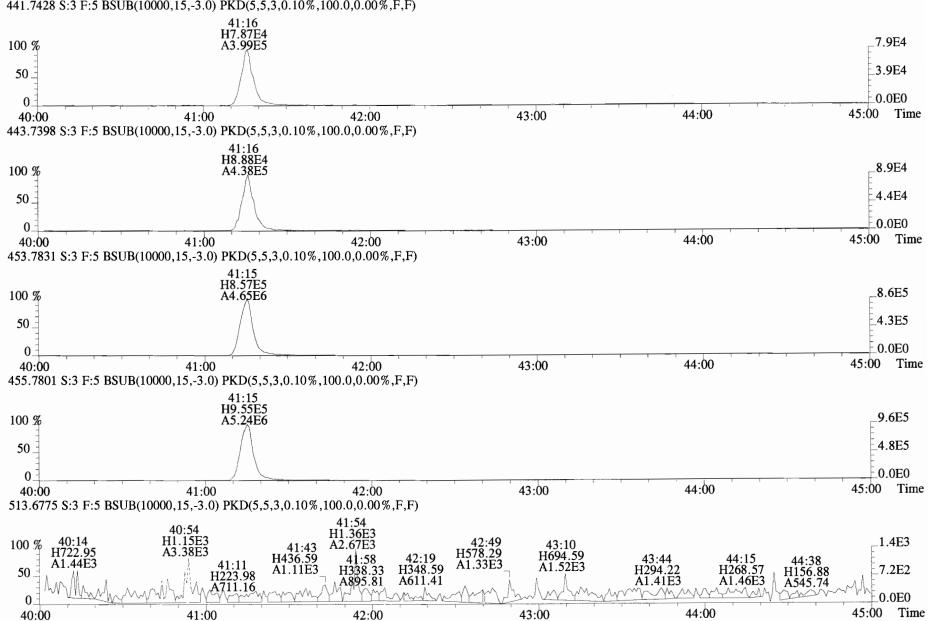


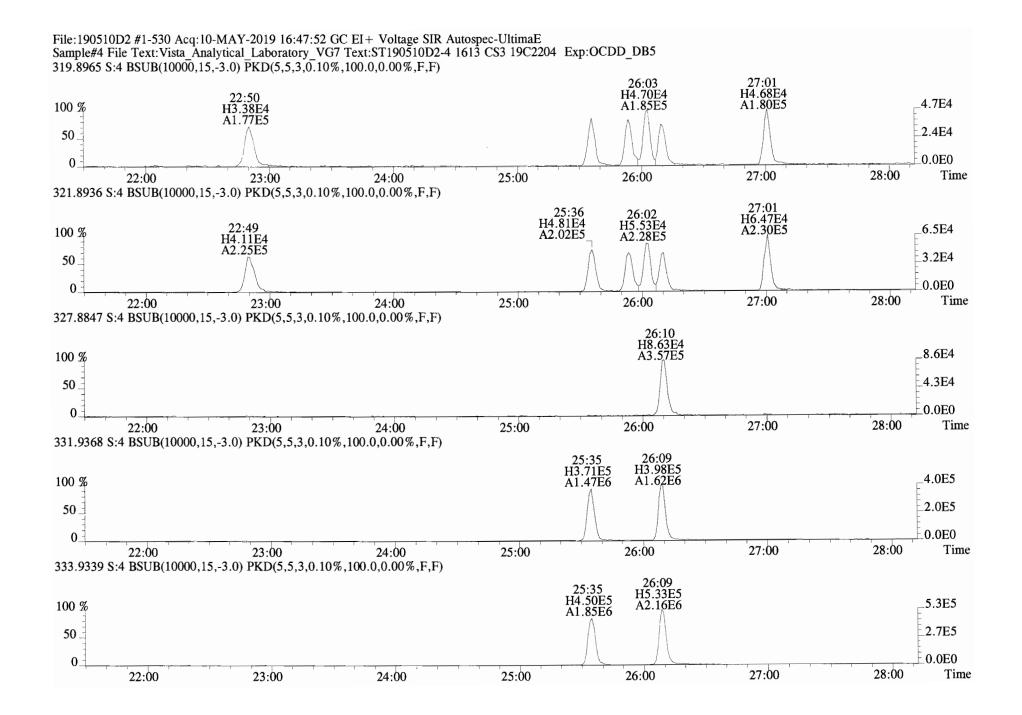


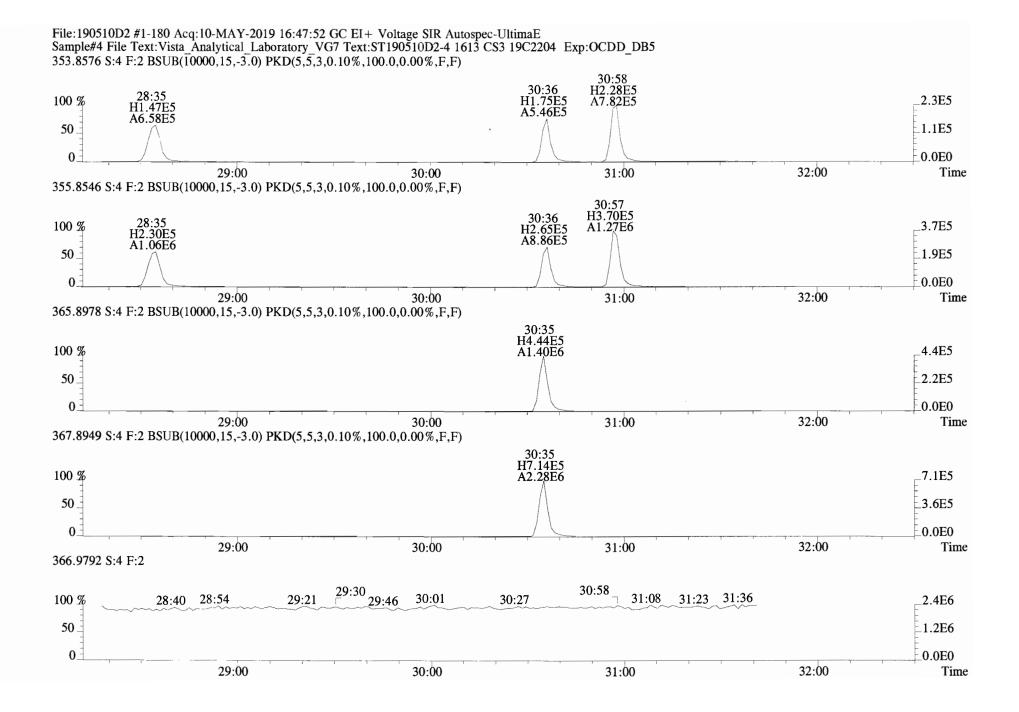


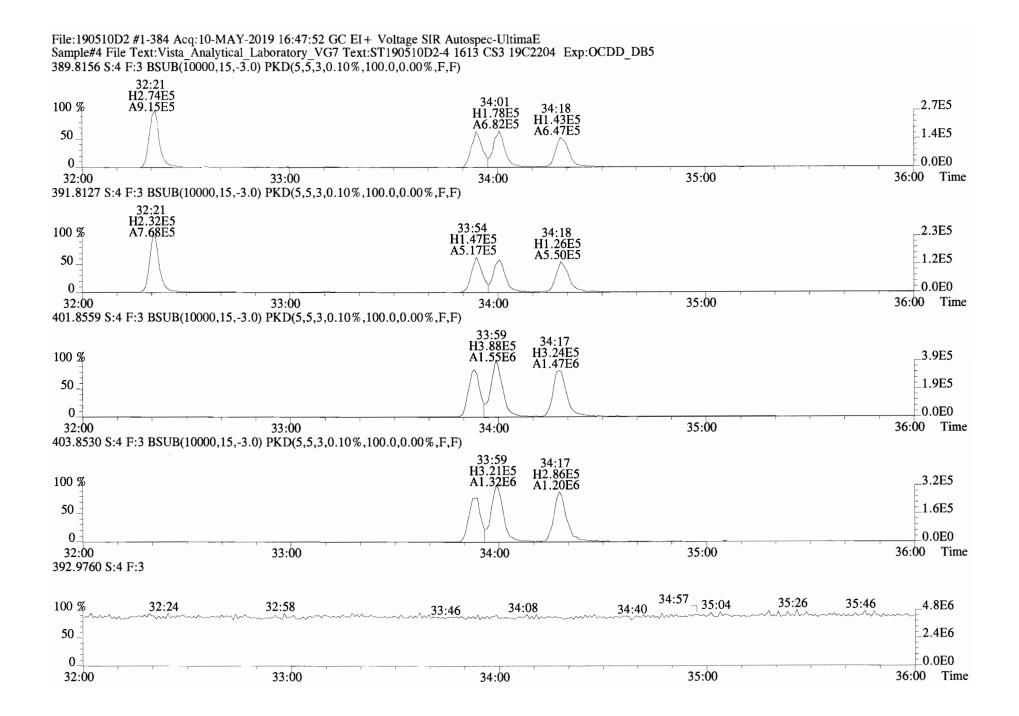

File:190510D2 #1-530 Acq:10-MAY-2019 16:00:06 GC EI+ Voltage SIR Autospec-UltimaE Sample#3 File Text:Vista Analytical Laboratory_VG7 Text:ST190510D2-3 1613 CS2 19C2203 Exp:OCDD_DB5 303.9016 S:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

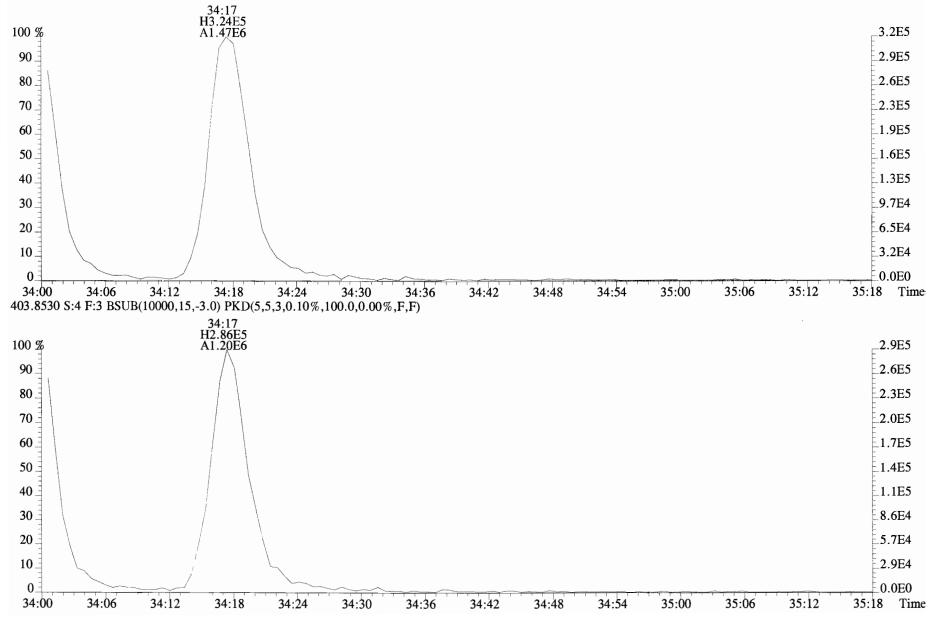


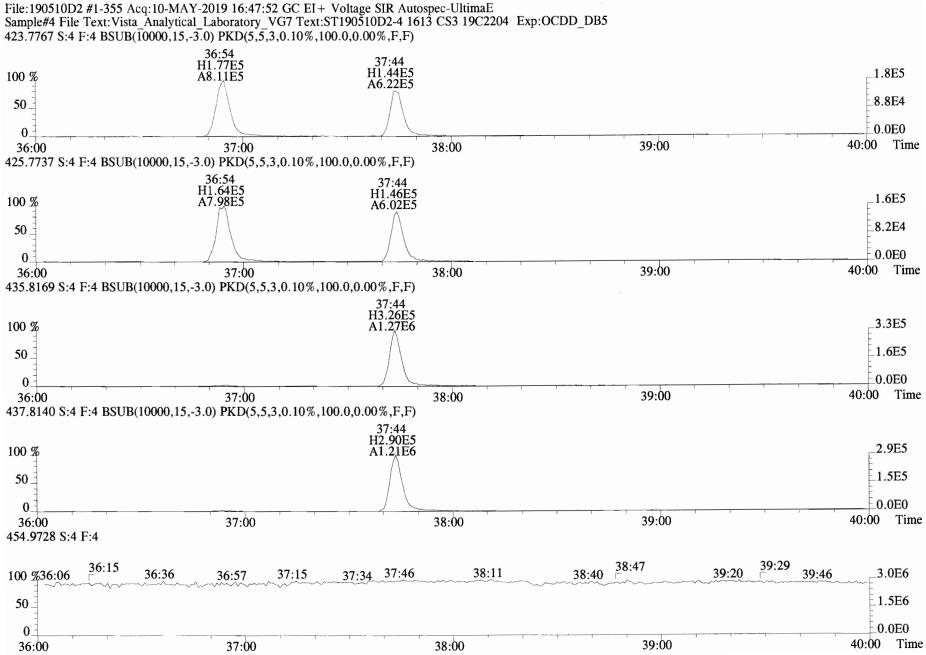


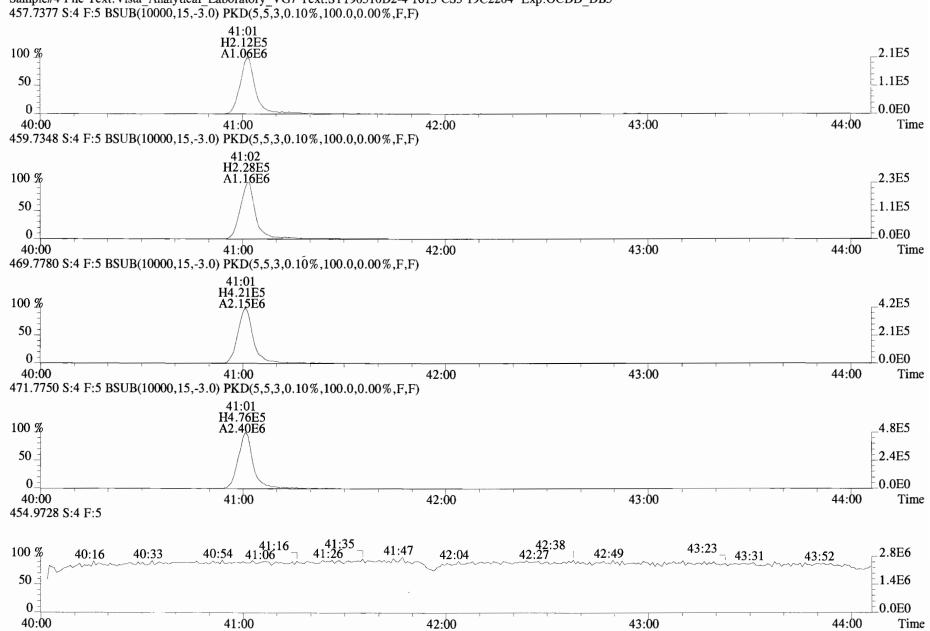

File:190510D2 #1-384 Acq:10-MAY-2019 16:00:06 GC EI+ Voltage SIR Autospec-UltimaE Sample#3 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-3 1613 CS2 19C2203 Exp:OCDD_DB5 383.8639 S:3 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

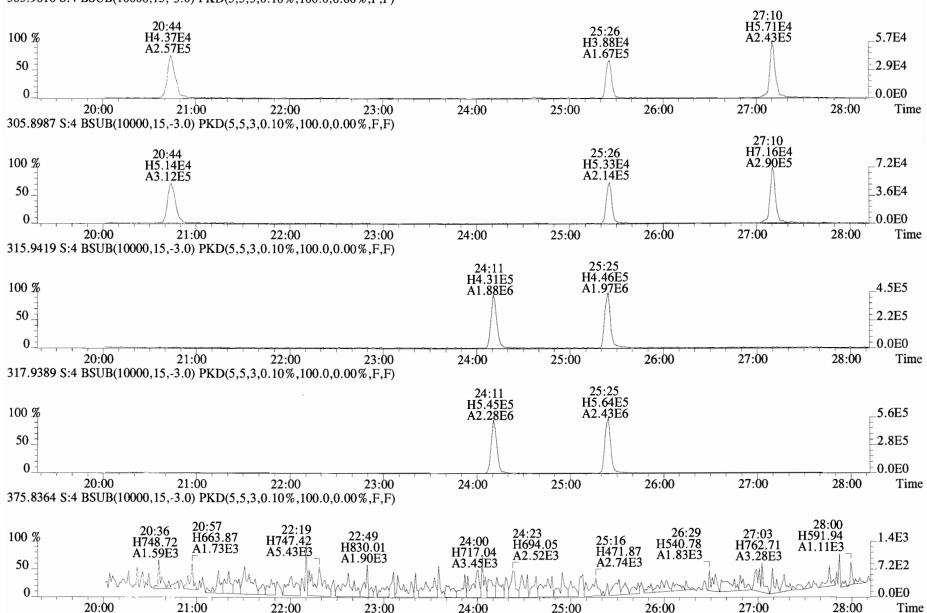


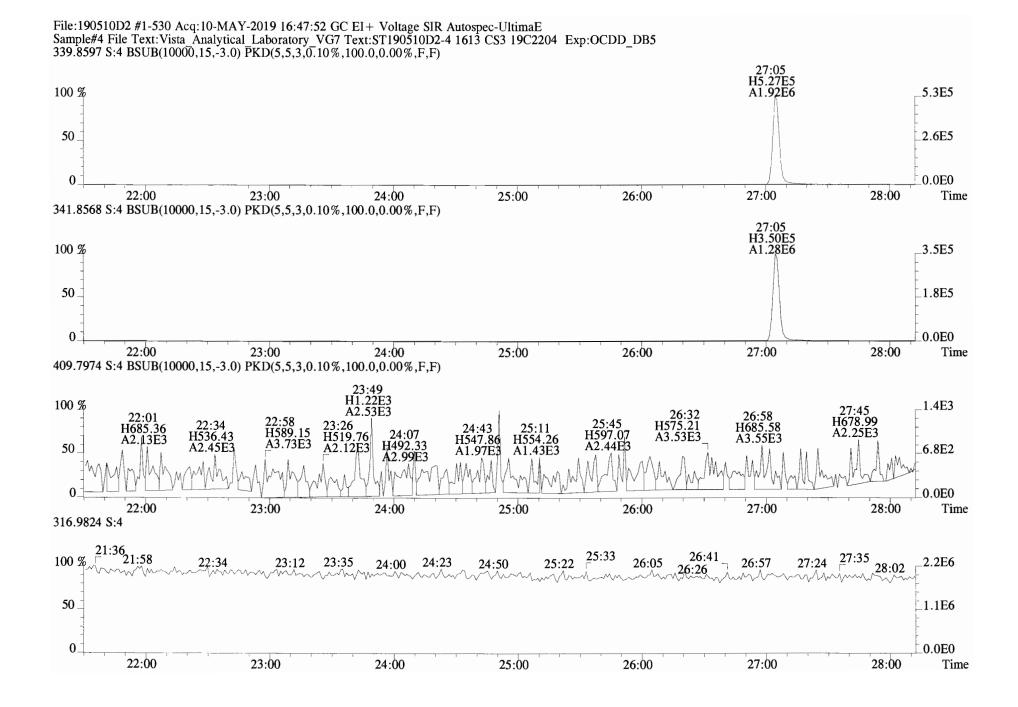


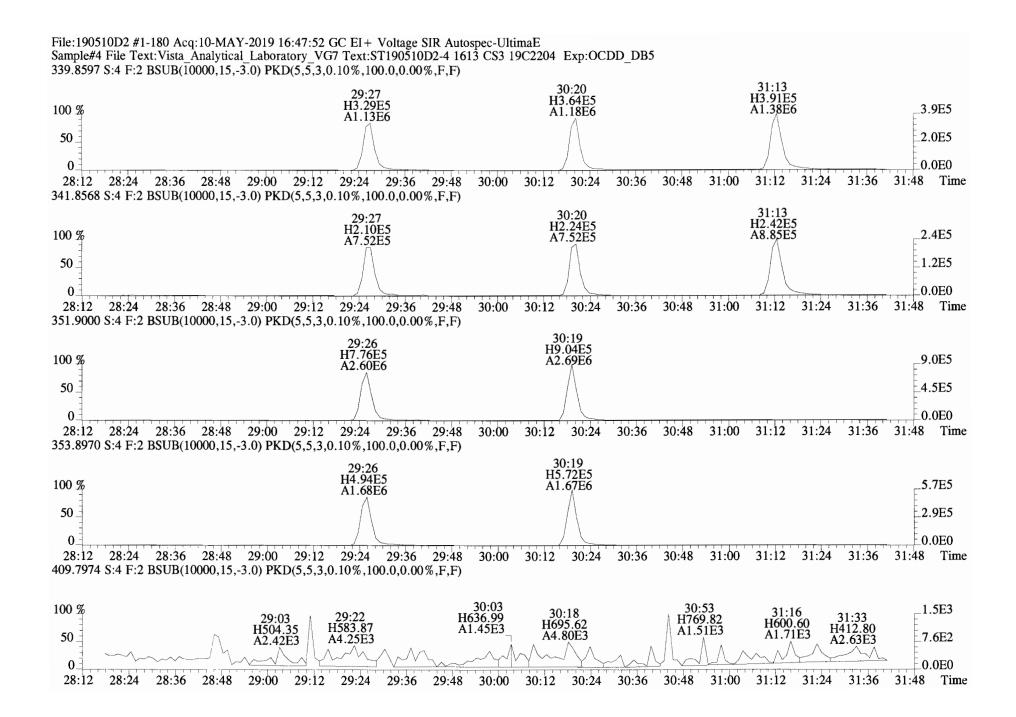

File:190510D2 #1-432 Acq:10-MAY-2019 16:00:06 GC EI+ Voltage SIR Autospec-UltimaE Sample#3 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-3 1613 CS2 19C2203 Exp:OCDD_DB5 441.7428 S:3 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

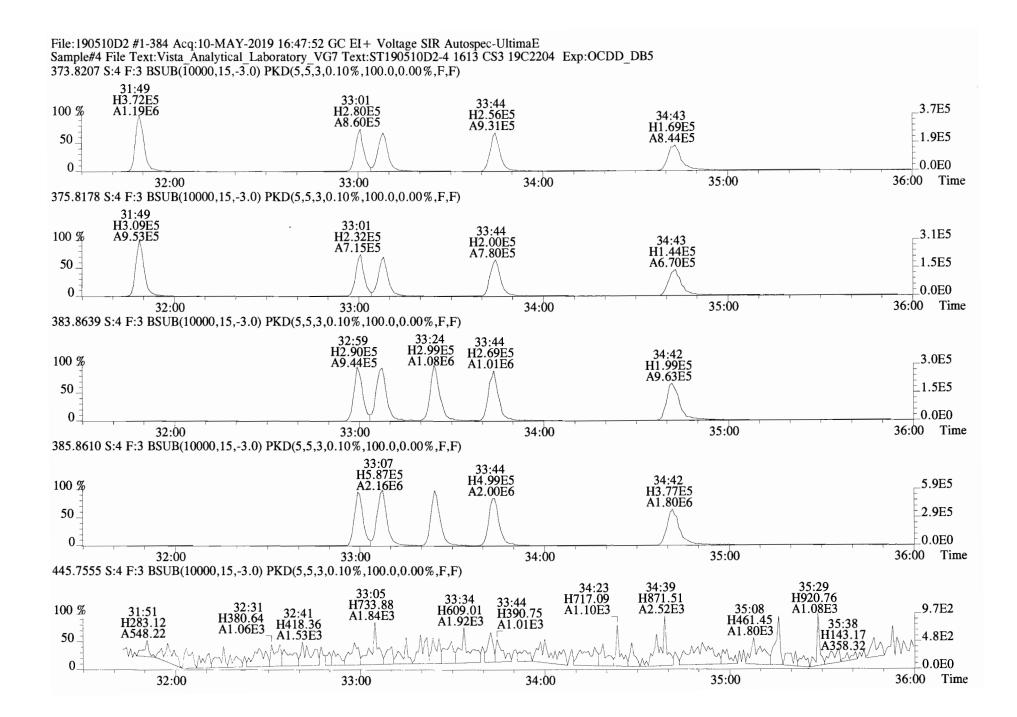


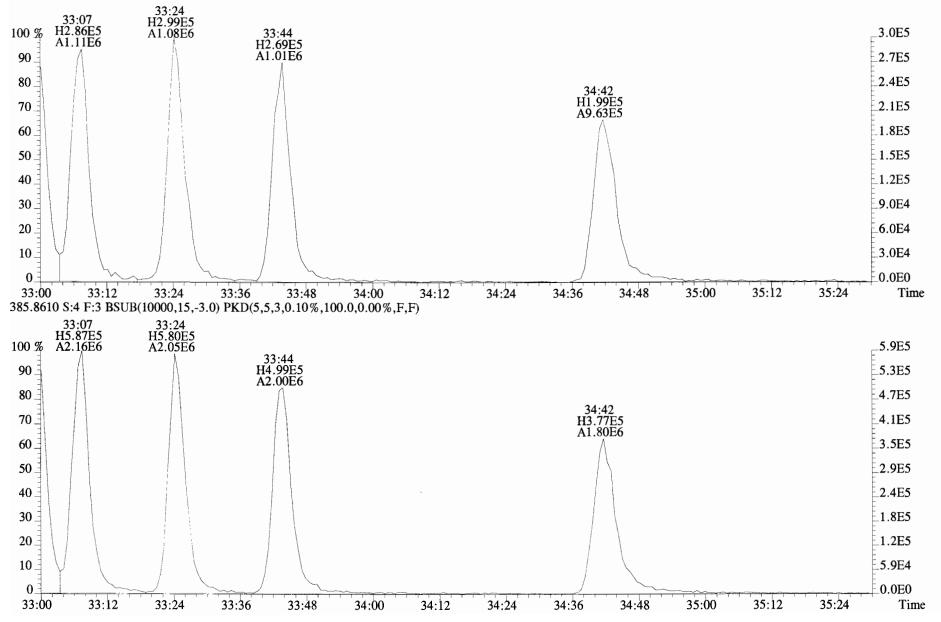


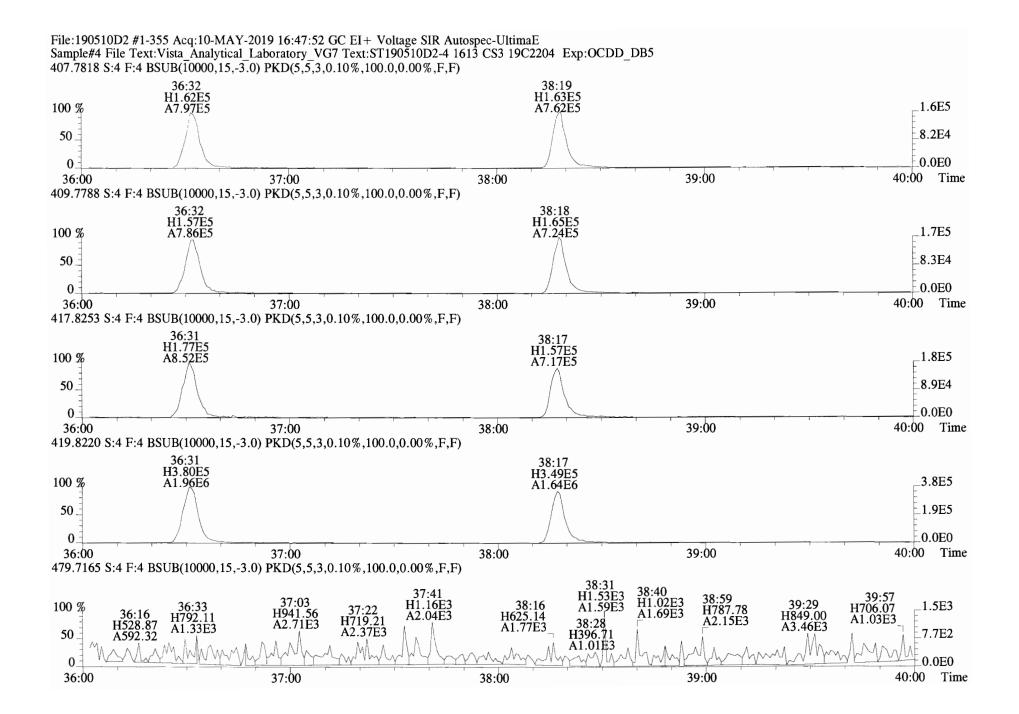

File:190510D2 #1-384 Acq:10-MAY-2019 16:47:52 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-4 1613 CS3 19C2204 Exp:OCDD_DB5 401.8559 S:4 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

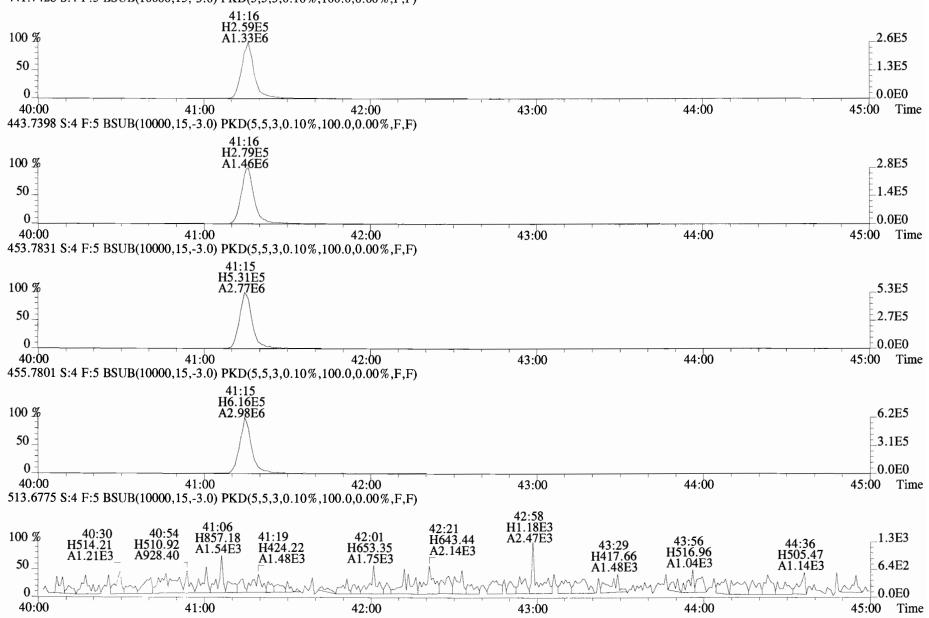


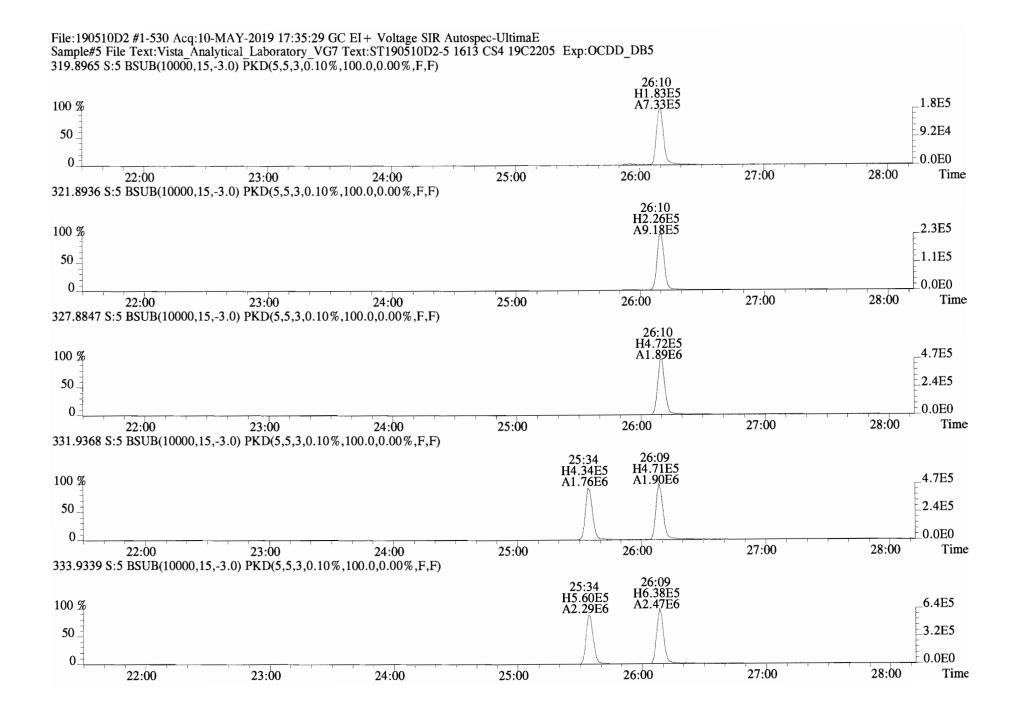


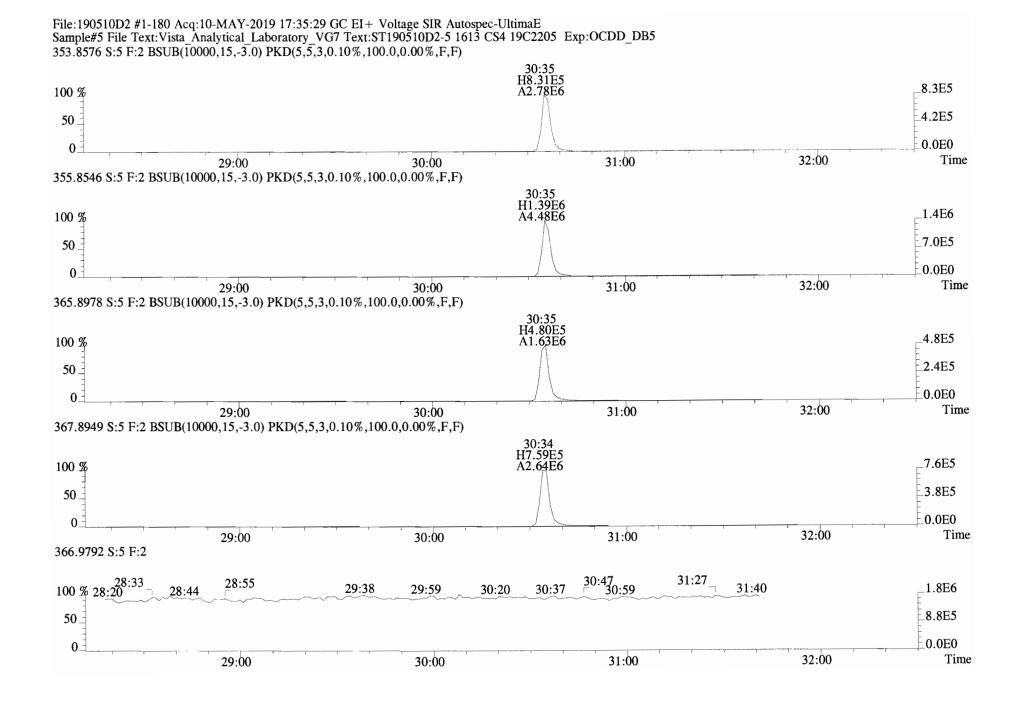

File:190510D2 #1-432 Acq:10-MAY-2019 16:47:52 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-4 1613 CS3 19C2204 Exp:OCDD_DB5 457.7377 S:4 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

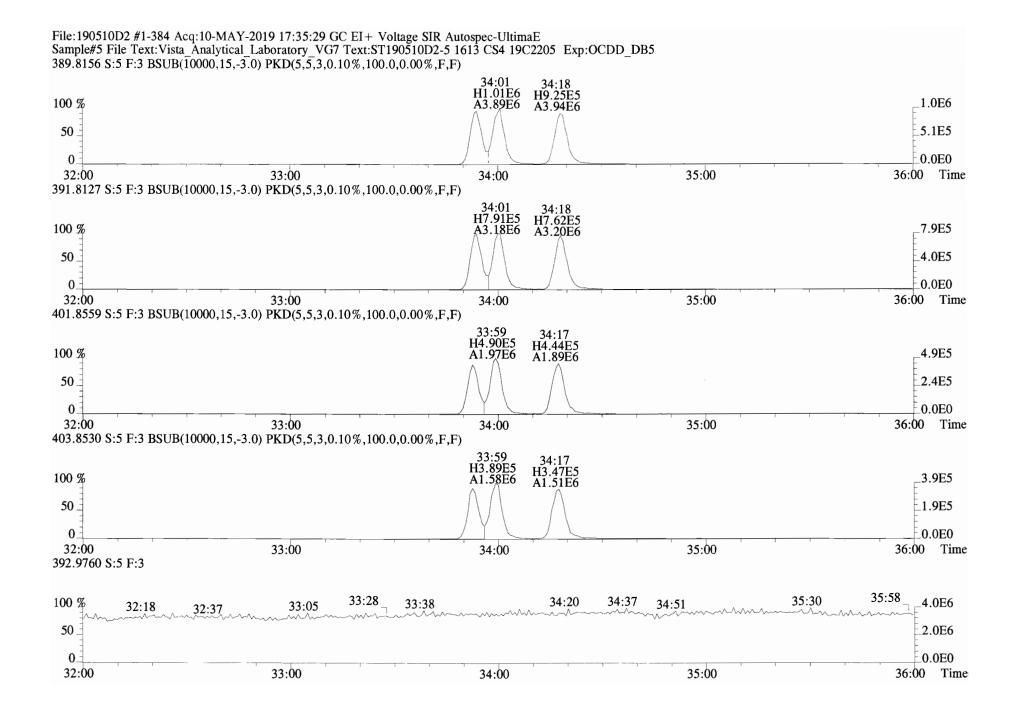

File:190510D2 #1-530 Acq:10-MAY-2019 16:47:52 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-4 1613 CS3 19C2204 Exp:OCDD_DB5 303.9016 S:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

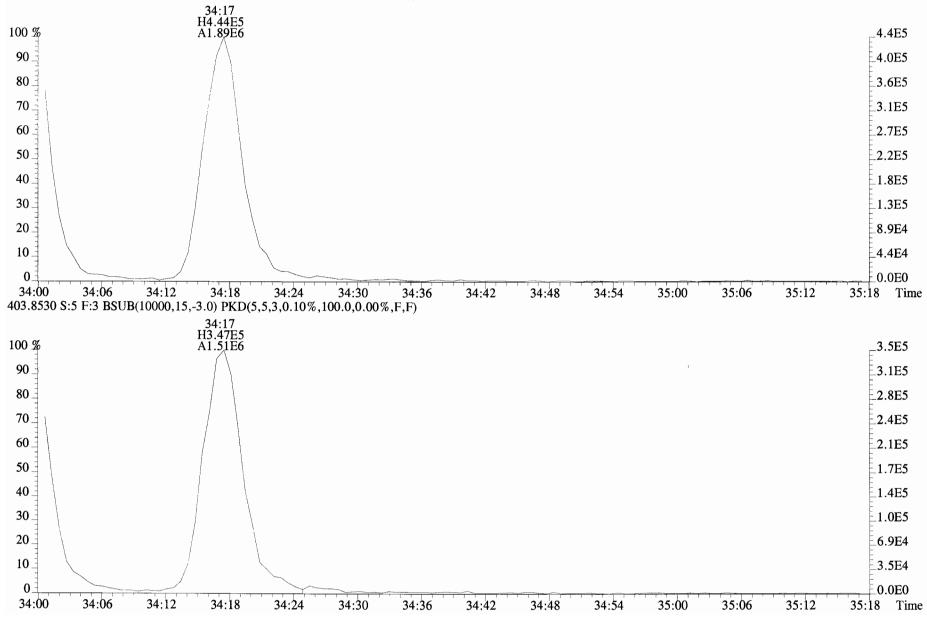


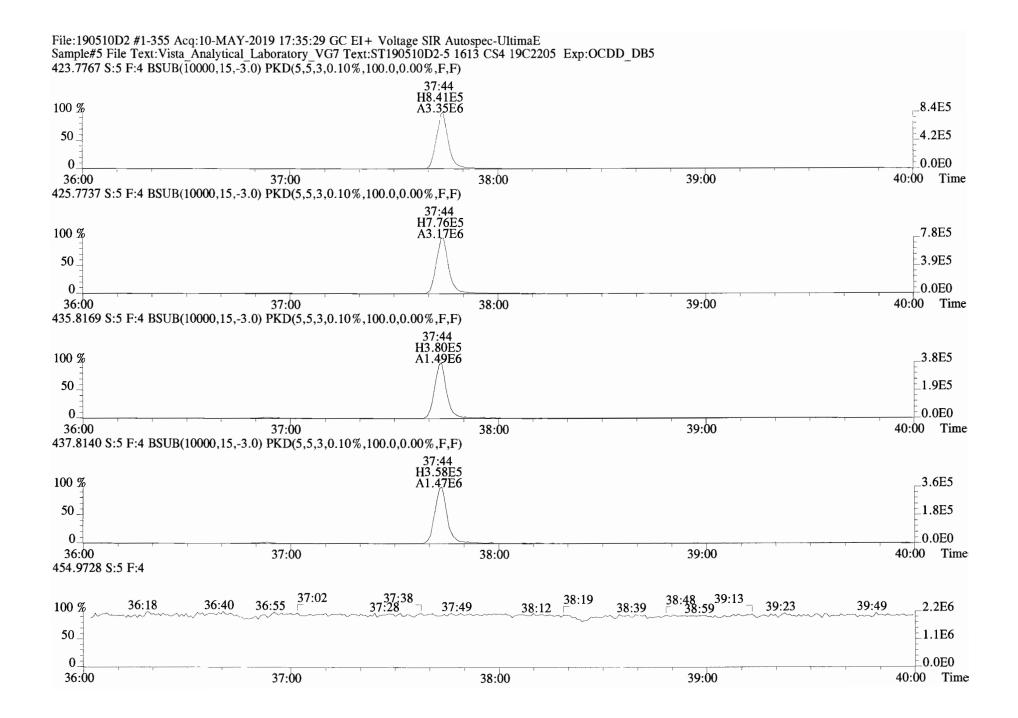


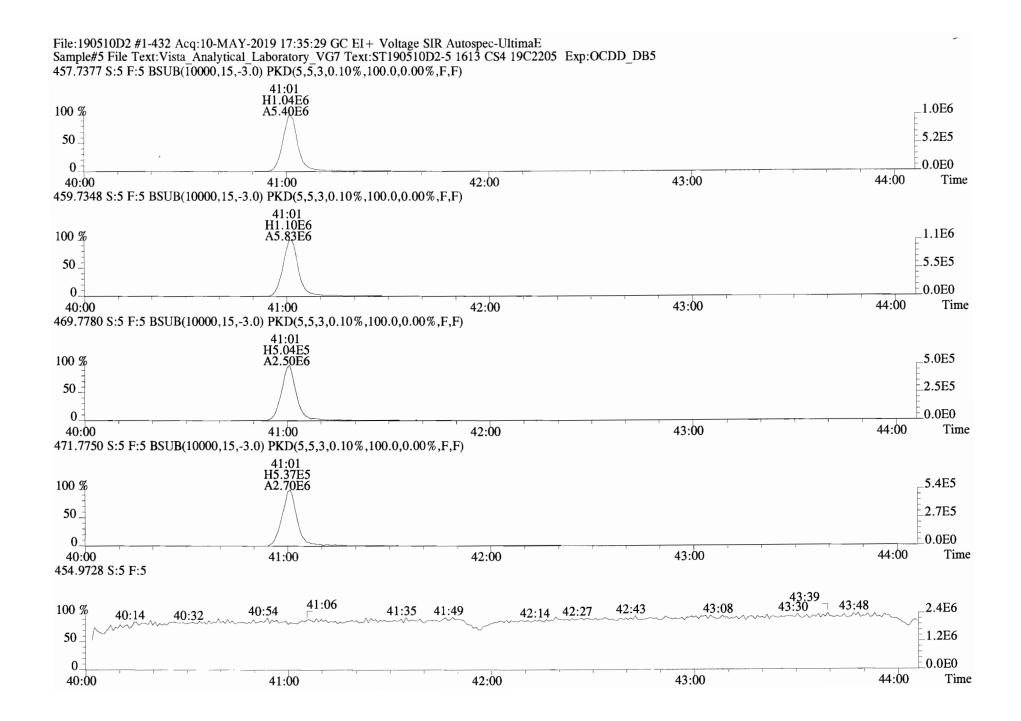

File:190510D2 #1-384 Acq:10-MAY-2019 16:47:52 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista Analytical Laboratory_VG7 Text:ST190510D2-4 1613 CS3 19C2204 Exp:OCDD_DB5 383.8639 S:4 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

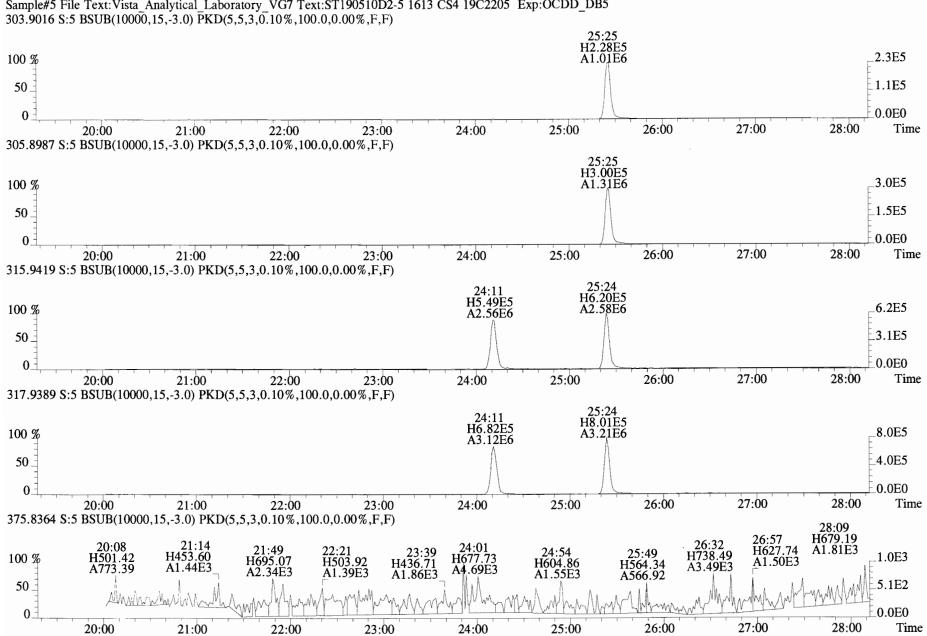




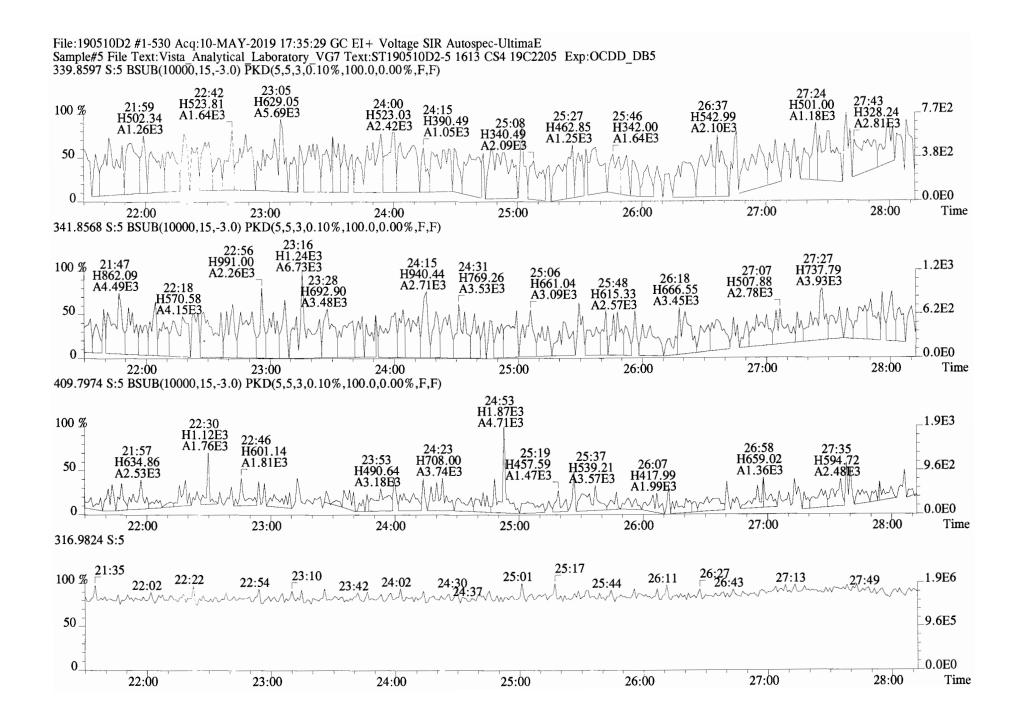

File:190510D2 #1-432 Acq:10-MAY-2019 16:47:52 GC EI + Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-4 1613 CS3 19C2204 Exp:OCDD_DB5 441.7428 S:4 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

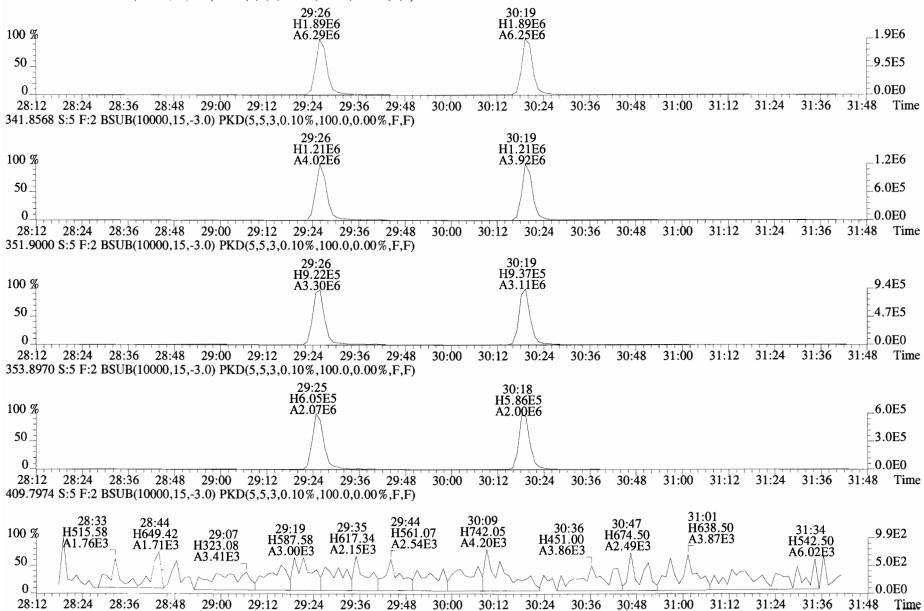


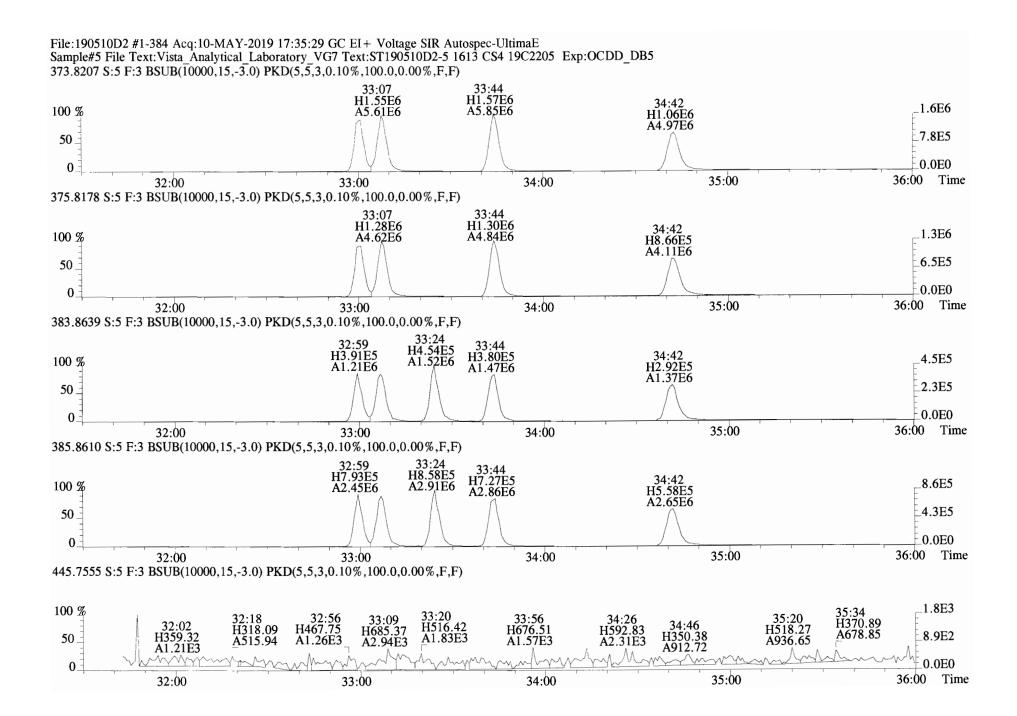




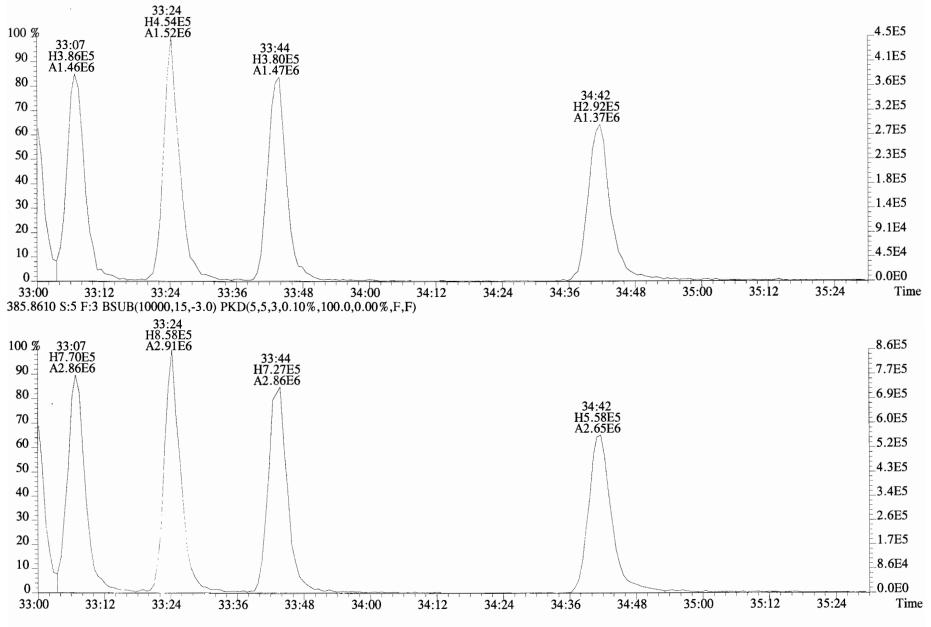
File:190510D2 #1-384 Acq:10-MAY-2019 17:35:29 GC EI + Voltage SIR Autospec-UltimaE Sample#5 File Text:Vista Analytical Laboratory_VG7 Text:ST190510D2-5 1613 CS4 19C2205 Exp:OCDD_DB5 401.8559 S:5 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

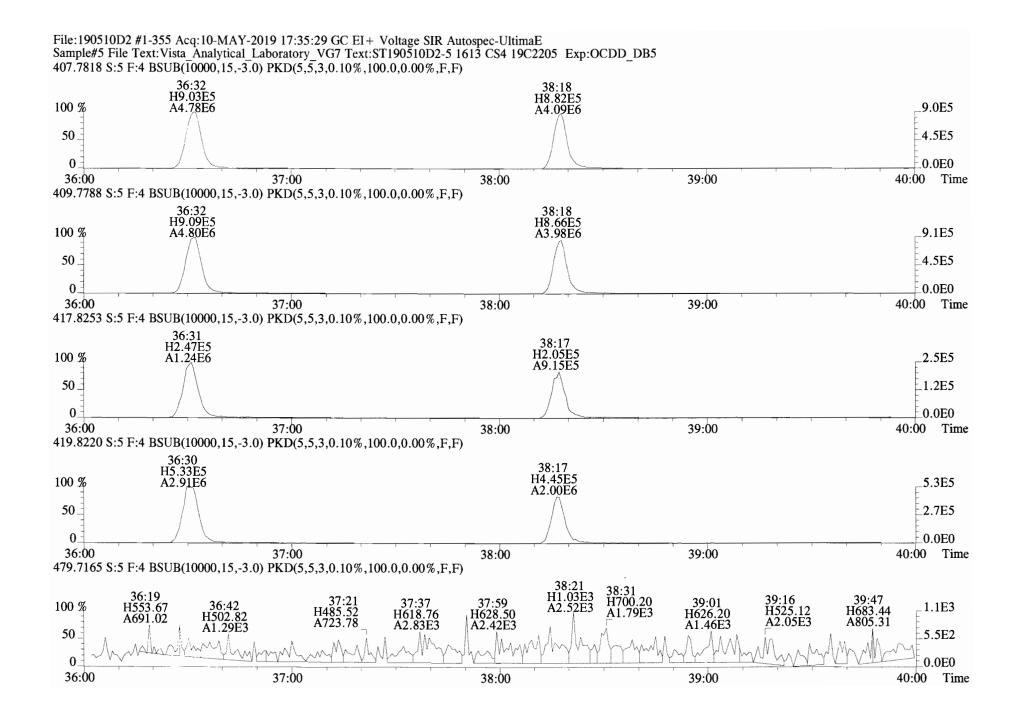


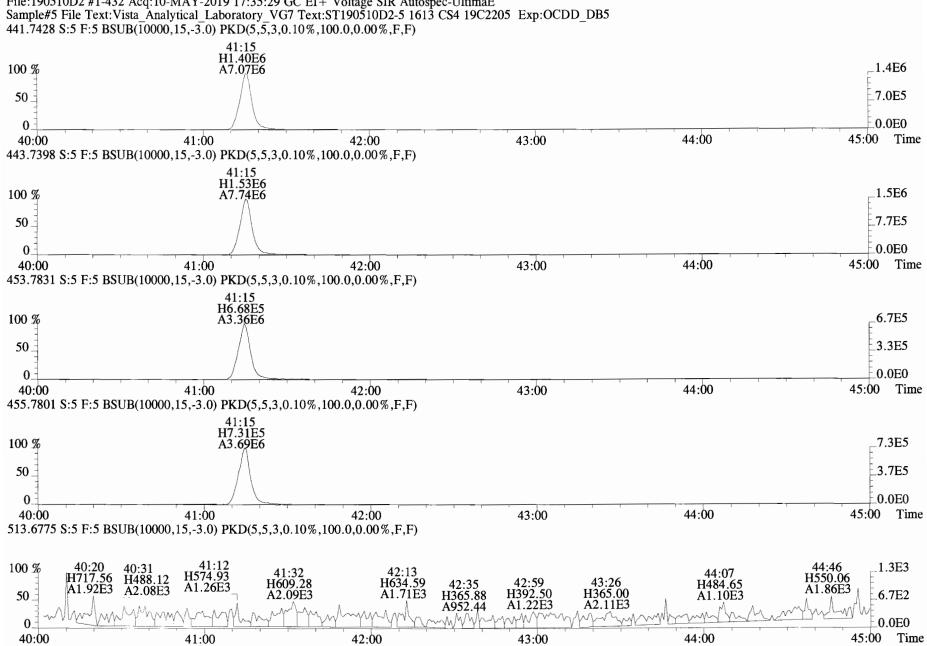


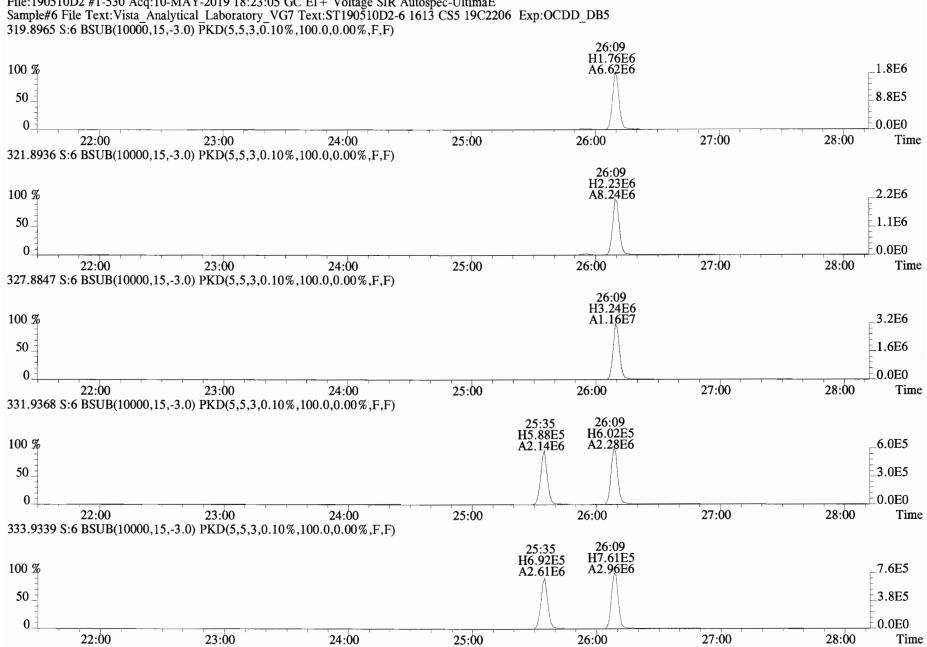


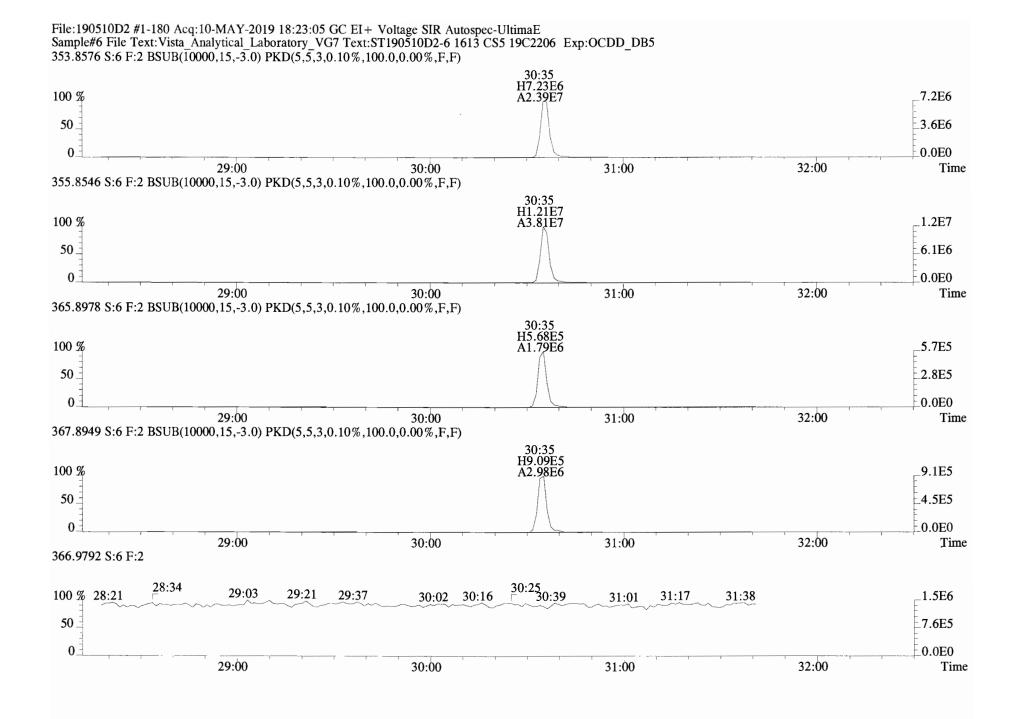
File:190510D2 #1-530 Acq:10-MAY-2019 17:35:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#5 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-5 1613 CS4 19C2205 Exp:OCDD DB5

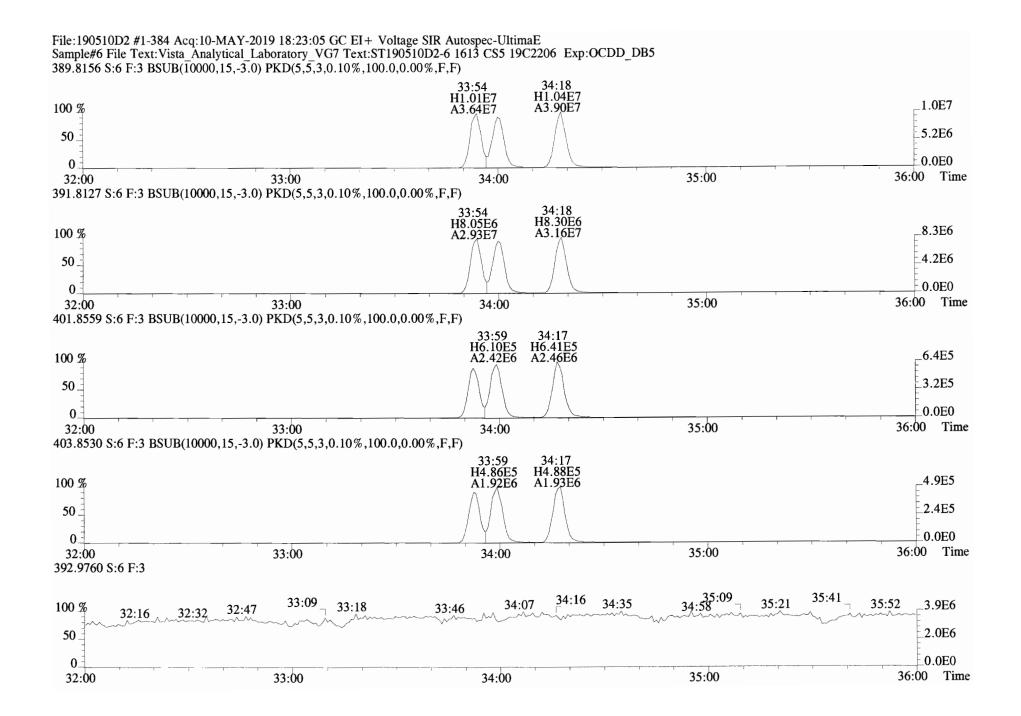


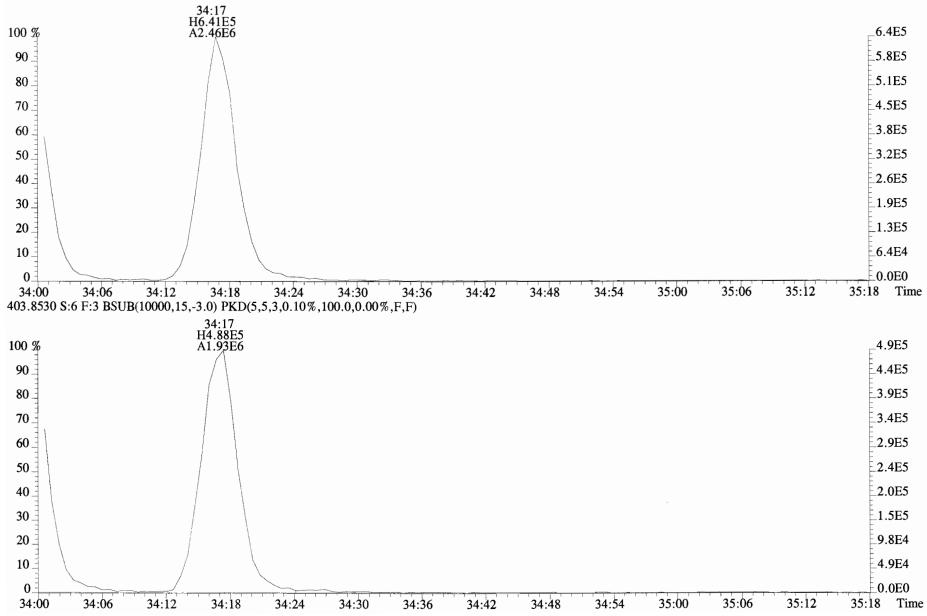

File:190510D2 #1-180 Acq:10-MAY-2019 17:35:29 GC EI + Voltage SIR Autospec-UltimaE Sample#5 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-5 1613 CS4 19C2205 Exp:OCDD_DB5 339.8597 S:5 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

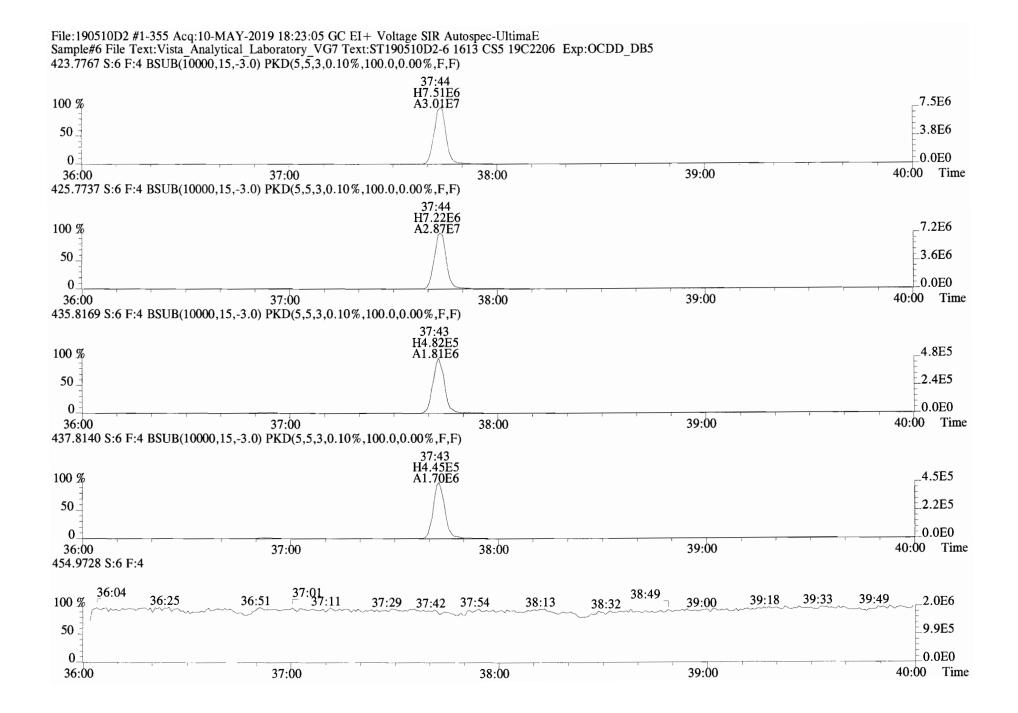


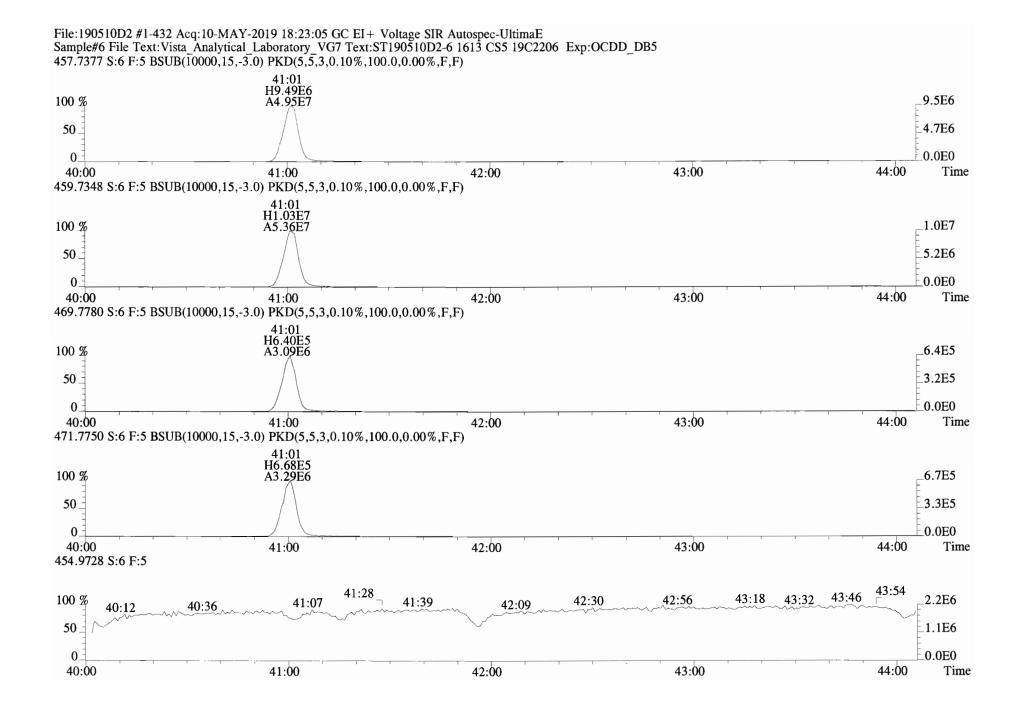

File:190510D2 #1-384 Acq:10-MAY-2019 17:35:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#5 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-5 1613 CS4 19C2205 Exp:OCDD_DB5 383.8639 S:5 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

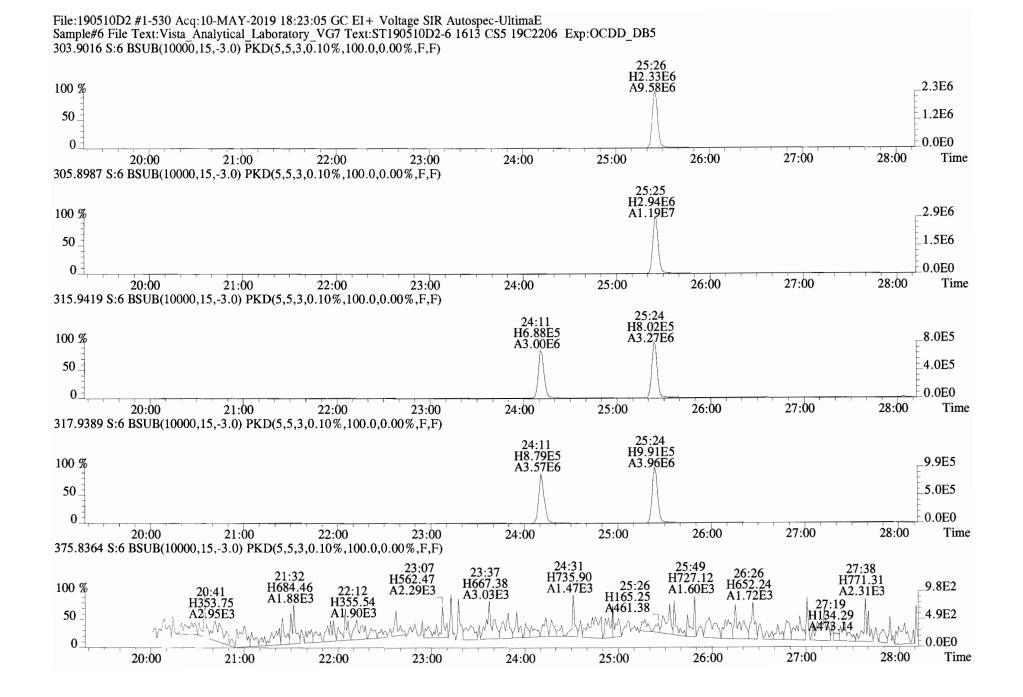


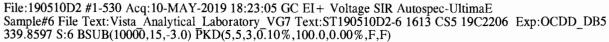

File:190510D2 #1-432 Acq:10-MAY-2019 17:35:29 GC EI+ Voltage SIR Autospec-UltimaE

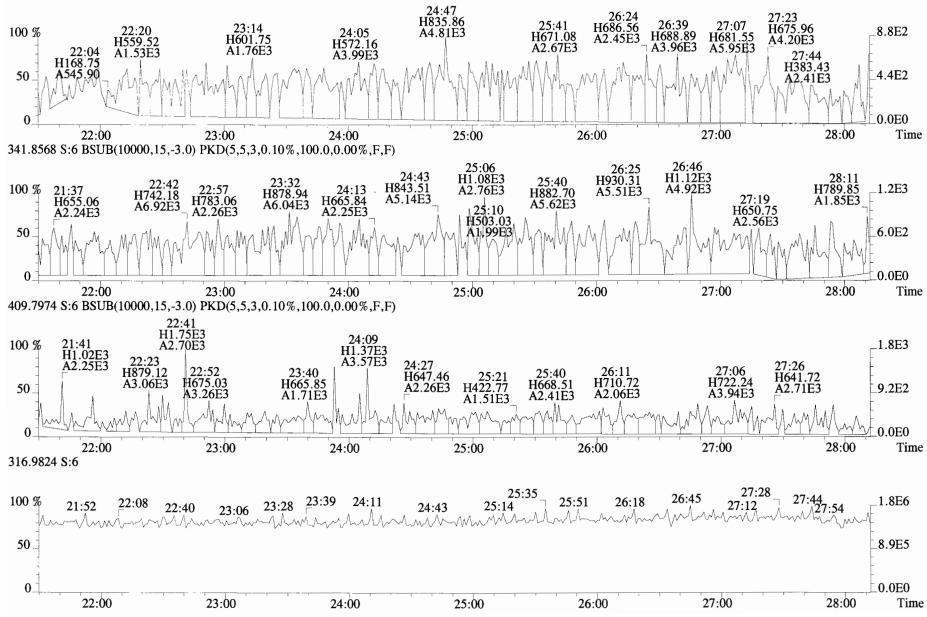

File:190510D2 #1-530 Acq:10-MAY-2019 18:23:05 GC EI+ Voltage SIR Autospec-UltimaE

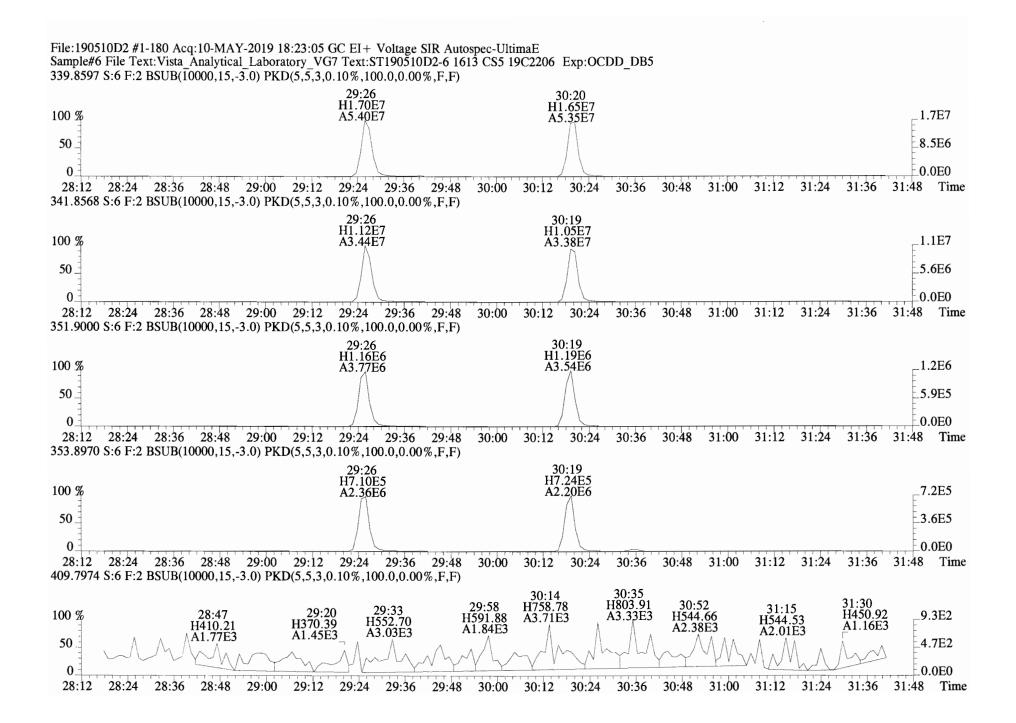


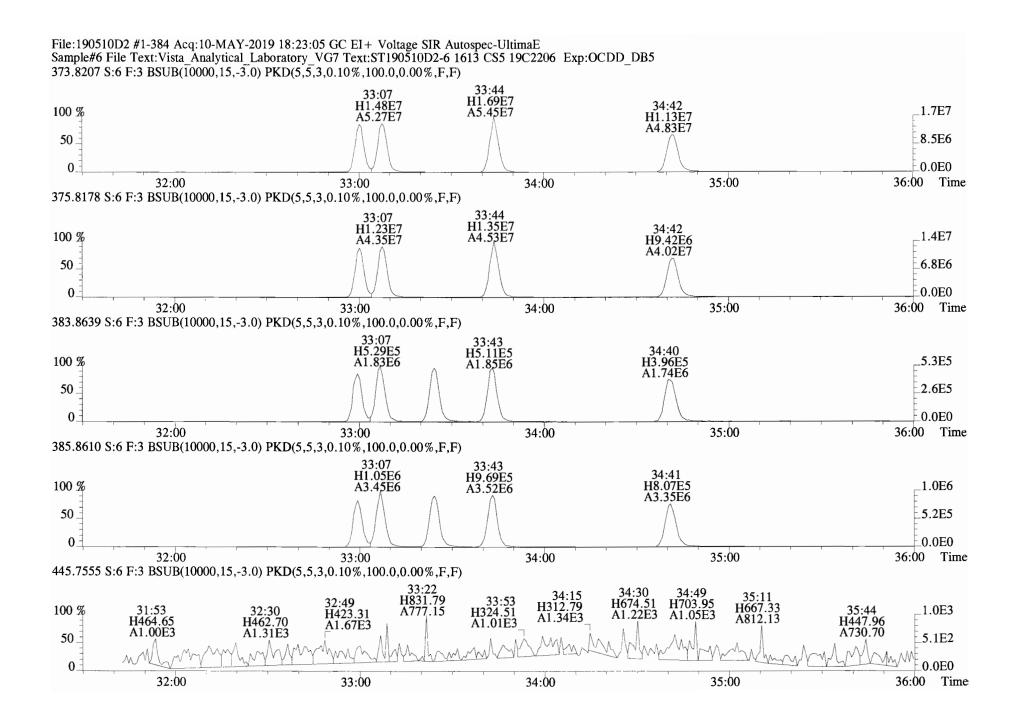

Page 440 of 534

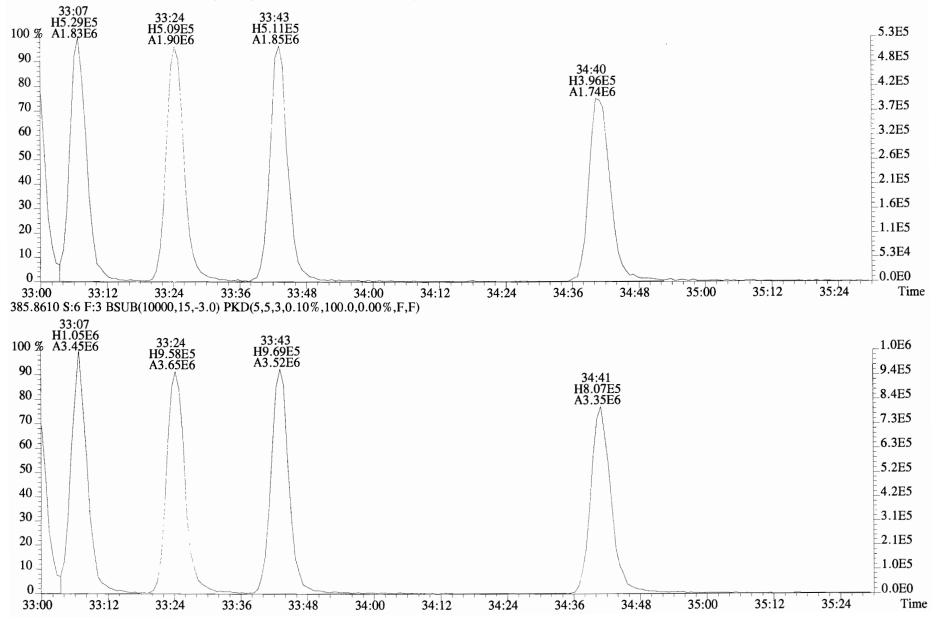


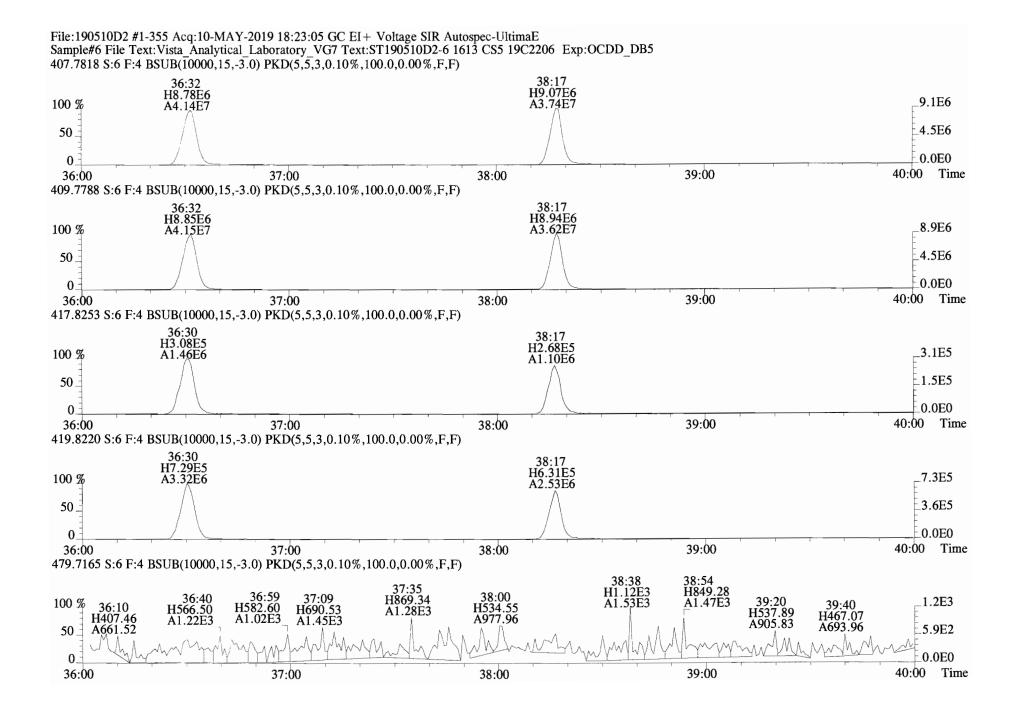

File:190510D2 #1-384 Acq:10-MAY-2019 18:23:05 GC EI + Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-6 1613 CS5 19C2206 Exp:OCDD_DB5 401.8559 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

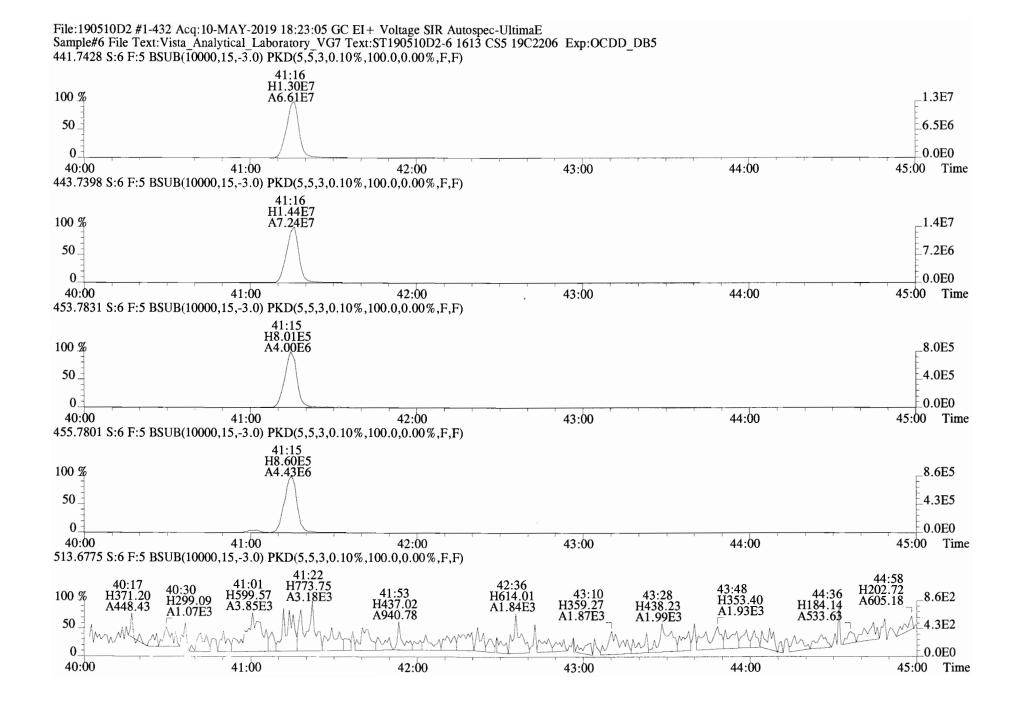






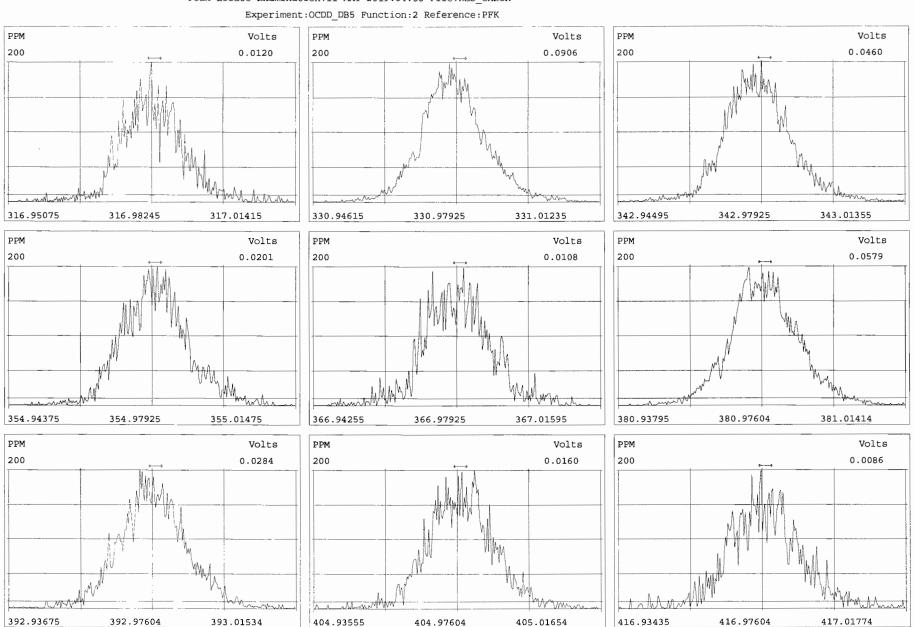


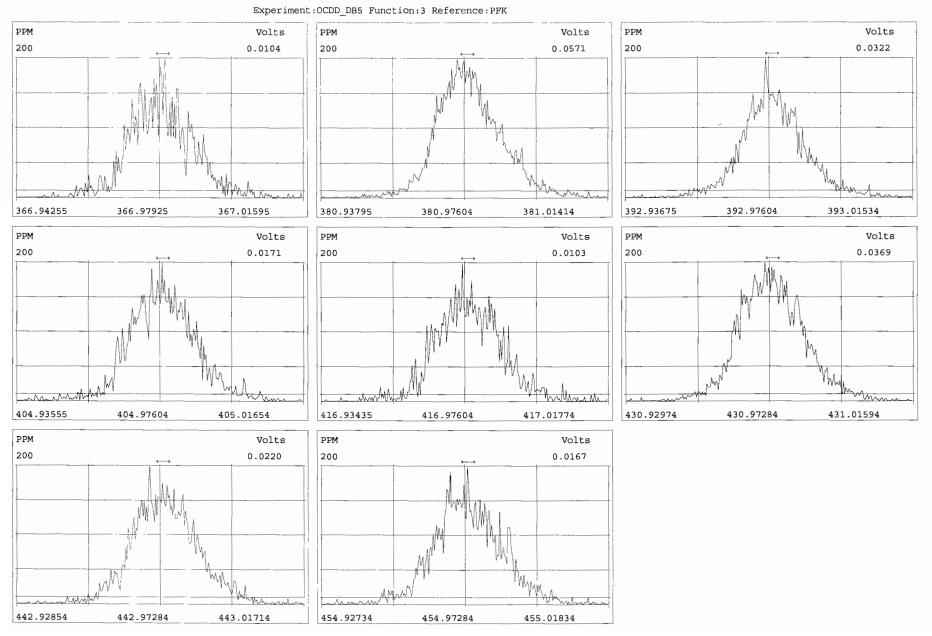




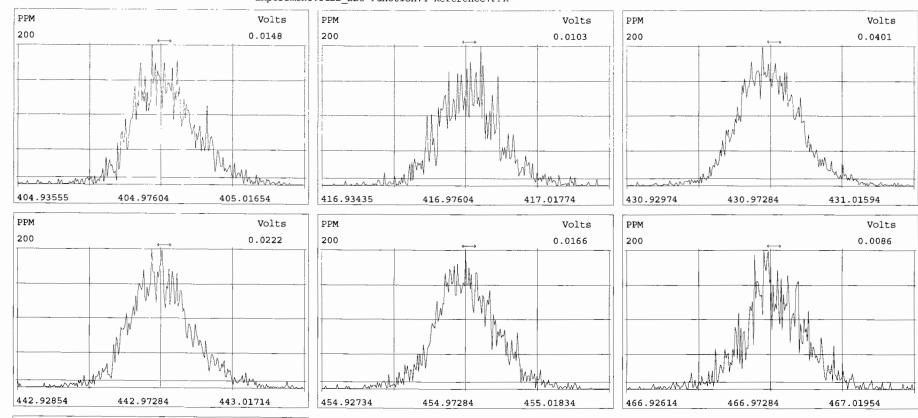


File:190510D2 #1-384 Acq:10-MAY-2019 18:23:05 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-6 1613 CS5 19C2206 Exp:OCDD_DB5 383.8639 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

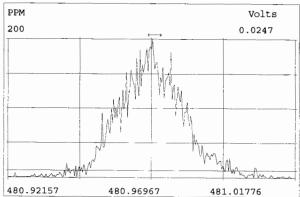


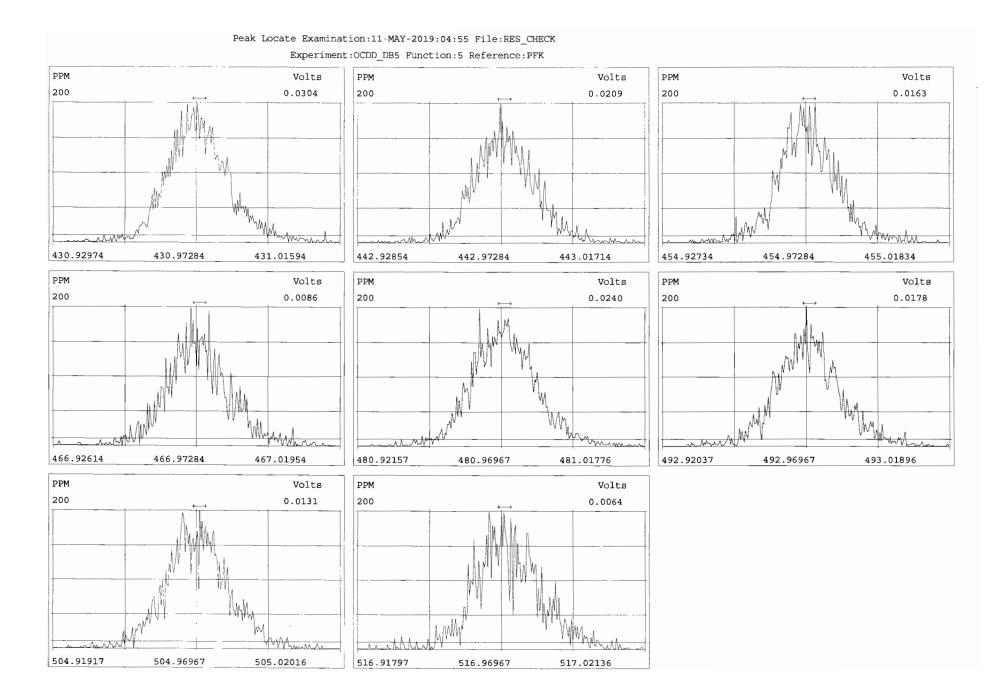


Peak Locate Examination:11-MAY-2019:04:52 File:RES_CHECK



Peak Locate Examination:11-MAY-2019:04:53 File:RES_CHECK




Peak Locate Examination:11-MAY-2019:04:54 File:RES_CHECK

Peak Locate Examination:11-MAY-2019:04:54 File:RES_CHECK

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Vista Analytical Laboratory Episode No.:

CCAL ID: SS190510D2-1

Contract No .: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190510D2 S#8 Analysis Date: 10-MAY-19 Time: 19:58:17

NATIVE ANALYTES	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	Pass	CONC. FOUND	CONC. RANGE (3) (ng/mL)
2,3,7,8-TCDD	M/M+2	0.82	0.65-0.89	У	9.99	7.8 - 12.9 8.2 - 12.3 (4)
1,2,3,7,8-PeCDD	M/M+2	0.59	0.54-0.72	У	50.9	39.0 - 65.0
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	M+2/M+4 M+2/M+4 M+2/M+4	1.21 1.22 1.26	1.05-1.43 1.05-1.43 1.05-1.43	У У У	52.6 55.2 52.4	39.0 - 64.0 39.0 - 64.0 41.0 - 61.0
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.01	0.88-1.20	У	52.0	43.0 - 58.0
OCDD	M+2/M+4	0.92	0.76-1.02	У	104	79.0 - 126.0
2,3,7,8-TCDF	M/M+2	0.78	0.65-0.89	У	10.7	8.4 - 12.0 8.6 - 11.6 (4)
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	M+2/M+4 M+2/M+4	1.61 1.59	1.32-1.78 1.32-1.78	У У	52.3 58.4	41.0 - 60.0 41.0 - 61.0
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	M+2/M+4 M+2/M+4 M+2/M+4 M+2/M+4	1.22 1.18 1.20 1.22	1.05-1.43 1.05-1.43 1.05-1.43 1.05-1.43	Y Y Y	54.5 56.2 52.3 55.6	45.0 - 56.0 44.0 - 57.0 44.0 - 57.0 45.0 - 56.0
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	M+2/M+4	1.00	0.88-1.20	У У У	52.1 50.0	45.0 - 55.0 43.0 - 58.0
OCDF	M+2/M+4	0.90	0.76-1.02	У	109	63.0 - 159.0

(1) See Table 8, Method 1613, for m/z specifications.

(2) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

(3) Contract-required concentration range as specified in Table 6, Method 1613.

(4) Contract-required concentration range as specified in Table 6a, Method 1613, for tetras only.

Analyst: 7B Date: 5/13/19

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190510D2 S#8 Analysis Date: 10-MAY-19 Time: 19:58:17

M/Z'S ION QC CONC.	
FORMING ABUND. LIMITS CONC. RANGE	
LABELED COMPOUNDS RATIO (1) RATIO (2) Pass FOUND (ng/mL))
13C-2,3,7,8-TCDD M/M+2 0.76 0.65-0.89 y 101 82.0 - 3	121.0
13C-1,2,3,7,8-PeCDD M/M+2 0.63 0.54-0.72 y 98.7 62.0 - 3	160.0
13C-1,2,3,4,7,8-HxCDD M+2/M+4 1.34 1.05-1.43 y 95.3 85.0 - 3	117.0
13C-1,2,3,6,7,8-HxCDD M+2/M+4 1.19 1.05-1.43 y 93.1 85.0 - 3	118.0
13C-1,2,3,7,8,9-HxCDD M+2/M+4 1.24 1.05-1.43 y 97.2 85.0 - 3	118.0
13C-1,2,3,4,6,7,8-HpCDD M+2/M+4 1.06 0.88-1.20 y 115 72.0 - 3	138.0
13C-OCDD M/M+2 0.91 0.76-1.02 y 199 96.0 -	415.0
13C-2,3,7,8-TCDF M+2/M+4 0.77 0.65-0.89 y 103 71.0 - 1	140.0
13C-1,2,3,7,8-PeCDF M+2/M+4 1.53 1.32-1.78 y 98.2 76.0 -	130.0
13C-2,3,4,7,8-PeCDF M+2/M+4 1.58 1.32-1.78 y 99.0 77.0 -	130.0
13C-1,2,3,4,7,8-HxCDF M/M+2 0.50 0.43-0.59 y 96.4 76.0 -	131.0
13C-1,2,3,6,7,8-HxCDF M/M+2 0.53 0.43-0.59 y 96.5 70.0 -	143.0
13C-2,3,4,6,7,8-HxCDF M/M+2 0.52 0.43-0.59 y 98.2 73.0 -	137.0
13C-1,2,3,7,8,9-HxCDF M/M+2 0.53 0.43-0.59 y 102 74.0 -	135.0
13C-1,2,3,4,6,7,8-HpCDF M+2/M+4 0.43 0.37-0.51 у 116 78.0 -	129.0
13C-1, 2, 3, 4, 7, 8, 9-HpCDF M+2/M+4 0.41 0.37-0.51 y 119 77.0 -	
	129.0
13C-OCDF M+2/M+4 0.92 0.76-1.02 y 202 96.0 -	415.0
CLEANUP STANDARD (3)	
37Cl-2,3,7,8-TCDD 9.30 7.9 - 1	2.7

- (1) See Table 8, Method 1613, for $\ensuremath{\text{m/z}}$ specifications.
- (2) Ion Abundance Ratio Control Limits as specified
- (3) No ion abundance ratio; report concentration found.

Analyst: DB Date: <u>5/13/19</u>

FORM 6A PCDD/PCDF RELATIVE RETENTION TIMES

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190510D2 S#8 Analysis Date: 10-MAY-19 Time: 19:58:17

Compounds Using 13C-1234-TCDD as RT Internal Standard

NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT RRT QC LIMITS (1)				
2,3,7,8-TCDD	13C-2,3,7,8-TCDD	1.001	0.999-1.002				
1,2,3,7,8-PeCDD	13C-1,2,3,7,8-PeCDD	1.000	0.999-1.002				
2,3,7,8-TCDF	13C-2,3,7,8-TCDF	1.001	0.999-1.003				
1,2,3,7,8-PeCDF	13C-1,2,3,7,8-PeCDF	1.000	0.999-1.002				
2,3,4,7,8-PeCDF	13C-2,3,4,7,8-PeCDF	1.000	0.999-1.002				

LABELED COMPOUNDS

13C-1,2,3,4-TCDD	1.022	0.976-1.043
13C-1,2,3,4-TCDD	1.196	1.000-1.567
13C-1,2,3,4-TCDD	0.993	0.923-1.103
13C-1,2,3,4-TCDD	1.151	1.000-1.425
13C-1,2,3,4-TCDD	1.185	1.011-1.526
13C-1,2,3,4-TCDD	1.023	0.989-1.052
	13C-1,2,3,4-TCDD 13C-1,2,3,4-TCDD 13C-1,2,3,4-TCDD 13C-1,2,3,4-TCDD 13C-1,2,3,4-TCDD	13C-1,2,3,4-TCDD 1.196 13C-1,2,3,4-TCDD 0.993 13C-1,2,3,4-TCDD 1.151 13C-1,2,3,4-TCDD 1.185

Analyst: <u>DB</u> Date: <u>5/13/19</u>

FORM 6B PCDD/PCDF RELATIVE RETENTION TIMES

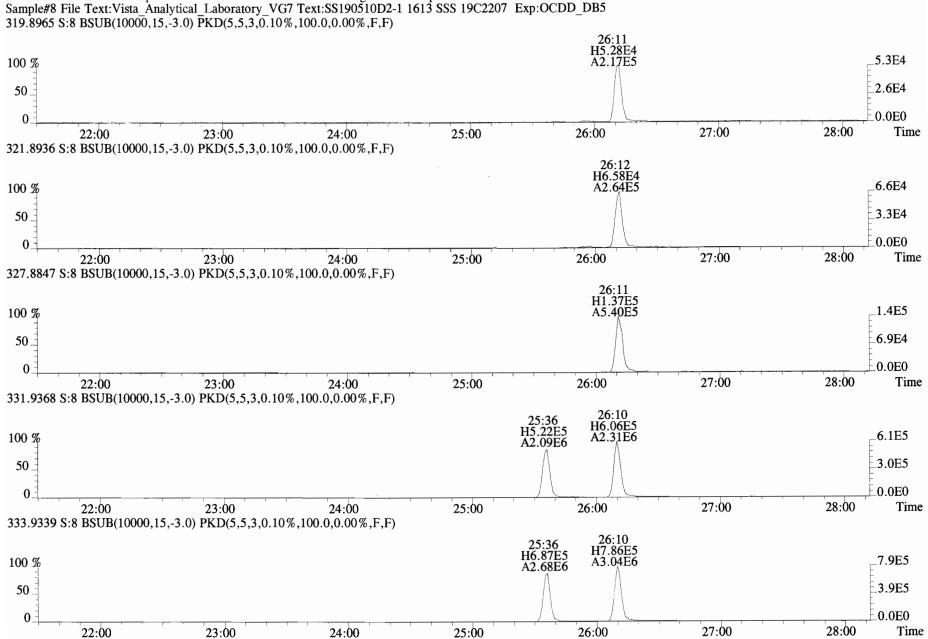
Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

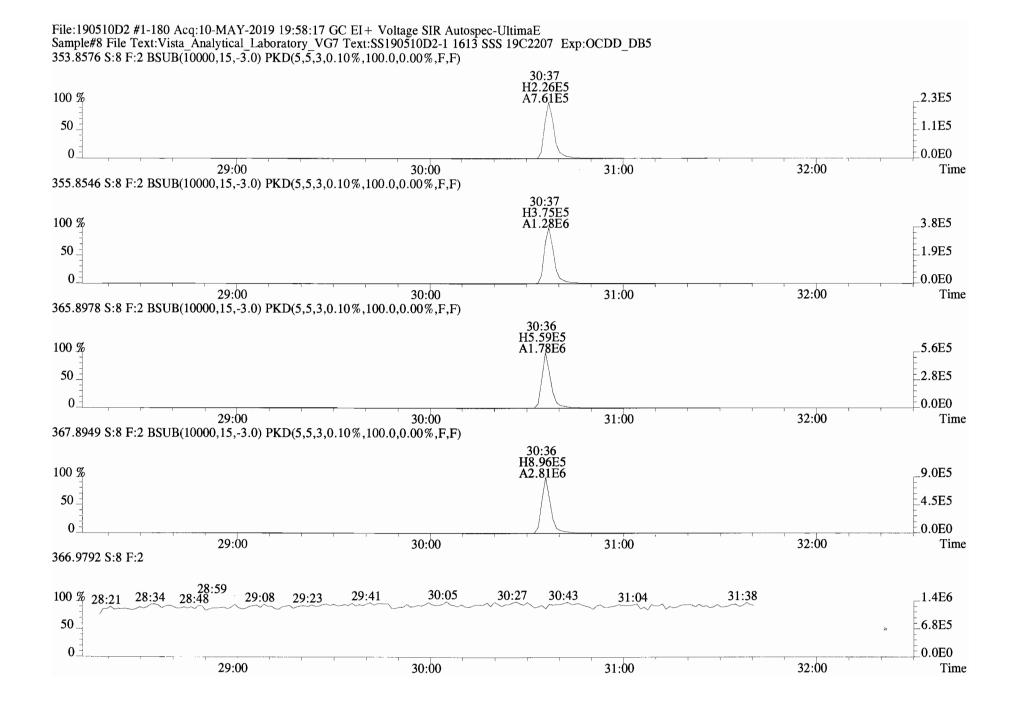
Initial Calibration Date: 5-10-19

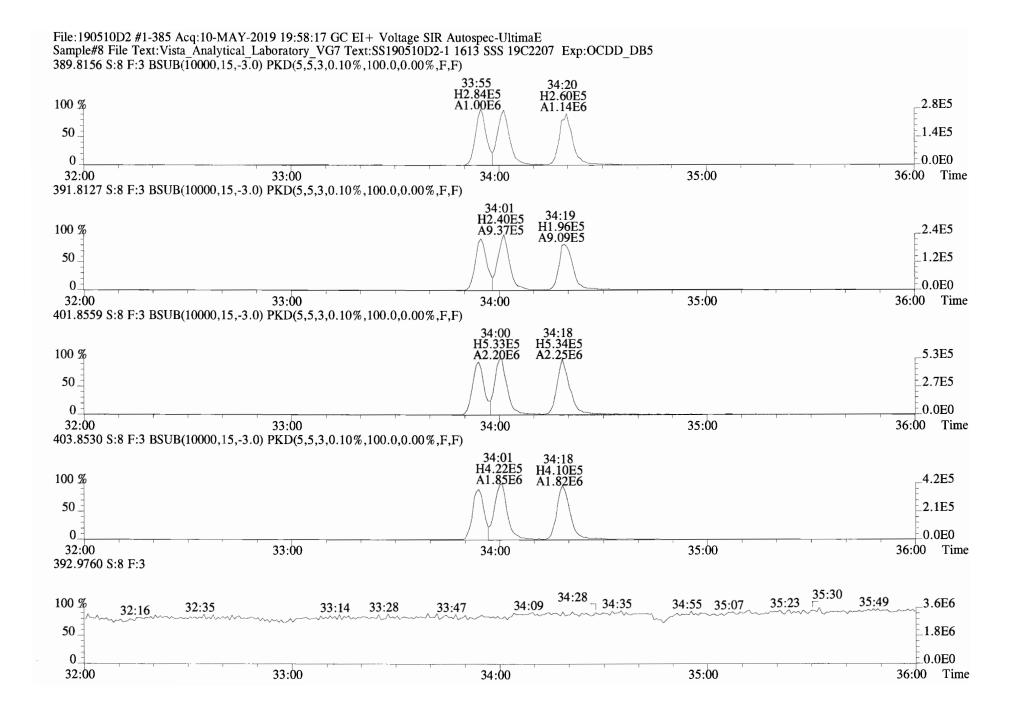
Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190510D2 S#8 Analysis Date: 10-MAY-19 Time: 19:58:17


NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
1,2,3,4,7,8-HxCDF	13C-1,2,3,4,7,8-HxCDF	1.000	0.999-1.001
1,2,3,6,7,8-HxCDF	13C-1,2,3,6,7,8-HxCDF	1.000	0.997-1.005
2,3,4,6,7,8-HxCDF	13C-2,3,4,6,7,8-HxCDF	1.000	0.999-1.001
1,2,3,7,8,9-HxCDF	13C-1,2,3,7,8,9-HxCDF	1.000	0.999-1.001
1,2,3,4,7,8-HxCDD	13C-1,2,3,4,7,8-HxCDD	1.000	0.999-1.001
1,2,3,6,7,8-HxCDD	13C-1,2,3,6,7,8-HxCDD	1.000	0.998-1.004
1,2,3,7,8,9-HxCDD	13C-1,2,3,7,8,9-HxCDD	1.000	0.998-1.004
1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6,7,8-HpCDF	1.000	0.999-1.001
1,2,3,4,6,7,8-HpCDD	13C-1,2,3,4,6,7,8-HpCDD	1.000	0.999-1.001
1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,7,8,9-HpCDF	1.000	0.999-1.001
OCDD	13C-OCDD	1.000	0.999-1.001
OCDF	13C-OCDF	1.000	0.999-1.001

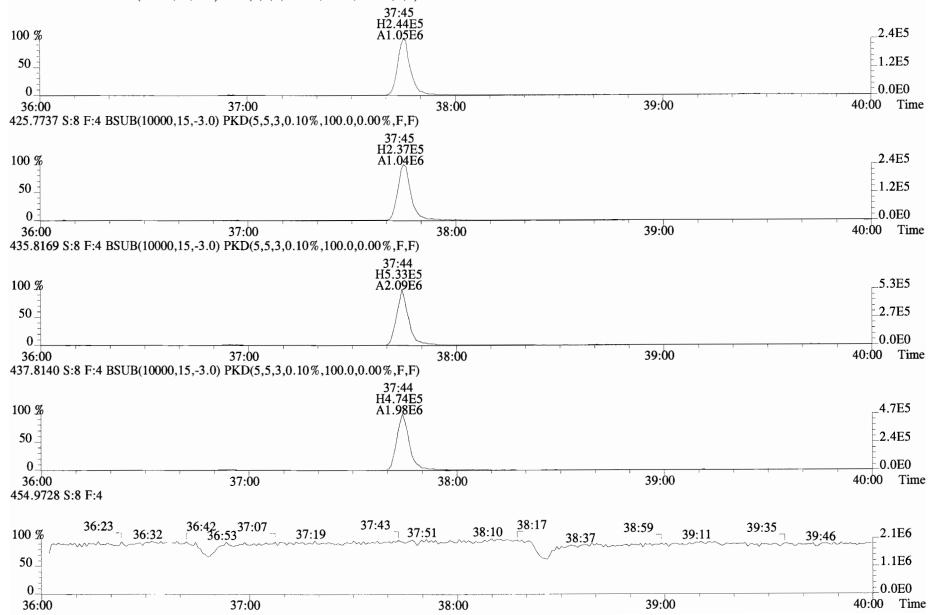
LABELED COMPOUNDS

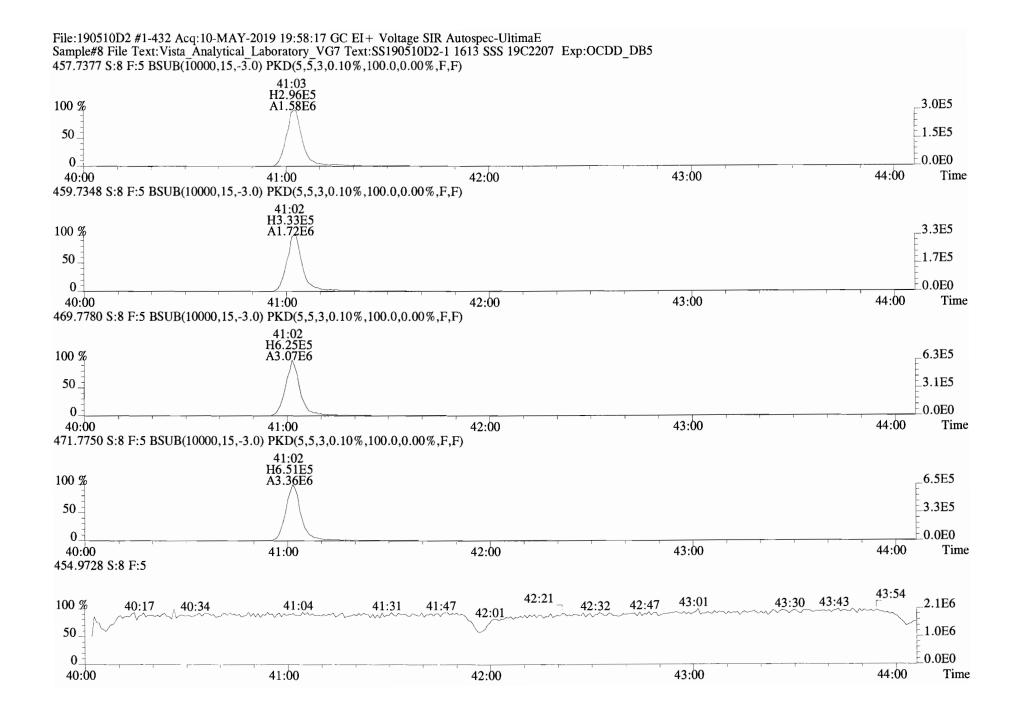

13C-1,2,3,4,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	0.987	0.975-1.001
13C-1,2,3,6,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	0.991	0.979-1.005
13C-2,3,4,6,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	1.009	1.001-1.020
13C-1,2,3,7,8,9-HxCDF	13C-1,2,3,4,6,9-HxCDF	1.039	1.002-1.072
13C-1,2,3,4,7,8-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.014	1.002-1.026
13C-1,2,3,6,7,8-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.017	1.007-1.029
13C-1,2,3,7,8,9-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.027	1.014-1.038
13C-1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6,9-HxCDF	1.093	1.069-1.111
13C-1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,6,9-HxCDF	1.146	1.098-1.192
13C-1,2,3,4,6,7,8-HpCDD	13C-1,2,3,4,6,9-HxCDF	1.129	1.117-1.141
13C-OCDD	13C-1,2,3,4,6,9-HxCDF	1.228	1.085-1.365
13C-OCDF	13C-1,2,3,4,6,9-HxCDF	1.235	1.091-1.371

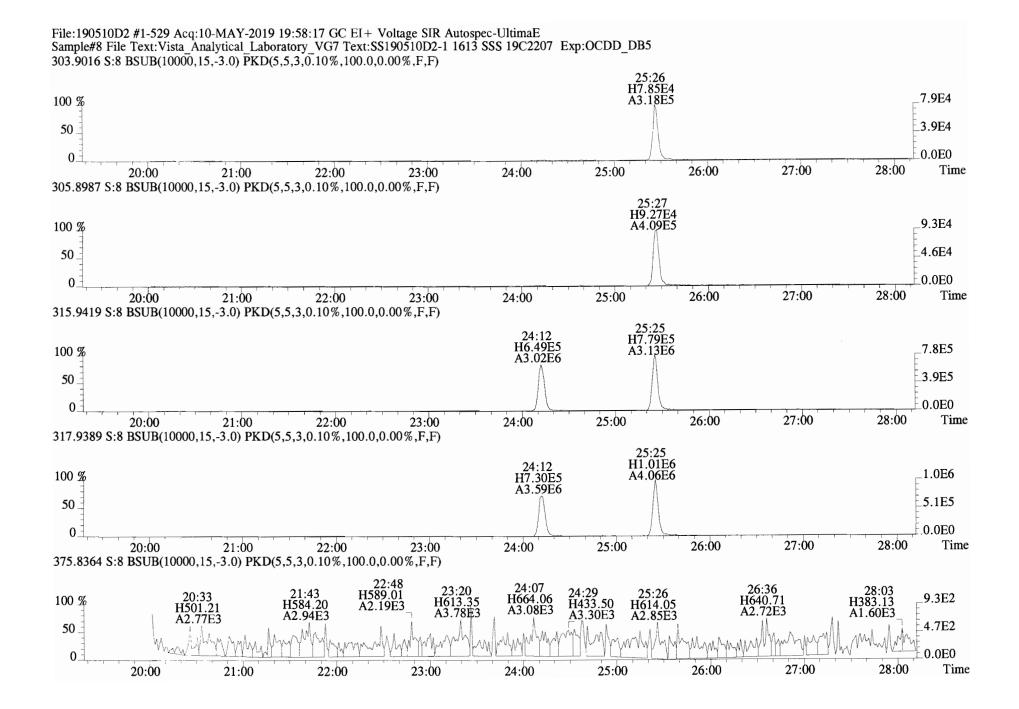

Analyst: <u>DB</u> Date: <u>5[13/19</u>

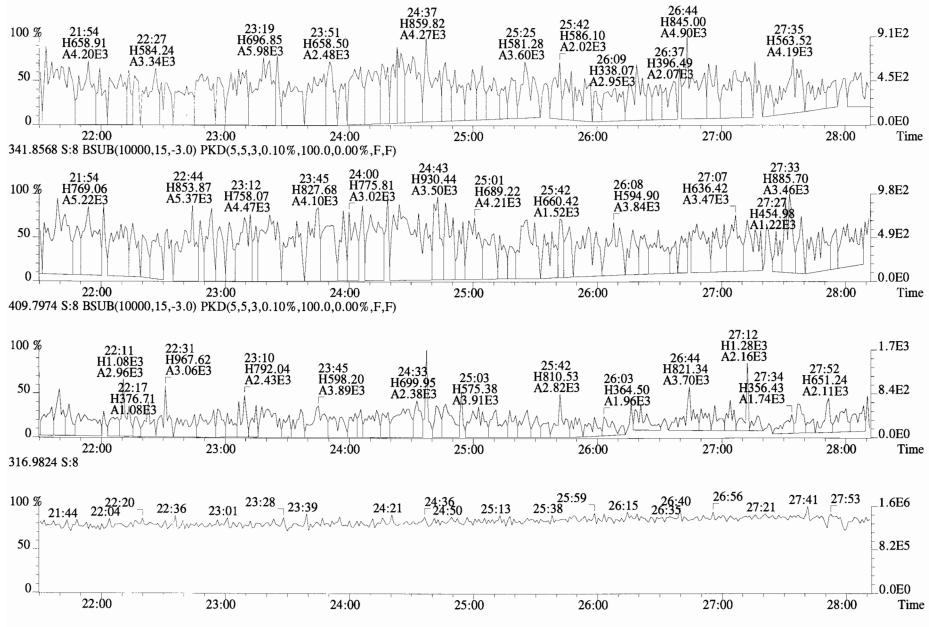
Client ID: 1613 SSS 19C2207	Fi	lename: 19	9051 0 D2	S:8	Acq:10-M	AY-19 1	9:58:17		ConCal: ST190510D	2-4			Page 1	of 9
Lab ID: SS190510D2-1	GC	Column II	D: ZB-5M	MS ICal:	1613VG7-	5-10-19	wt/vol	: 1.000	EndCAL: NA					
Name	Resp	RA	RRF	RT	Conc	Qual	noise Fac	DL	Name	Conc	EMPC	Qual no	ise	DL
2,3,7,8-TCDD	4.81e+05	0.82 y	0.90	26:12	9.9887		* 2.5	*	Total Tetra-Dioxins	10.1	12.4		*	*
1,2,3,7,8-PeCDD	2.04e+06	0.59 y	0.87	30:37	50.933		* 2.5	*	Total Penta-Dioxins	51.0	51.6		*	*
1,2,3,4,7,8-HxCDD	1.83e+06	1.21 y	1.05	33:55	52.576		* 2.5	*	Total Hexa-Dioxins	161	163		*	*
1,2,3,6,7,8-HxCDD	2.08e+06	1.22 y	0.93	34:01	55.219		* 2.5	*	Total Hepta-Dioxins	52.4	54.4		*	*
1,2,3,7,8,9-HxCDD	2.05e+06	1.26 y	0.96	34:20	52.379		* 2.5	*	Total Tetra-Furans	12.0	14.7		*	*
1,2,3,4,6,7,8-HpCDD	2.09e+06	1.01 y	0.99	37:46	52.015		* 2.5	*	Total Penta-Furans	111.82	118.05		*	*
OCDD	3.30e+06	0.92 y	0.99	41:03	104.03		* 2.5	*	Total Hexa-Furans	219	219		*	*
									Total Hepta-Furans	103	105		*	*
2,3,7,8-TCDF	7.27e+05	0.78 y	0.94	25:27	10.721		* 2.5	*						
1,2,3,7,8-PeCDF	2.99e+06	1.61 y	0.92	29:28	52.327		* 2.5	*						
2,3,4,7,8-PeCDF	3.42e+06	1.59 y	0.96	30:22	58.360		* 2.5	*						
1,2,3,4,7,8-HxCDF	2.68e+06	1.22 y -	1.15	33:01	54.544		* 2.5	*						
1,2,3,6,7,8-HxCDF	2.97e+06	1.18 y	1.04	33:09	56.235		* 2.5	*						
2,3,4,6,7,8-HxCDF	2.76e+06	1.20 y	1.10	33:45	52.297		* 2.5	*						
1,2,3,7,8,9-HxCDF	2.60e+06	1.22 y	1.03	34:44	55.557		* 2.5	*						
1,2,3,4,6,7,8-HpCDF	2.69e+06	1.00 y	1.06	36:33	52.088		* 2.5	*						
1,2,3,4,7,8,9-HpCDF	2.39e+06	1.02 y	1.23	38:19	50.039		* 2.5	*						
OCDF	4.19e+06	0.90 y	0.94	41:17	109.14		* 2.5	*						
									Rec Qual					
IS 13C-2,3,7,8-TCDD	5.35e+06	0.76 y	1.11	26:10	101.43				101					
IS 13C-1,2,3,7,8-PeCDD	4.59e+06	0.63 y	0.98	30:37	98.658				98.7					
IS 13C-1,2,3,4,7,8-HxCDD	3.32e+06	1.34 y	0.68	33:54	95.294				95.3					
IS 13C-1,2,3,6,7,8-HxCDD	4.04e+06	1.19 y	0.84	34:01	93.135				93.1					
IS 13C-1,2,3,7,8,9-HxCDD	4.07e+06	1.24 y	0.81	34:19	97.155				97.2					
IS 13C-1,2,3,4,6,7,8-HpCDD	4.07e+06	1.06 Y	0.69	37:45	114.95				115					
IS 13C-OCDD	6.43e+06	0.91 Y	0.62	41:02	199.49				99.7					
IS 13C-2,3,7,8-TCDF	7.19e+06	0.77 y	1.05	25:26	103.44				103					
IS 13C-1,2,3,7,8-PeCDF	6.20e+06	1.53 y	0.95	29:27	98.238				98.2					
IS 13C-2,3,4,7,8-PeCDF	6.12e+06	1.58 y	0.94	30:21	98.956				99.0					
IS 13C-1,2,3,4,7,8-HxCDF	4.26e+06	0.50 y	0.86	33:01	96.378				96.4					
IS 13C-1,2,3,6,7,8-HxCDF	5.09e+06	0.53 y	1.02	33:08	96.528				96.5					
IS 13C-2,3,4,6,7,8-HxCDF	4.82e+06	0.52 y	0.95	33:45	98.157				98.2					
IS 13C-1,2,3,7,8,9-HxCDF	4.55e+06	0.53 y	0.87	34:43	101.63				102					
IS 13C-1,2,3,4,6,7,8-HpCDF	4.85e+06	0.43 y	0.81	36:32	116.37				116					
IS 13C-1,2,3,4,7,8,9-HpCDF	3.89e+06	0.41 y	0.63	38:19	119.40				119					
IS 13C-OCDF	8.17e+06	0.92 y	0.78	41:16	202.50				101					
C/Up 37Cl-2,3,7,8-TCDD	5.40e+05		1.22	26:12	9.3041				93.0 Integ by	rations	Revi by			
RS/RT 13C-1,2,3,4-TCDD	4.77e+06	0.78 y	1.00	25:36	100.00				Analyst:	10	Anal	yst: M	·)	
RS 13C-1,2,3,4-TCDF		0.84 y	1.00	24:13	100.00							١	1	
RS/RT 13C-1,2,3,4,6,9-HxCDF	5.16e+06	0.52 y	1.00	33:26	100.00				Date: 5	114 19	Date	:_5	14/1	<u>٢</u>

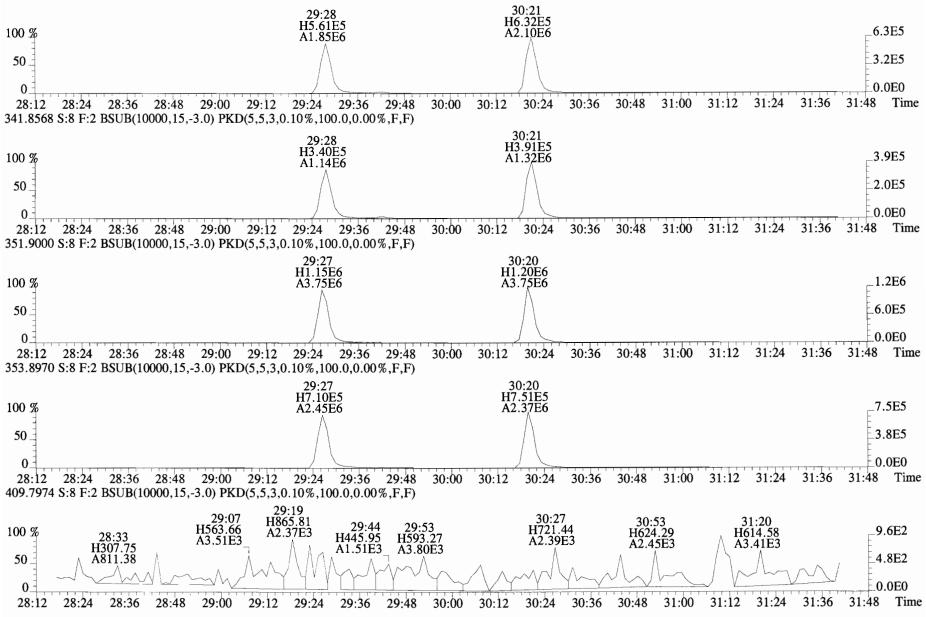
File:190510D2 #1-529 Acq:10-MAY-2019 19:58:17 GC EI+ Voltage SIR Autospec-UltimaE



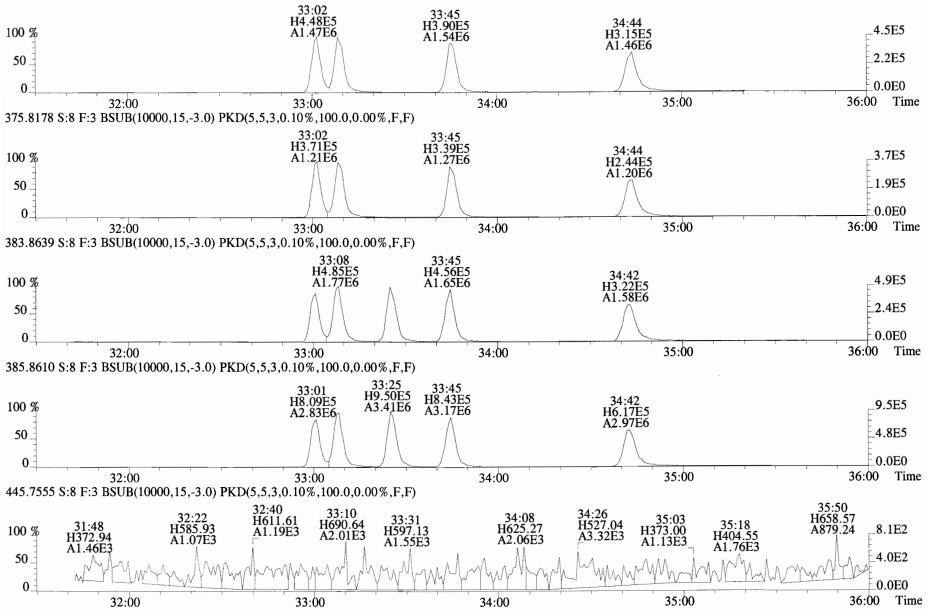



File:190510D2 #1-385 Acq:10-MAY-2019 19:58:17 GC EI+ Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista_Analytical_Laboratory_VG7 Text:SS190510D2-1 1613 SSS 19C2207 Exp:OCDD_DB5 401.8559 S:8 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

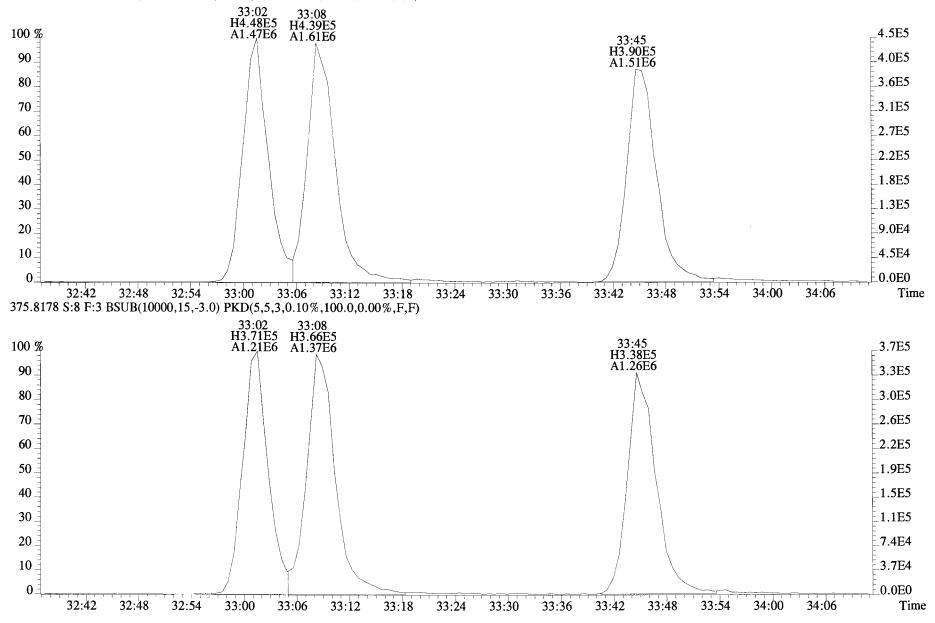

File:190510D2 #1-355 Acq:10-MAY-2019 19:58:17 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory_VG7 Text:SS190510D2-1 1613 SSS 19C2207 Exp:OCDD_DB5 423.7767 S:8 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

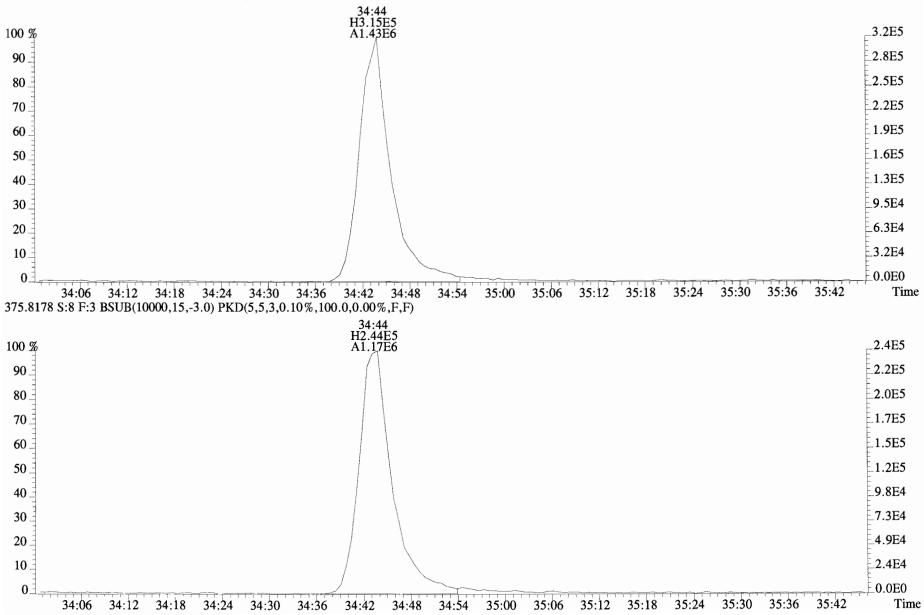


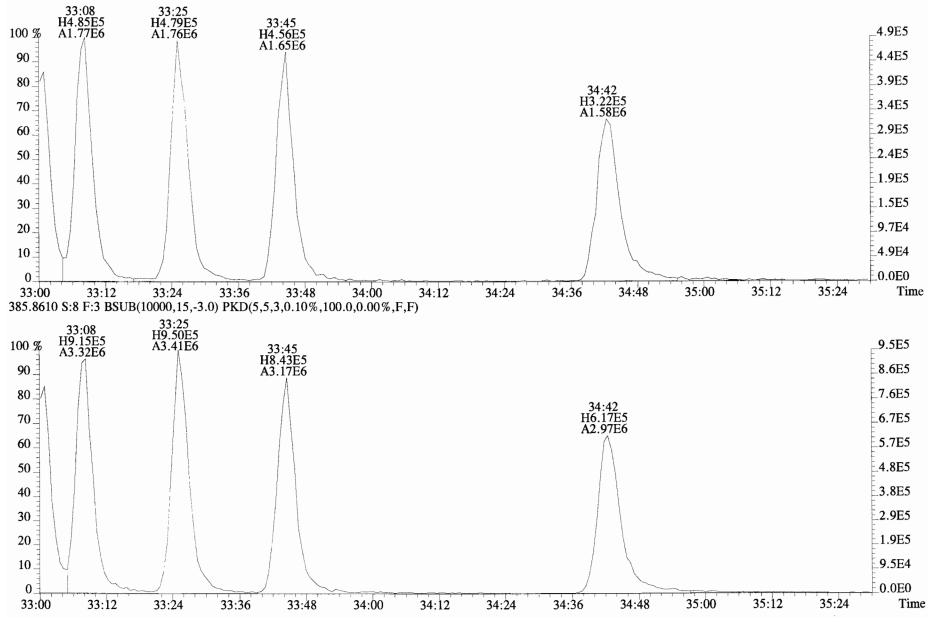
File:190510D2 #1-529 Acq:10-MAY-2019 19:58:17 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:SS190510D2-1 1613 SSS 19C2207 Exp:OCDD_DB5 339.8597 S:8 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

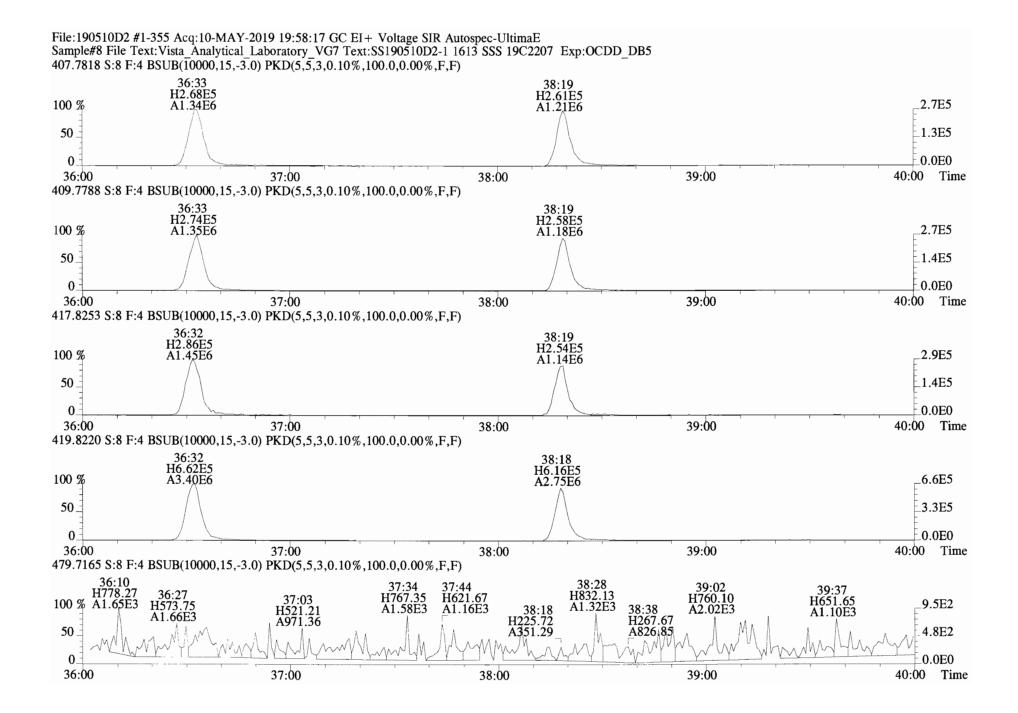


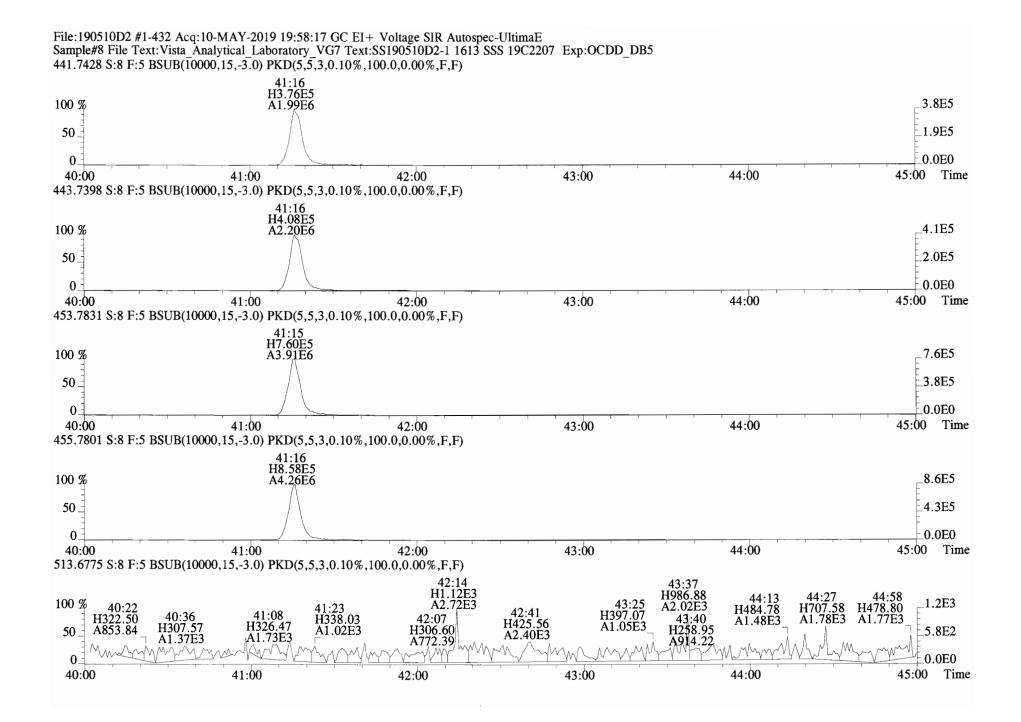
Work Order 1901248


File:190510D2 #1-180 Acq:10-MAY-2019 19:58:17 GC EI+ Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista_Analytical_Laboratory_VG7 Text:SS190510D2-1 1613 SSS 19C2207 Exp:OCDD_DB5 339.8597 S:8 F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)


File:190510D2 #1-385 Acq:10-MAY-2019 19:58:17 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista_Analytical_Laboratory_VG7 Text:SS190510D2-1 1613 SSS 19C2207 Exp:OCDD_DB5 373.8207 S:8 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)


File:190510D2 #1-385 Acq:10-MAY-2019 19:58:17 GC EI+ Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:SS190510D2-1 1613 SSS 19C2207 Exp:OCDD_DB5 373.8207 S:8 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)




File:190510D2 #1-385 Acq:10-MAY-2019 19:58:17 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:SS190510D2-1 1613 SSS 19C2207 Exp:OCDD_DB5 373.8207 S:8 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

File:190510D2 #1-385 Acq:10-MAY-2019 19:58:17 GC EI + Voltage SIR Autospec-UltimaE Sample#8 File Text:Vista Analytical Laboratory VG7 Text:SS190510D2-1 1613 SSS 19C2207 Exp:OCDD_DB5 383.8639 S:8 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

FORM 4A PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Vista Analytical Laboratory	Episode No.:
---------------------------------------	--------------

CCAL ID: ST190510D2-7

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190510D2 S#18 Analysis Date: 11-MAY-19 Time: 03:54:32

NATIVE ANALYTES	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	Pass	CONC. FOUND	CONC. RANGE (3) (ng/mL)
2,3,7,8-TCDD	M/M+2	0.73	0.65-0.89	У	10.7	7.8 - 12.9
1,2,3,7,8-PeCDD	M/M+2	0.63	0.54-0.72	У	50.7	8.2 - 12.3 (4) 39.0 - 65.0
1,2,3,4,7,8-HxCDD	M+2/M+4	1.19	1.05-1.43	У	48.1	39.0 - 64.0
1,2,3,6,7,8-HxCDD	M +2/ M +4	1.21	1.05-1.43	У	48.8	39.0 - 64.0
1,2,3,7,8,9-HxCDD	M+2/M+4	1.18	1.05-1.43	У	47.9	41.0 - 61.0
1,2,3,4,6,7,8-HpCDD	M+2/M+4	1.05	0.88-1.20	У	50.7	43.0 - 58.0
OCDD	M+2/M+4	0.91	0.76-1.02	У	97.6	79.0 - 126.0
2,3,7,8-TCDF	M/M+2	0.78	0.65-0.89	У	8.80	8.4 - 12.0 8.6 - 11.6 (4)
1,2,3,7,8-PeCDF	M+2/M+4	1.62	1.32-1.78	У	49.4	41.0 - 60.0
2,3,4,7,8-PeCDF	M+2/M+4	1.61	1.32-1.78	y y	49.7	41.0 - 61.0
				-		
1,2,3,4,7,8-HxCDF	M+2/M+4	1.14	1.05-1.43	У	46.6	45.0 - 56.0
1,2,3,6,7,8-HxCDF	M+2/M+4	1.22	1.05-1.43	У	49.7	44.0 - 57.0
2,3,4,6,7,8-HxCDF	M+2/M+4	1.18	1.05-1.43	У	49.1	44.0 - 57.0
1,2,3,7,8,9-HxCDF	M+2/M+4	1.18	1.05-1.43	У	48.3	45.0 - 56.0
1,2,3,4,6,7,8-HpCDF	M+2/M+4	0.97	0.88-1.20	У	48.8	45.0 - 55.0
1,2,3,4,7,8,9-HpCDF		1.00	0.88-1.20	Y Y	48.7	43.0 - 58.0
OCDF	M+2/M+4	0.91	0.76-1.02	У	103	63.0 - 159.0

(1) See Table 8, Method 1613, for m/z specifications.

(2) Ion Abundance Ratio Control Limits as specified in Table 9, Method 1613.

(3) Contract-required concentration range as specified in Table 6, Method 1613.

(4) Contract-required concentration range as specified in Table 6a, Method 1613, for tetras only.

FORM 4B PCDD/PCDF CALIBRATION VERIFICATION

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190510D2 S#18 Analysis Date: 11-MAY-19 Time: 03:54:32

	M/Z'S FORMING RATIO (1)	ION ABUND. RATIO	QC LIMITS (2)	Pass	CONC. FOUND	CONC. RANGE (ng/mL)
	111110 (17)		(2)	labb	100112	(119) (112)
13C-2,3,7,8-TCDD	M/M+2	0.80	0.65-0.89	У	101	82.0 - 121.0
13C-1,2,3,7,8-PeCDD	M/M+2	0.61	0.54-0.72	У	89.6	62.0 - 160.0
13C-1,2,3,4,7,8-HxCDD	M+2/M+4	1.27	1.05-1.43	У	105	85.0 - 117.0
13C-1,2,3,6,7,8-HxCDD	M+2/M+4	1.22	1.05-1.43	У	104	85.0 - 118.0
13C-1,2,3,7,8,9-HxCDD	M+2/M+4	1.25	1.05-1.43	У	105	85.0 - 118.0
13C-1,2,3,4,6,7,8-HpC	DD M+2/M+4	1.02	0.88-1.20	У	98.9	72.0 - 138.0
13C-OCDD	M/M+2	0.91	0.76-1.02	У	209	96.0 - 415.0
13C-2,3,7,8-TCDF	M+2/M+4	0.79	0.65-0.89	У	106	71.0 - 140.0
13C-1,2,3,7,8-PeCDF	M+2/M+4	1.55	1.32-1.78	У	96.0	76.0 - 130.0
13C-2,3,4,7,8-PeCDF	M+2/M+4	1.61	1.32-1.78	У	93.6	77.0 - 130.0
13C-1,2,3,4,7,8-HxCDF	M/M+2	0.51	0.43-0.59	У	99.8	76.0 - 131.0
13C-1,2,3,6,7,8-HxCDE	M/M+2	0.51	0.43-0.59	У	102	70.0 - 143.0
13C-2,3,4,6,7,8-HxCDF	M/M+2	0.51	0.43-0.59	У	102	73.0 - 137.0
13C-1,2,3,7,8,9-HxCDF	M/M+2	0.52	0.43-0.59	У	101	74.0 - 135.0
13C-1,2,3,4,6,7,8-HpC	DF M+2/M+4	0.42	0.37-0.51	y	98.8	78.0 - 129.0
13C-1,2,3,4,7,8,9-HpC	-	0.44	0.37-0.51	4	101	77.0 - 129.0
13C-OCDF	M+2/M+4	0.92	0.76-1.02	У	196	96.0 - 415.0
CLEANUP STANDARD (3)						
37Cl-2,3,7,8-TCDD					9.02	7.9 - 12.7

- (1) See Table 8, Method 1613, for m/z specifications.
- (2) Ion Abundance Ratio Control Limits as specified
- (3) No ion abundance ratio; report concentration found.

Analyst: <u>DB</u> Date: <u>5</u>1319

FORM 5 PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Instrument ID: VG-7 Initial Calibration Date: 5-10-19

RT Window Data Filename: 190510D2 S#18 Analysis Date: 11-MAY-19 Time: 03:54:32

ZB-5MS IS Data Filename: 190510D2 S#18 Analysis Date: 11-MAY-19 Time: 03:54:32

DB_225 IS Data Filename: Analysis Date:

ZB-5MS RT WINDOW DEFINING STANDARDS RESULTS

Time:

ISOMERS 1,3,6,8-TCDD (F) 1,2,8,9-TCDD (L)	ABSOLUTE RT 22:50 27:01	ISOMERS 1,3,6,8-TCDF (F) 1,2,8,9-TCDF (L)	ABSOLUTE RT 20:44 27:11
1,2,4,7,9-PeCDD (F)	28:34	1,3,4,6,8-PeCDF (F)	27:05
1,2,3,8,9-PeCDD (L)	30:58	1,2,3,8,9-PeCDF (L)	31:13
1,2,4,6,7,9-HxCDD (F)	32: 21	1,2,3,4,6,8-HxCDF (F)	31:49
1,2,3,7,8,9-HxCDD (L)	34:19	1,2,3,7,8,9-HxCDF (L)	34:43
1,2,3,4,6,7,9-HpCDD (F)	36:54	1,2,3,4,6,7,8-HpCDF (F)	36:32
1,2,3,4,6,7,8-HpCDD (L)	37:45	1,2,3,4,7,8,9-HpCDF (L)	38:18

(F) = First eluting isomer (ZB-5MS); (L) = Last eluting isomer (ZB-5MS).

ISOMER SPECIFICITY (IS) TEST STANDARD RESULTS

% VALLEY HEIGHT BETWEEN COMPARED PEAKS (1)

<25%

(1) To meet contract requirements, %Valley Height Between Compared Peaks shall not exceed 25% (section 15.4.2.2, Method 1613).

Analyst: 06

5/13/19 Date:

FORM 6A PCDD/PCDF RELATIVE RETENTION TIMES

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190510D2 S#18 Analysis Date: 11-MAY-19 Time: 03:54:32

Compounds Using 13C-1234-TCDD as RT Internal Standard

NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF	13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	1.001 1.001 1.000 1.000	0.999-1.002 0.999-1.002 0.999-1.003 0.999-1.002
2,3,4,7,8-PeCDF	13C-2,3,4,7,8-PeCDF	1.001	0.999-1.002

LABELED COMPOUNDS

13C-2,3,7,8-TCDD	13C-1,2,3,4-TCDD	1.022	0.976-1.043
13C-1,2,3,7,8-PeCDD	13C-1,2,3,4-TCDD	1.196	1.000-1.567
13C-2,3,7,8-TCDF	13C-1,2,3,4-TCDD	0.993	0.923-1.103
13C-1,2,3,7,8-PeCDF	13C-1,2,3,4-TCDD	1.151	1.000-1.425
13C-2,3,4,7,8-PeCDF	13C-1,2,3,4-TCDD	1.186	1.011-1.526
37Cl-2,3,7,8~TCDD	13C-1,2,3,4-TCDD	1.023	0.989-1.052

Analyst: DB Date: 5(13/19

FORM 6B PCDD/PCDF RELATIVE RETENTION TIMES

Lab Name: Vista Analytical Laboratory Episode No.:

Contract No.: SAS No.:

Initial Calibration Date: 5-10-19

Instrument ID: VG-7 GC Column ID: ZB-5MS

VER Data Filename: 190510D2 S#18 Analysis Date: 11-MAY-19 Time: 03:54:32

NATIVE ANALYTES	RETENTION TIME REFERENCE	RRT	RRT QC LIMITS (1)
1,2,3,4,7,8-HxCDF	13C-1,2,3,4,7,8-HxCDF	1.000	0.999-1.001
1,2,3,6,7,8-HxCDF	13C-1,2,3,6,7,8-HxCDF	1.000	0.997-1.005
2,3,4,6,7,8-HxCDF	13C-2,3,4,6,7,8-HxCDF	1.001	0.999-1.001
1,2,3,7,8,9-HxCDF	13C-1,2,3,7,8,9-HxCDF	1.000	0.999-1.001
1,2,3,4,7,8-HxCDD	13C-1,2,3,4,7,8-HxCDD	1.001	0.999-1.001
1,2,3,6,7,8-HxCDD	13C-1,2,3,6,7,8~HxCDD	1.001	0.998-1.004
1,2,3,7,8,9-HxCDD	13C-1,2,3,7,8,9-HxCDD	1.001	0.998-1.004
1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6,7,8-HpCDF	1.000	0.999-1.001
1,2,3,4,6,7,8-HpCDD	13C-1,2,3,4,6,7,8-HpCDD	1.000	0.999-1.001
1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,7,8,9-HpCDF	1.000	0.999-1.001
OCDD	13C-OCDD	1.000	0.999-1.001
OCDF	13C-OCDF	1.000	0.999-1.001

LABELED COMPOUNDS

13C-1,2,3,4,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	0.988	0.975-1.001
13C-1,2,3,6,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	0.991	0.979-1.005
13C-2,3,4,6,7,8-HxCDF	13C-1,2,3,4,6,9-HxCDF	1.009	1.001-1.020
13C-1,2,3,7,8,9-HxCDF	13C-1,2,3,4,6,9-HxCDF	1.039	1.002-1.072
13C-1,2,3,4,7,8-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.014	1.002-1.026
13C-1,2,3,6,7,8-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.017	1.007-1.029
13C-1,2,3,7,8,9-HxCDD	13C-1,2,3,4,6,9-HxCDF	1.027	1.014-1.038
13C-1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6,9-HxCDF	1.093	1.069-1.111
13C-1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,6,9-HxCDF	1.146	1.098-1.192
13C-1,2,3,4,6,7,8-HpCDD	13C-1,2,3,4,6,9-HxCDF	1.129	1.117-1.141
13C-OCDD	13C-1,2,3,4,6,9-HxCDF	1.228	1.085-1.365
13C-OCDF	13C-1,2,3,4,6,9-HxCDF	1.235	1.091-1.371

Analyst: DB Date: 5/13/19

Cl	ient ID: 1613 CS3 19C2204	F	ilename:	190	510D2	S:18	Acq:11-MA	Y-19 03	:54:32		
La	b ID: ST190510D2-7	G	C Column	ID:	ZB-5M	S ICal:	1613VG7-5	-10-19		wt/vol:	1.000
											,
	Name	Resp			RRF	RT	Conc	Qual	noise		DL
	2,3,7,8-TCDD	7.10e+05		-	0.90	26:10	10.716			2.5	*
	1,2,3,7,8-PeCDD	2.54e+06		-	0.87	30:36	50.710			2.5	*
	1,2,3,4,7,8-HxCDD	2.51e+06		-	1.05	33:54	48.059			2.5	*
	1,2,3,6,7,8-HxCDD	2.79e+06		-	0.93	34:00	48.777			2.5	*
		2.78e+06		-	0.96	34:19	47.912			2.5	*
	1,2,3,4,6,7,8-HpCDD	2.39e+06		-	0.99	37:45	50.718			2.5	*
	OCDD	4.42e+06	0.91	У	0.99	41:02	97.583		*	2.5	*
	2,3,7,8-TCDF	8.30e+05	0.78	У	0.94	25:25	8.7982		*	2.5	*
	1,2,3,7,8-PeCDF	3.75e+06	1.62	У	0.92	29:27	49.387		· *	2.5	*
	2,3,4,7,8-PeCDF	3.74e+06	1.61	у	0.96	30:20	49.704		*	2.5	*
	1,2,3,4,7,8-HxCDF	3.24e+06	1.14	У	1.15	33:00	46.598		*	2.5	*
	1,2,3,6,7,8-HxCDF	3.78e+06	1.22	У	1.04	33:08	49.707		*	2.5	*
	2,3,4,6,7,8-HxCDF	3.66e+06	1.18	У	1.10	33:44	49.056		*	2.5	*
	1,2,3,7,8,9-HxCDF	3.07e+06	1.18	У	1.03	34:43	48.289		*	2.5	*
	1,2,3,4,6,7,8-HpCDF	2.92e+06	0.97	У	1.06	36:32	48.759		*	2.5	*
	1,2,3,4,7,8,9-HpCDF	2.68e+06	1.00	У	1.23	38:18	48.717		*	2.5	*
	OCDF	5.19e+06	0.91	У	0.94	41:16	102.58		*	2.5	*
IS	13C-2,3,7,8-TCDD	7.36e+06	0.80	У	1.11	26:09	101.34				
IS		5.74e+06		-	0.98	30:35	89.585				
IS	13C-1,2,3,4,7,8-HxCDD	4.97e+06		-	0.68	33:53	104.58				
IS	13C-1,2,3,6,7,8-HxCDD	6.16e+06		-	0.84	33:59	103.99				
IS	13C-1,2,3,7,8,9-HxCDD	6.02e+06		-	0.81	34:17	105.34				
IS		4.77e+06		-	0.69	37:44	98.871				
IS	13C-OCDD	9.18e+06	,	-	0.62	41:01	208.71				
IS	13C-2,3,7,8-TCDF	1.00e+07		-	1.05	25:25	105.95				
IS	13C-1,2,3,7,8-PeCDF	8.23e+06		-	0.95	29:26	96.004				
IS	13C-2,3,4,7,8-PeCDF	7.87e+06		-	0.94	30:19	93.631				
IS		6.02e+06		-	0.86	32:59	99.806				
IS	13C-1,2,3,6,7,8-HxCDF	7.33e+06		-	1.02	33:07	101.97				
IS	13C-2,3,4,6,7,8-HxCDF	6.81e+06		-	0.95	33:43	101.53				
IS	13C-1,2,3,7,8,9-HxCDF	6.16e+06		-	0.87	34:42	100.95				
IS	13C-1,2,3,4,6,7,8-HpCDF	5.62e+06		-	0.81	36:31	98.759				
IS	13C-1,2,3,4,7,8,9-HpCDF			-	0.63	38:18	100.75				
IS	13C-0 C DF	1.08e+07	0.92	У	0.78	41:15	195.62				
C/Up	37C1-2,3,7,8-TCDD	7.21e+05	5		1.22	26:10	9.0209				
RS/F	T 13C-1,2,3,4-TCDD	6.57e+06	5 0.79	v	1.00	25:35	100.00				
RS	13C-1,2,3,4-TCDF	8.98e+06		-	1.00	24:11	100.00				
RS/F		7.04e+06		-	1.00	33:24	100.00				
,				-							

ConCal: ST190510D2-4 EndCAL: ST190510D2-7

Name		Conc	EMPC	Qual	noise	DL
Total	Tetra-Dioxins	73.0	74.4		*	*
Total	Penta-Dioxins	189	189		*	*
Total	Hexa-Dioxins	211	211		*	*
Total	Hepta-Dioxins	115	117		*	*
Total	Tetra-Furans	34.7	36.4		*	*
Total	Penta-Furans	236.06	237.33		*	*
Total	Hexa-Furans	258	259		*	*
Total	Hepta-Furans	99.2	101		*	*

Rec

93.6 99.8 102 101 98.8 101 97.8

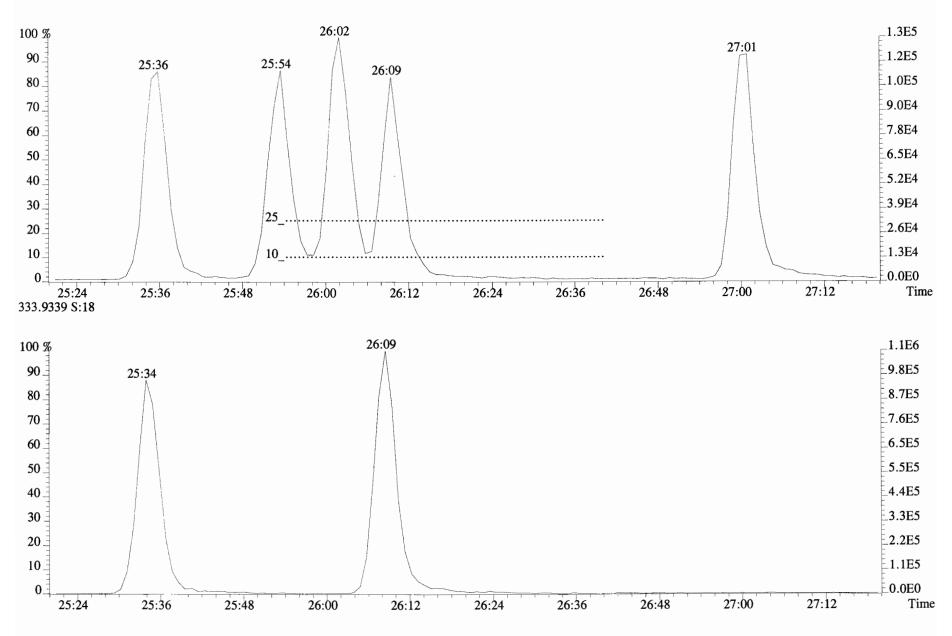
90.2

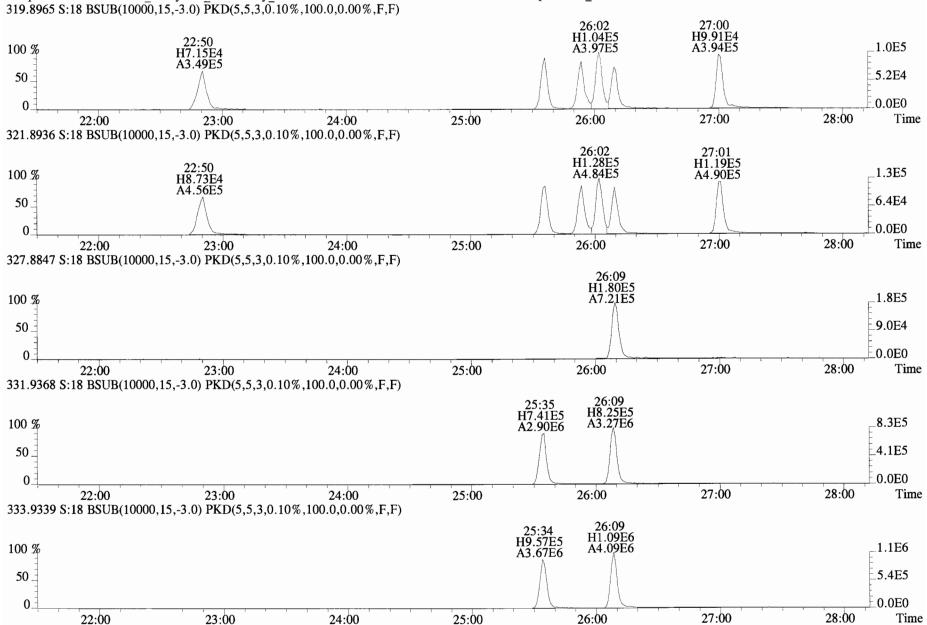
Qual

Integrations by Analyst:___)B

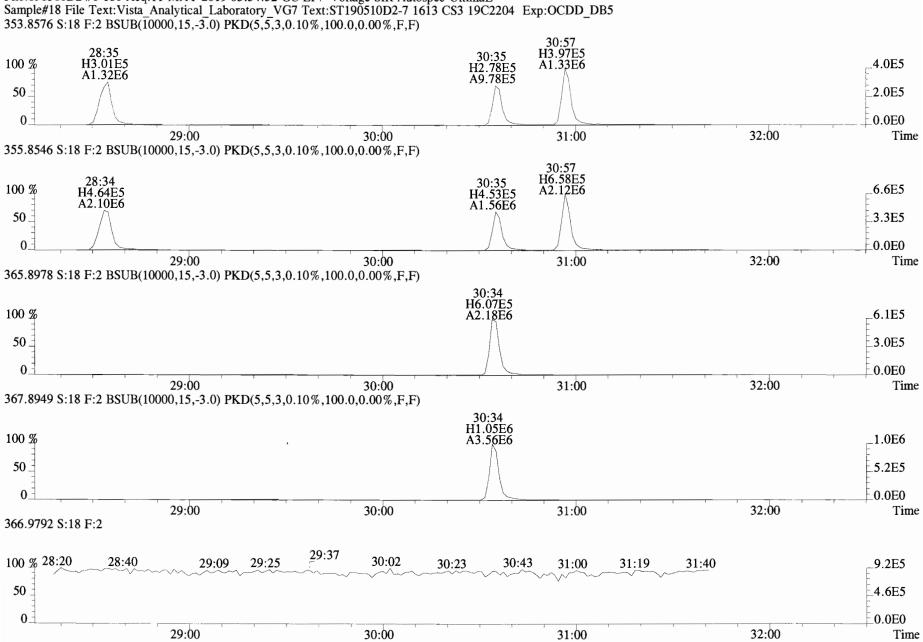
Date: 5/14/19

Reviewed by Analyst:_

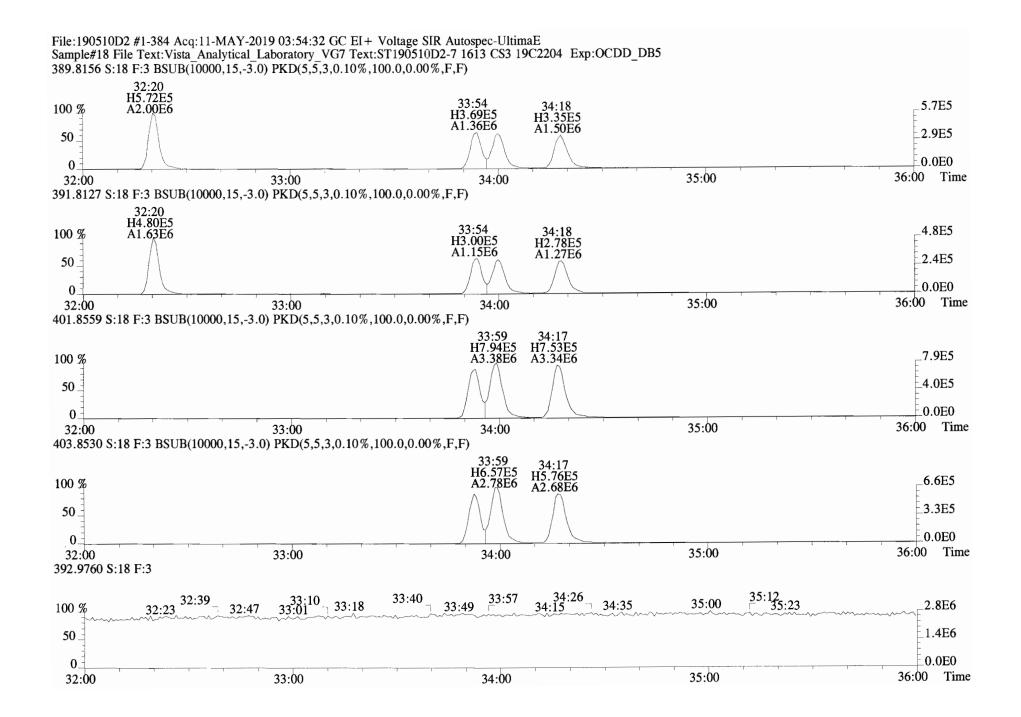

Date:

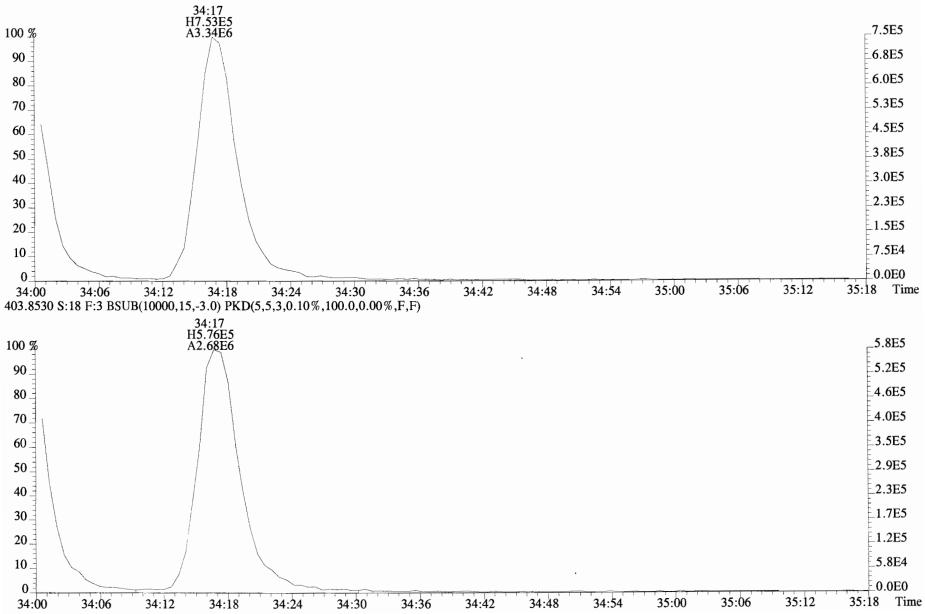

(M

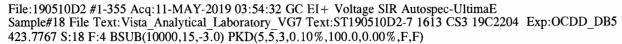
1

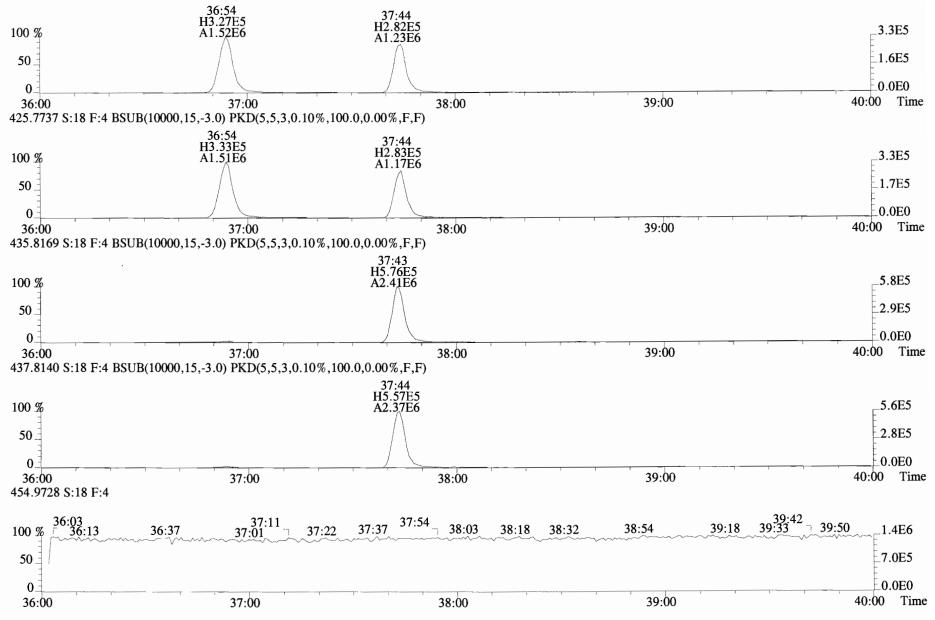

Data file	S#	Sample ID	Analyst	Acq date	Acq time	CCal	ECal
190510D2	1	ST190510D2-1	DB	10-MAY-19	14:24:45	ST190510D2-4	NA
190510D2	2	ST190510D2-2	DB	10-MAY-19	15:12:30	ST190510D2-4	NA
190510D2	3	ST190510D2-3	DB	10-MAY-19	16:00:06	ST190510D2-4	NA
190510D2	4	ST190510D2-4	DB	10-MAY-19	16:47:52	ST190510D2-4	ST190510D2-7
190510D2	5	ST190510D2-5	DB	10-MAY-19	17:35:29	ST190510D2-4	NA
190510D2	6	ST190510D2-6	DB	10-MAY-19	18:23:05	ST190510D2-4	NA
190510D2	7	SOLVENT BLANK	DB	10-MAY-19	19:10:42	NA	NA
190510D2	8	SS190510D2-1	DB	10-MAY-19	19:58:17	ST190510D2-4	NA
190510D2	9	B9E0067-BS1	DB	10-MAY-19	20:45:54	ST190510D2-4	ST190510D2-7
190510D2	10	SOLVENT BLANK	DB	10-MAY-19	21:33:30	NA	NA
190510D2	11	B9E0067-BLK1	DB	10-MAY-19	22:21:10	ST190510D2-4	ST190510D2-7
190510D2	12	1900874-01	DB	10-MAY-19	23:08:45	ST190510D2-4	ST190510D2-7
190510D2	13	1900832-01	DB	10-MAY-19	23:56:25	ST190510D2-4	NA
190510D2	14	1901011-01	DB	11-MAY-19	00:44:00	ST190510D2-4	NA
190510D2	15	1901009-01	DB	11-MAY-19	01:31:38	ST190510D2-4	NA
190510D2	16	1901010-01	DB	11-MAY-19	02:19:20	ST190510D2-4	NA
190510D2	17	SOLVENT BLANK	DB	11-MAY-19	03:06:55	NA	NA
190510D2	18	ST190510D2-7	DB	11-MAY-19	03:54:32	ST190510D2-4	ST190510D2-7

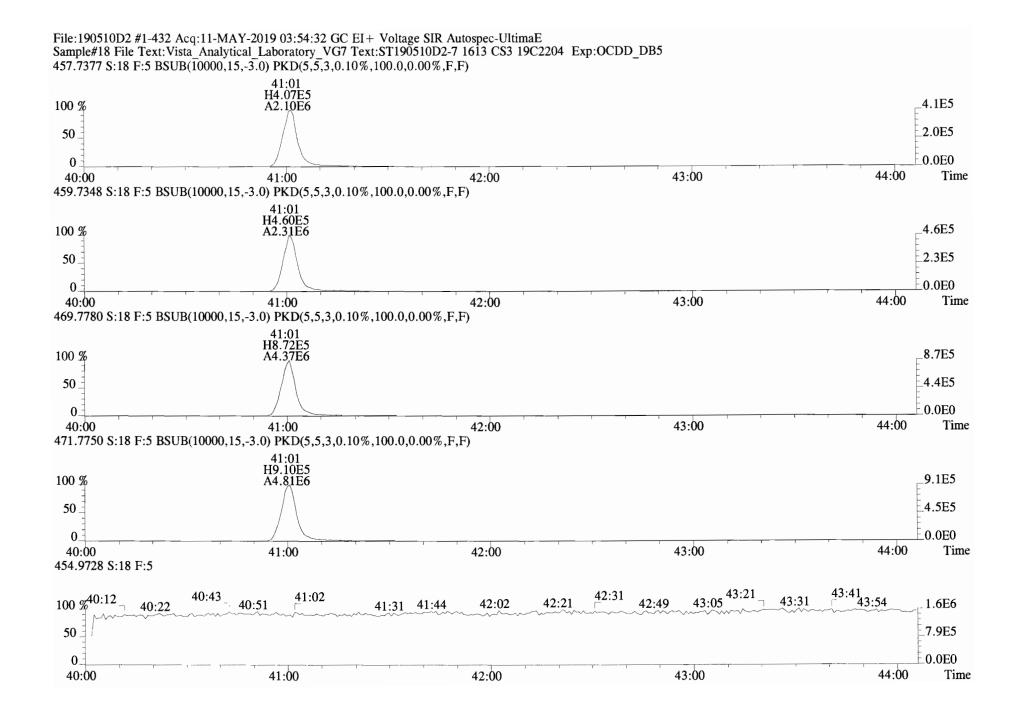
File:190510D2 #1-530 Acq:11-MAY-2019 03:54:32 GC EI+ Voltage SIR Autospec-UltimaE Sample#18 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-7 1613 CS3 19C2204 Exp:OCDD_DB5 321.8936 S:18



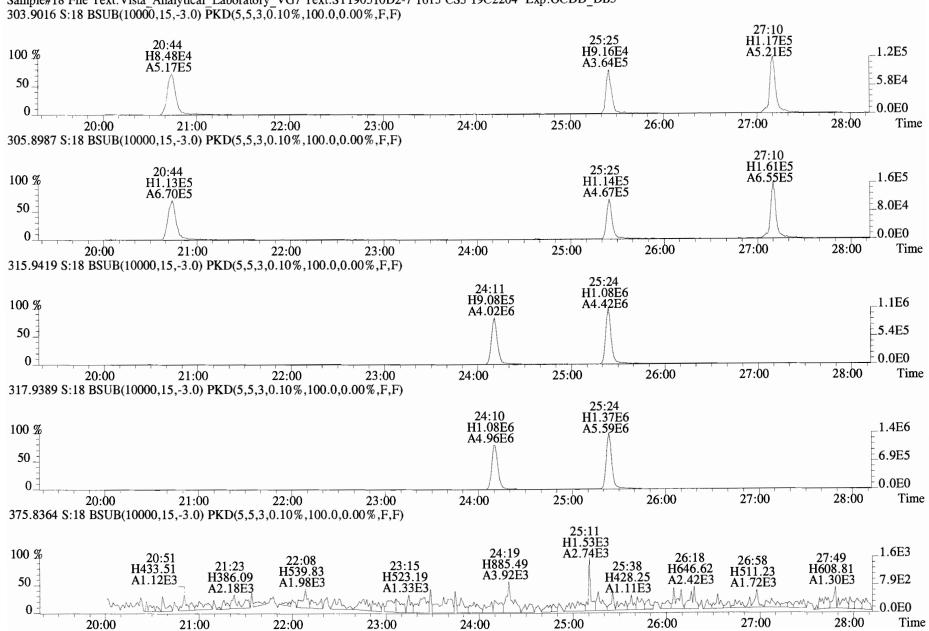

File:190510D2 #1-530 Acq:11-MAY-2019 03:54:32 GC EI + Voltage SIR Autospec-UltimaE Sample#18 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-7 1613 CS3 19C2204 Exp:OCDD_DB5 319.8965 S:18 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

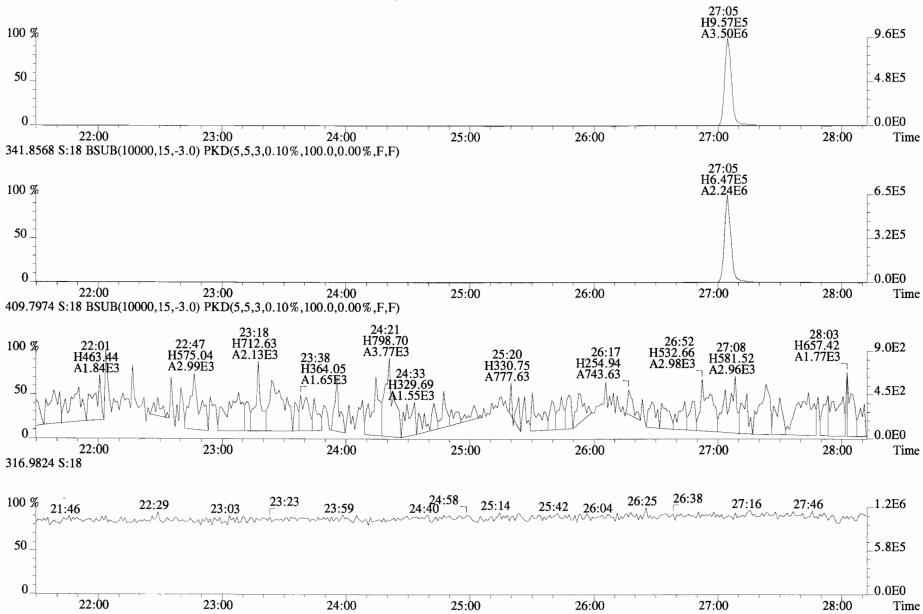


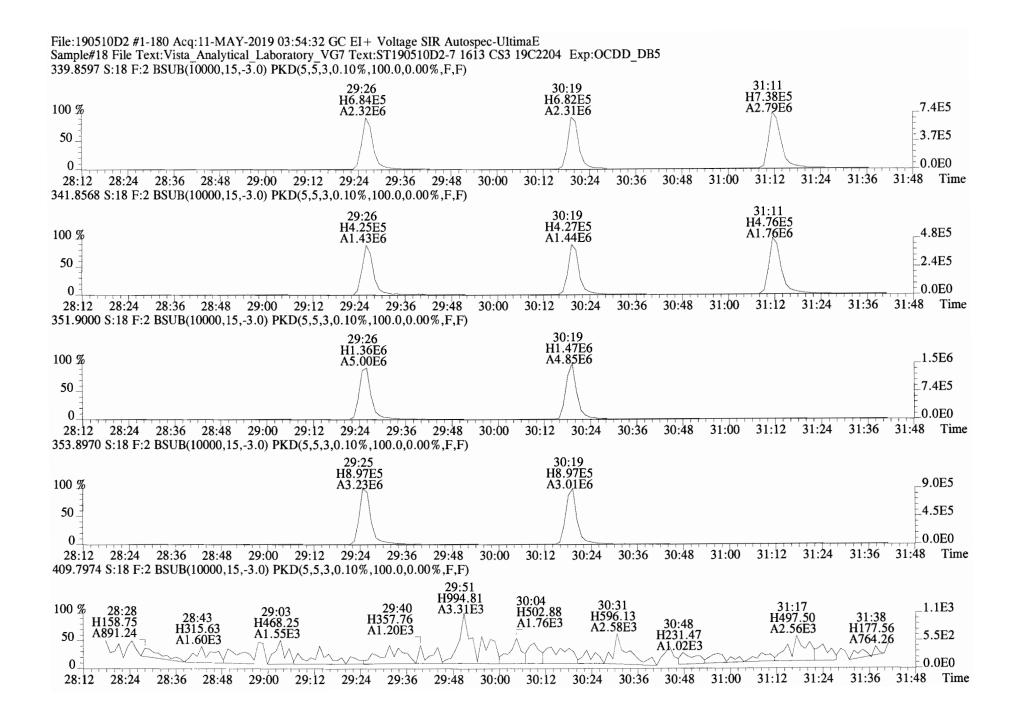

File:190510D2 #1-180 Acq:11-MAY-2019 03:54:32 GC EI+ Voltage SIR Autospec-UltimaE

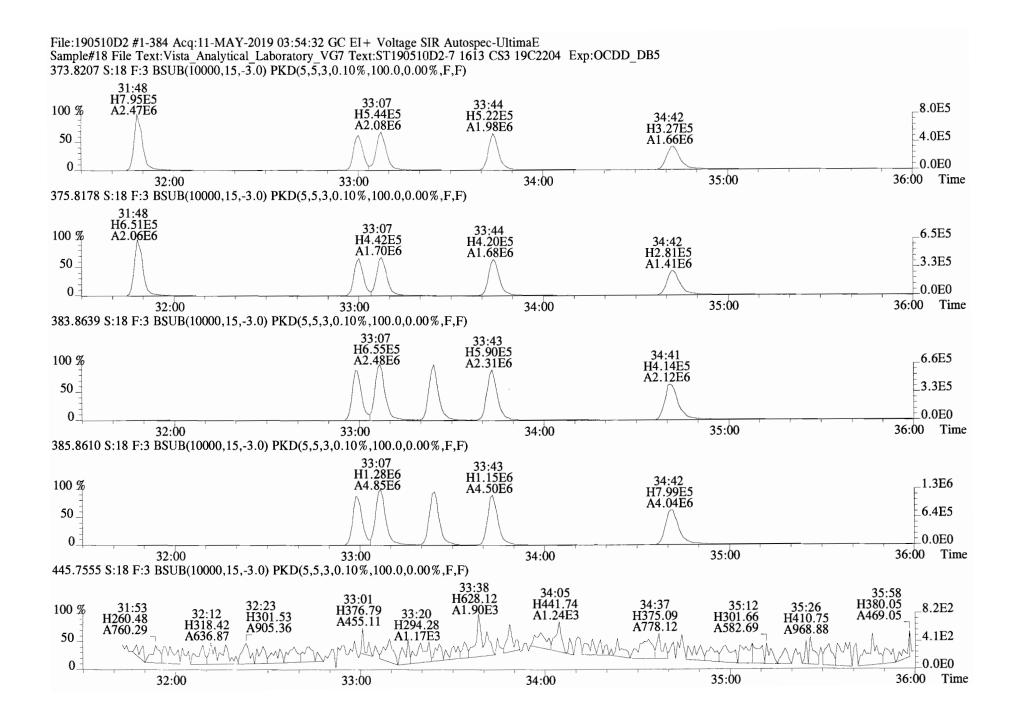


File:190510D2 #1-384 Acq:11-MAY-2019 03:54:32 GC EI+ Voltage SIR Autospec-UltimaE Sample#18 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-7 1613 CS3 19C2204 Exp:OCDD_DB5 401.8559 S:18 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

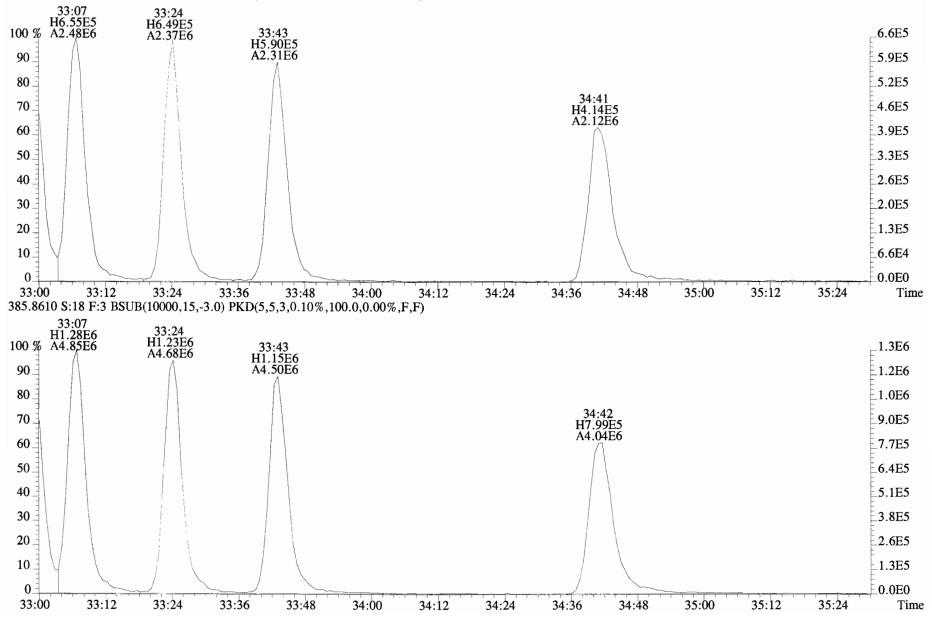


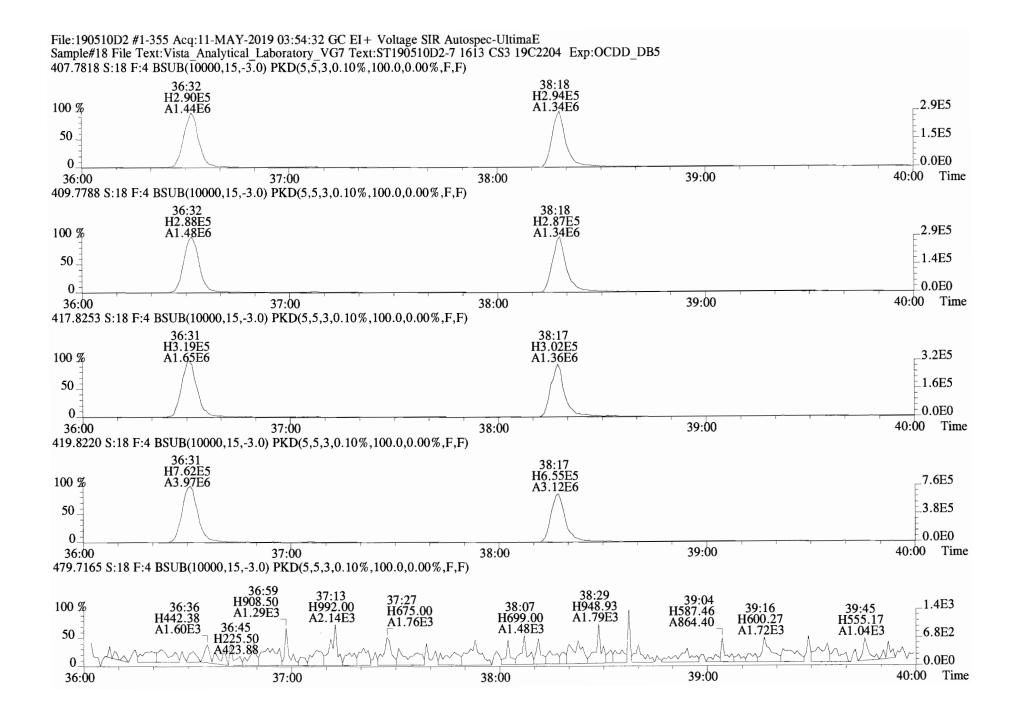


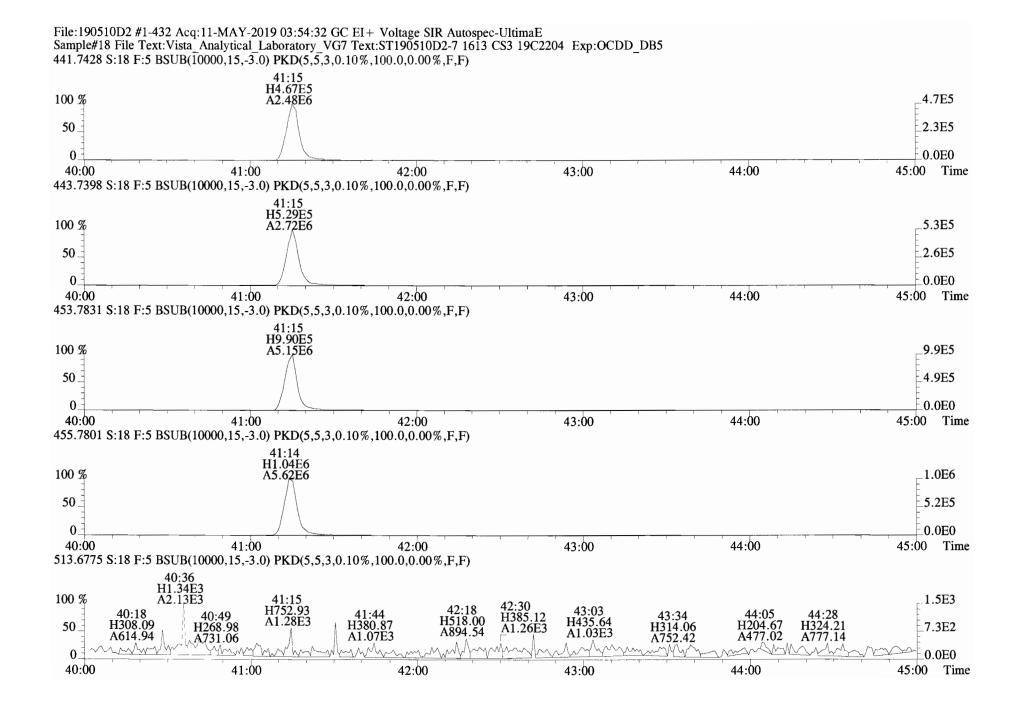

Work Order 1901248

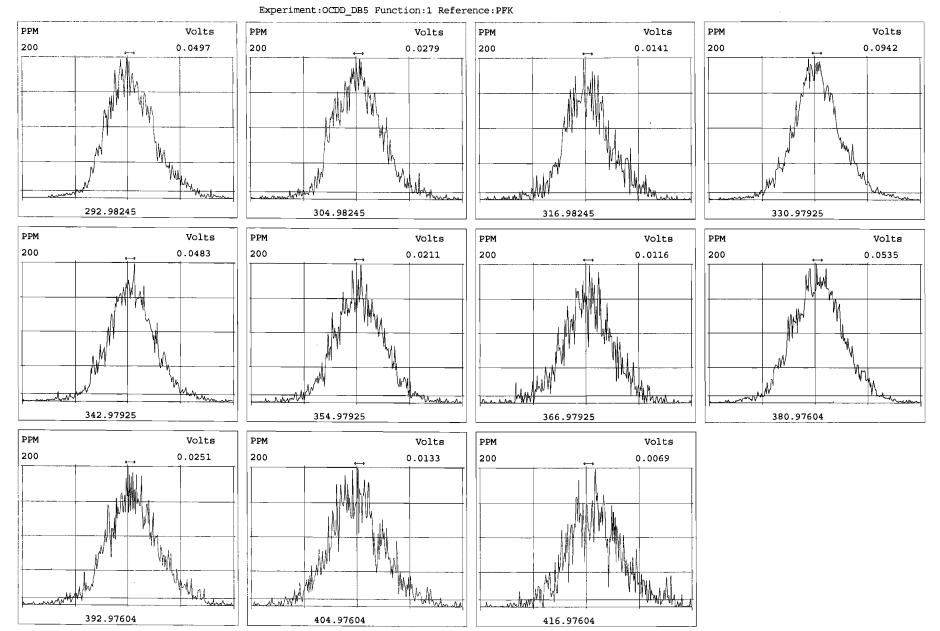


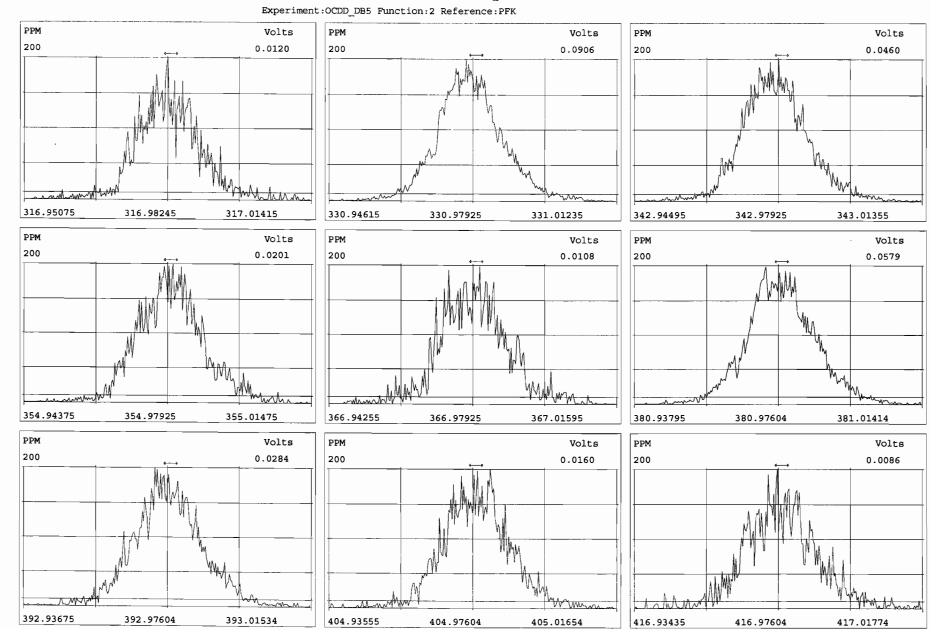
File:190510D2 #1-530 Acq:11-MAY-2019 03:54:32 GC EI + Voltage SIR Autospec-UltimaE Sample#18 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190510D2-7 1613 CS3 19C2204 Exp:OCDD_DB5 303.9016 S:18 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



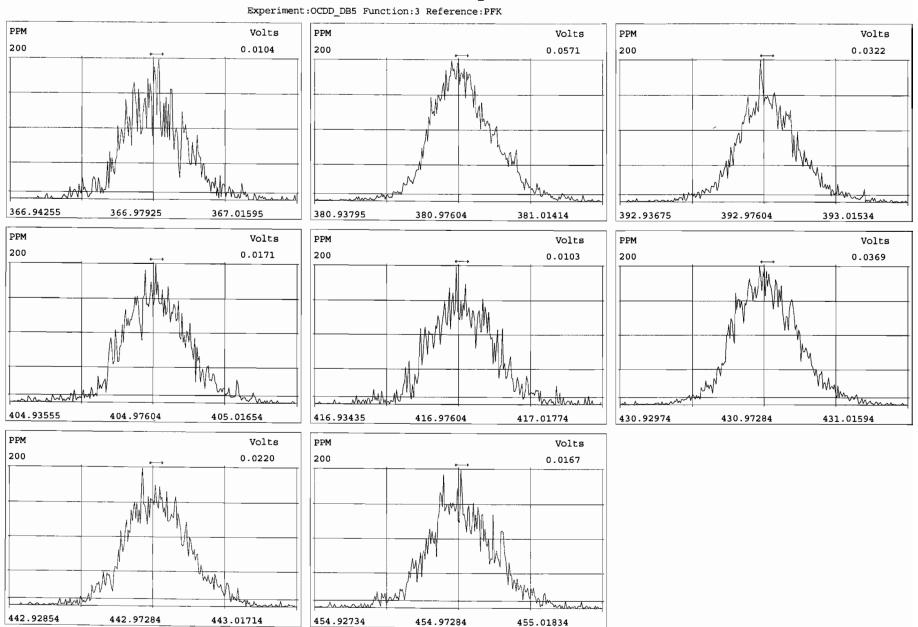

File:190510D2 #1-530 Acq:11-MAY-2019 03:54:32 GC EI + Voltage SIR Autospec-UltimaE Sample#18 File Text:Vista Analytical Laboratory_VG7 Text:ST190510D2-7 1613 CS3 19C2204 Exp:OCDD_DB5 339.8597 S:18 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



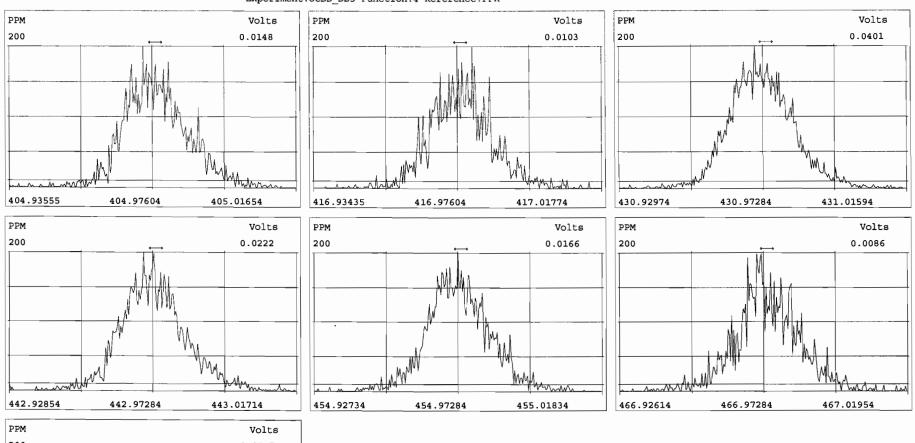

File:190510D2 #1-384 Acq:11-MAY-2019 03:54:32 GC EI+ Voltage SIR Autospec-UltimaE Sample#18 File Text:Vista Analytical Laboratory VG7 Text:ST190510D2-7 1613 CS3 19C2204 Exp:OCDD_DB5 383.8639 S:18 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



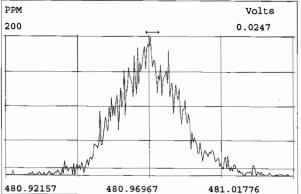
Work Order 1901248

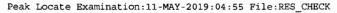


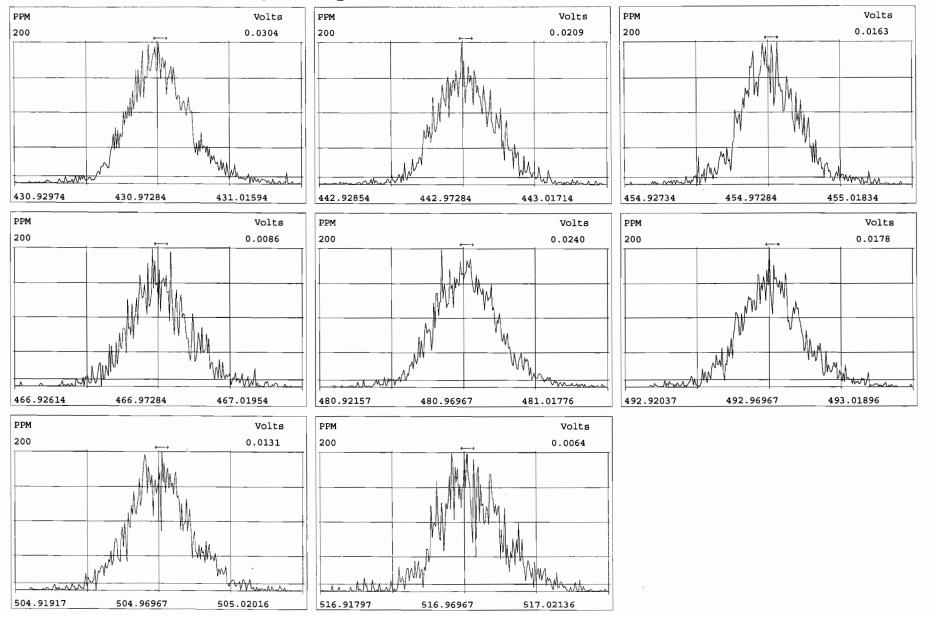
Peak Locate Examination:11-MAY-2019:04:52 File:RES_CHECK


Peak Locate Examination:11-MAY-2019:04:53 File:RES_CHECK

Work Order 1901248


Peak Locate Examination:11-MAY-2019:04:54 File:RES_CHECK


Work Order 1901248


Peak Locate Examination:11-MAY-2019:04:54 File:RES_CHECK

Experiment:OCDD_DB5 Function:5 Reference:PFK

Initial Calibration RRF	Summary (I	CAL) V	/ista Analyt	cical Labor	ratory			
Run:	Analyte:	TCDF	Cal: 1	L613TCDFVG	7-5-30-19	Inst.	ID. VG-7	
Data filename: 190530D1			Samp# 3	Samp# 4	Samp# 5	Samp# 6	Samp# 7	Samp# 8
			100	100	100	100	100	100
Name	Mean RRF	%RSD	RRF#1	RRF#2	RRF#3	RRF#4	RRF#5	RRF#6
13C-1,2,3,4-TCDF	1.0000	0.00 %	1.00	1.00	1.00	1.00	1.00	1.00
13C-2,3,7,8-TCDF	1.0212	4.27 %	1.07	1.04	1.03	1.05	0.98	0.96
2,3,7,8-TCDF	0.9476	9.58 %	1.12	0.93	0.88	0.87	0.97	0.92

DB QT 5/30/19 0431/19

 Filename: 190530D1 S: 3
 Acquired: 30-MAY-19 12:05:38

 Run:
 Analyte: TCDF
 Cal: 1613TCDFVG7-5-30-19Results:

 Sample text: ST190530D1-1 1613 CS0 19C2201

Name	Amount	Resp	RA	RT	RF	RRF
13C-1,2,3,4-TCDF	100	1.38e+07	0.80 y	15:49	-	1.00
13C-2,3,7,8-TCDF	100	1.47e+07	0.81 y	18:05	-	1.07
2,3,7,8-TCDF	0.250	4.11e+04	0.87 y	18:06	-	1.12

ЪВ 5|30|19

 Filename:
 190530D1 S: 4
 Acquired:
 30-MAY-19
 12:37:29

 Run:
 Analyte:
 TCDF
 Cal:
 1613TCDFVG7-5-30-19Results:

 Sample text:
 ST190530D1-2
 1613
 CS1
 19C2202

Name	Amount	Resp	RA	RT	RF	RRF
13C-1,2,3,4-TCDF	100	1.24e+07	0.82 y	15:49	-	1.00
13C-2,3,7,8-TCDF	100	1.30e+07	0.78 Y	18:05	-	1.04
2,3,7,8-TCDF	0.500	6.06e+04	0.67 y	18:05	-	0.93

 Filename:
 190530D1
 S:
 5
 Acquired:
 30-MAY-19
 13:09:20

 Run:
 Analyte:
 TCDF
 Cal:
 1613TCDFVG7-5-30-19Results:

 Sample text:
 ST190530D1-3
 1613
 CS2
 19C2203

Name	Amount	Resp	RA	RT	RF	RRF
13C-1,2,3,4-TCDF	100	1.21e+07	0.82 y	15:48	-	1.00
13C-2,3,7,8-TCDF	100	1.24e+07	0.80 y	18:04	-	1.03
2,3,7,8-TCDF	2.00	2.18e+05	0.74 y	18:05	-	0.88

ДВ 5/30/19

 Filename: 190530D1 S: 6
 Acquired: 30-MAY-19 13:41:11

 Run:
 Analyte: TCDF
 Cal: 1613TCDFVG7-5-30-19Results:

 Sample text: ST190530D1-4 1613 CS3 19C2204

Name	Amount	Resp	RA	RT	RF	RRF
13C-1,2,3,4-TCDF	100	1.28e+07	0.81 y	15:49	-	1.00
13C-2,3,7,8-TCDF	100	1.34e+07	0.80 y	18:05	-	1.05
2,3,7,8-TCDF	10.0	1.17e+06	0.73 y	18:06	-	0.87

)B 5|30|19

-

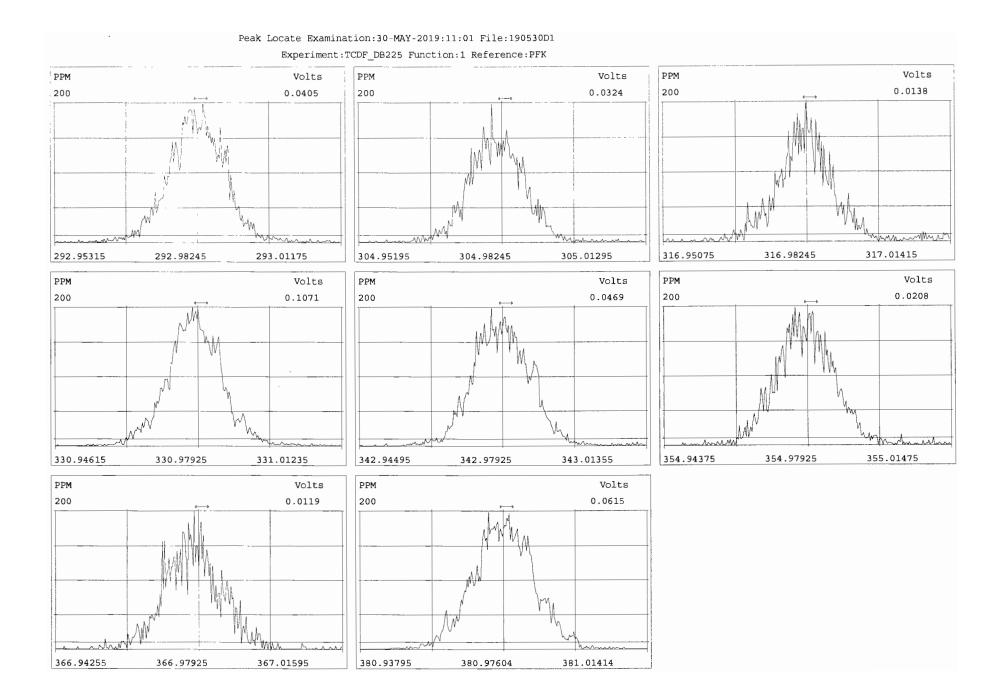
 Filename: 190530D1 S: 7
 Acquired: 30-MAY-19 14:13:01

 Run:
 Analyte: TCDF
 Cal: 1613TCDFVG7-5-30-19Results:

 Sample text: ST190530D1-5 1613 CS4 19C2205

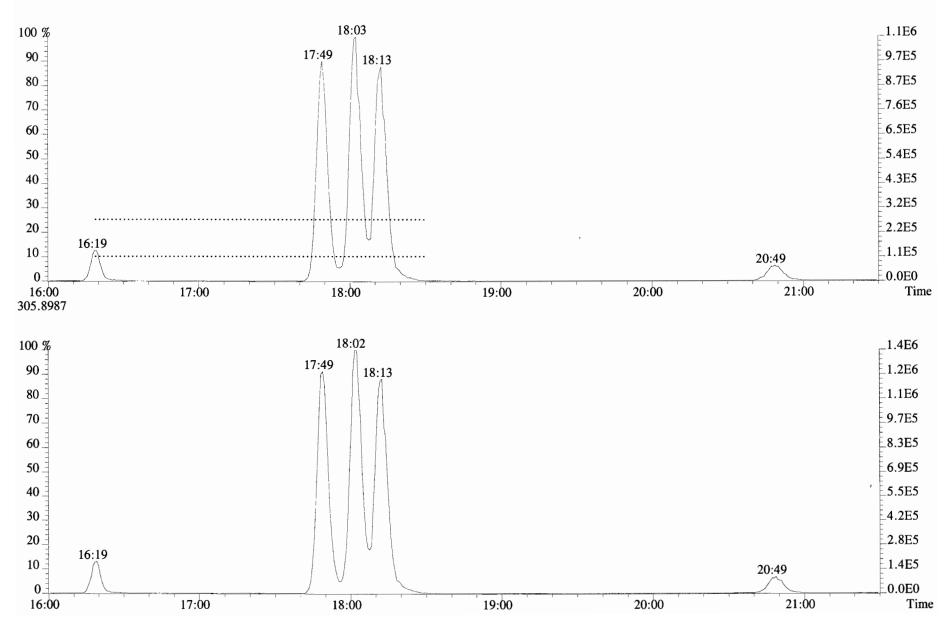
Name	Amount	Resp	RA	RT	RF	RRF
13C-1,2,3,4-TCDF	100	1.30e+07	0.81 y	15:49	-	1.00
13C-2,3,7,8-TCDF	100	1.28e+07	0.80 y	18:05	-	0.98
2,3,7,8-TCDF	40.0	4.95e+06	0.77 y	18:06	-	0.97

 Filename:
 190530D1
 S:
 8
 Acquired:
 30-MAY-19
 14:44:52

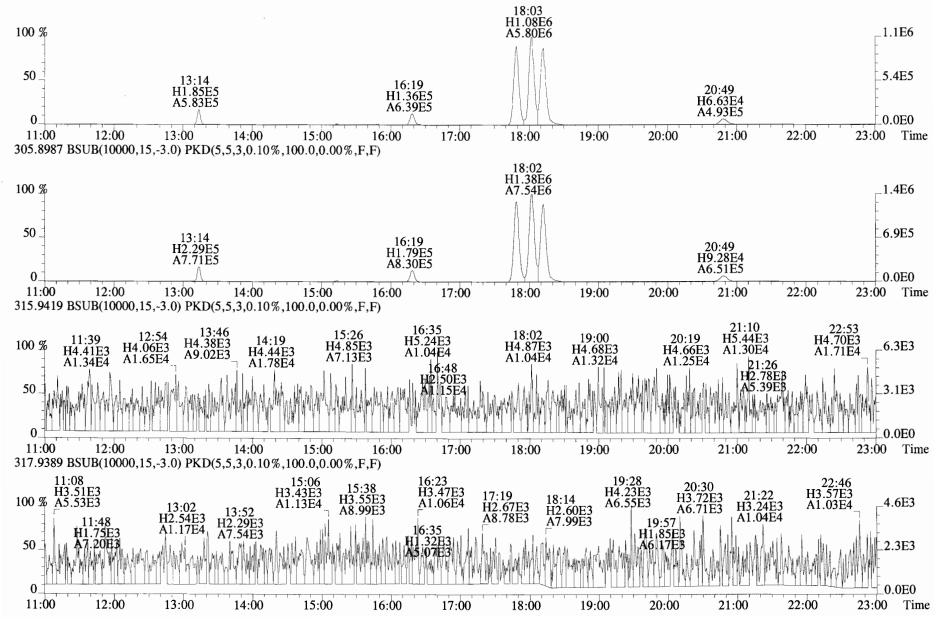

 Run:
 Analyte:
 TCDF
 Cal:
 1613TCDFVG7-5-30-19Results:

 Sample text:
 ST190530D1-6
 1613
 CS5
 19C2206

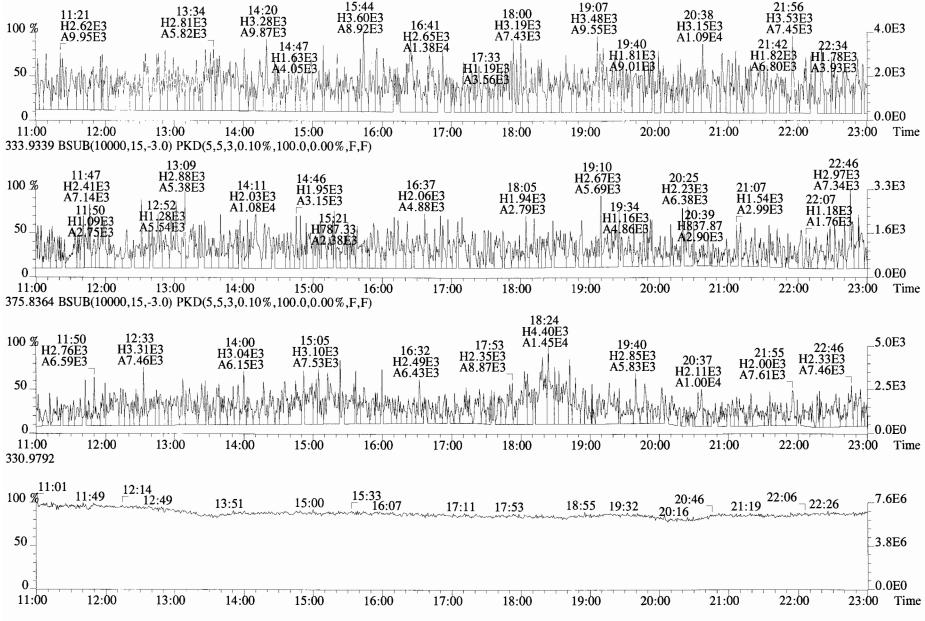
Name	Amount	Resp	RA	RT	RF	RRF
13C-1,2,3,4-TCDF	100	1.29e+07	0.80 y	15:48	-	1.00
13C-2,3,7,8-TCDF	100	1.24e+07	0.80 y	18:05	-	0.96
2,3,7,8-TCDF	300	3.42e+07	0.74 y	18:06	-	0.92

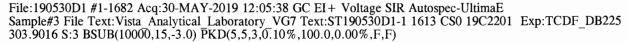


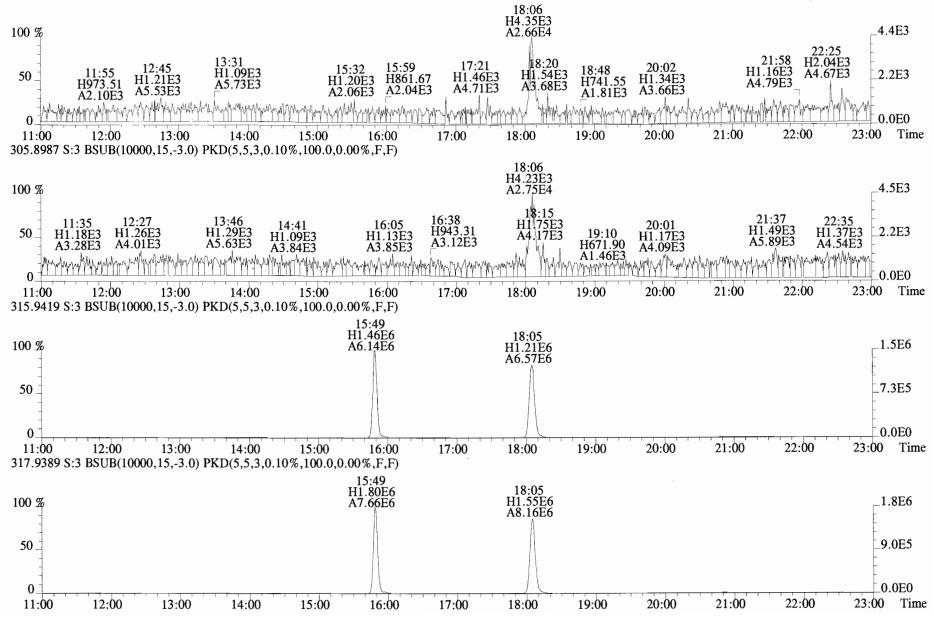
Data file	S#	Sample ID	Analyst	Acq date	Acq time	CCal	ECal
190530D1	1	CP190530D1-1	DB	30-MAY-19	11:02:08	ST190530D1-4	NA
190530D1	2	SOLVENT BLANK	DB	30-MAY-19	11:33:52	ST190530D1-4	NA
190530D1	3	ST190530D1-1	DB	30-MAY-19	12:05:38	ST190530D1-4	NA
190530D1	4	ST190530D1-2	DB	30-MAY-19	12:37:29	ST190530D1-4	NA
190530D1	5	ST190530D1-3	DB	30-MAY-19	13:09:20	ST190530D1-4	NA
190530D1	6	ST190530D1-4	DB	30-MAY-19	13:41:11	ST190530D1-4	NA
190530D1	7	ST190530D1-5	DB	30-MAY-19	14:13:01	ST190530D1-4	NA
190530D1	8	ST190530D1-6	DB	30-MAY-19	14:44:52	ST190530D1-4	NA
190530D1	9	SOLVENT BLANK	DB	30-MAY-19	15:16:42	ST190530D1-4	NA
190530D1	10	SS190528D1-1	DB	30-MAY-19	15:48:32	ST190530D1-4	NA
190530D1	11	SOLVENT BLANK	DB	30-MAY-19	16:20:23	ST190530D1-4	NA
190530D1	12	1901028-05RE1	DB	30-MAY-19	16:52:12	ST190530D1-4	NA
190530D1	13	1901028-07RE1	DB	30-MAY-19	17:24:02	ST190530D1-4	NA
190530D1	14	1901028-08RE1	DB	30-MAY-19	17:55:52	ST190530D1-4	NA
190530D1	15	1901028-09RE1	DB	30-MAY-19	18:27:41	ST190530D1-4	NA

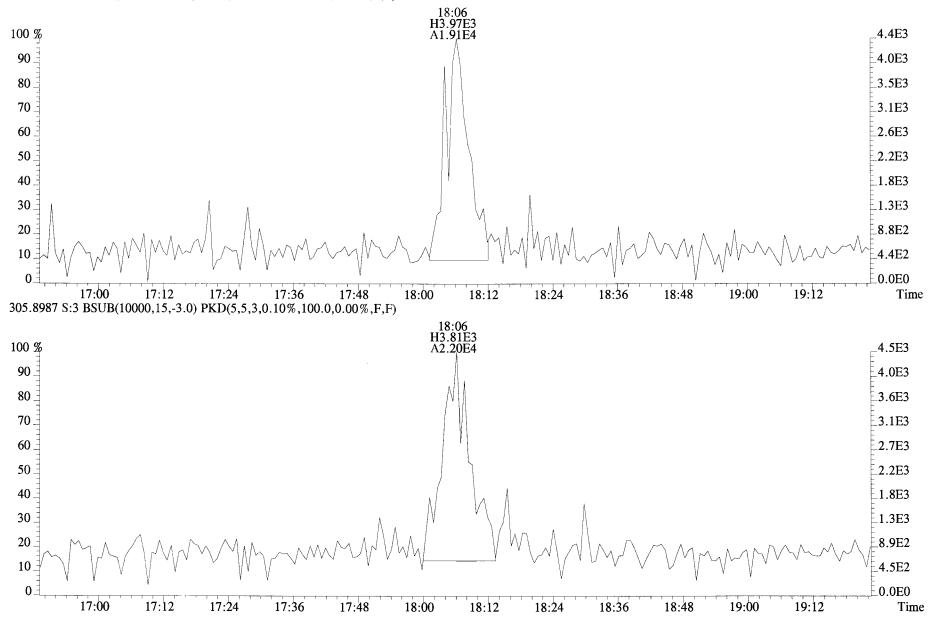


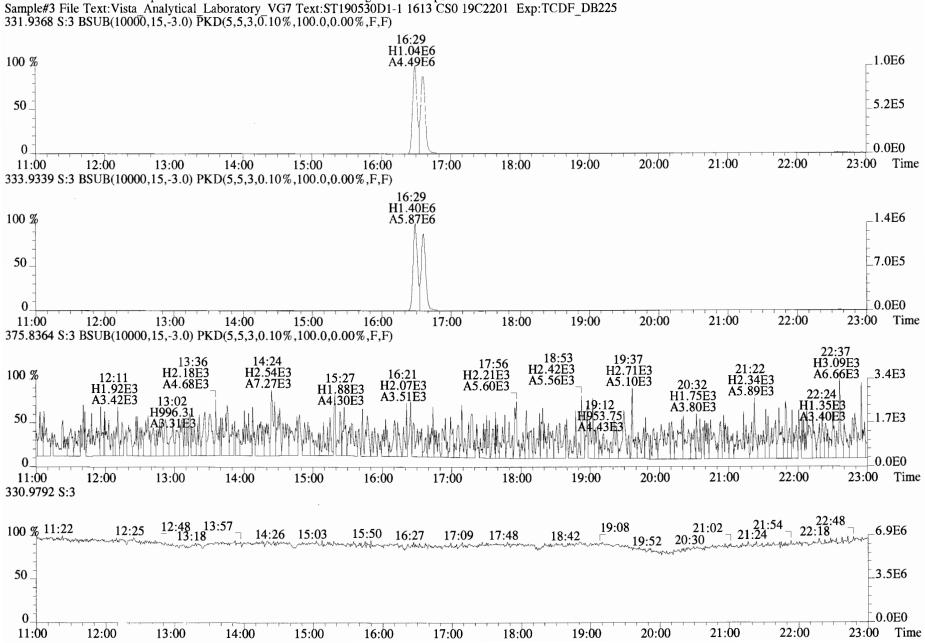
Work Order 1901248

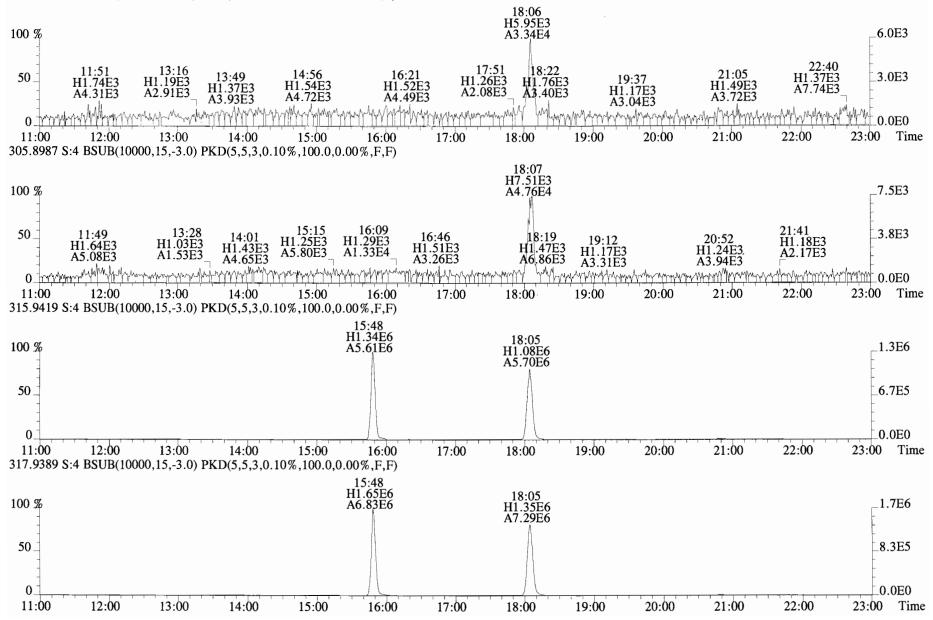

File:190530D1 #1-1559 Acq:30-MAY-2019 11:02:08 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:CP190530D1-1 DB225 CPSM Exp:TCDF_DB225 303.9016

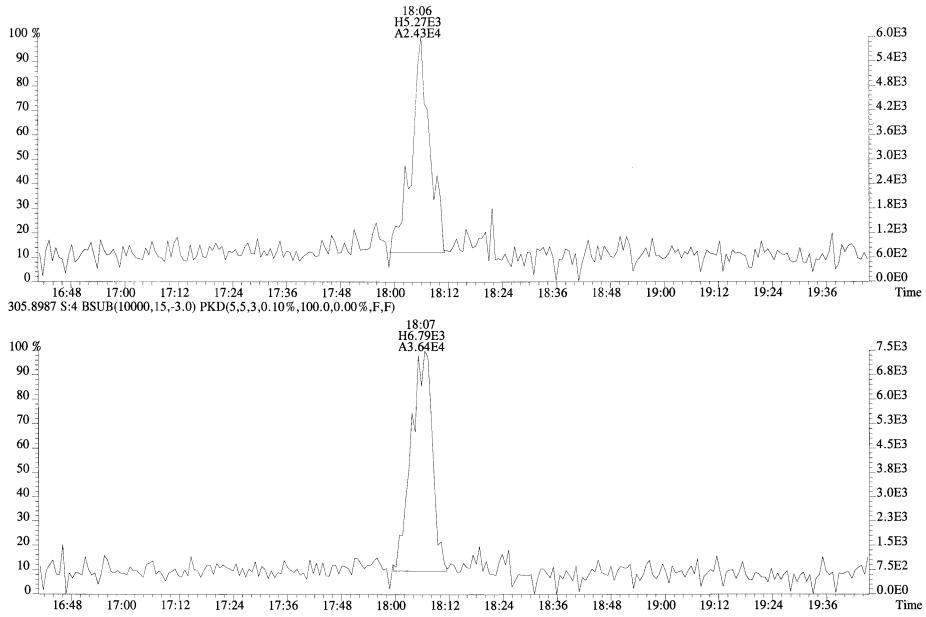



File:190530D1 #1-1682 Acq:30-MAY-2019 11:02:08 GC EI+ Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista Analytical Laboratory VG7 Text:CP190530D1-1 DB225 CPSM Exp:TCDF_DB225 303.9016 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

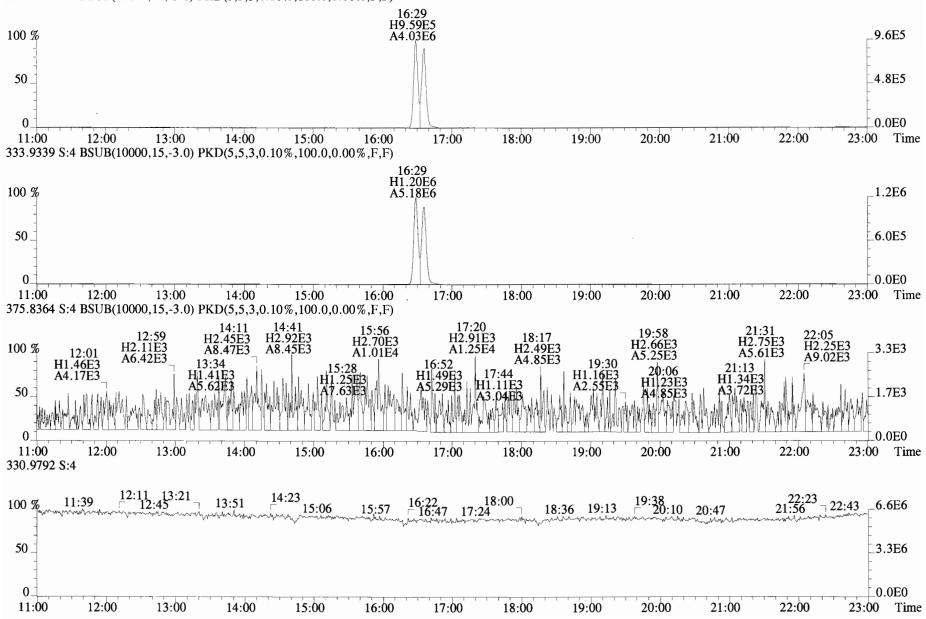

File:190530D1 #1-1682 Acq:30-MAY-2019 11:02:08 GC EI + Voltage SIR Autospec-UltimaE Sample#1 File Text:Vista_Analytical_Laboratory_VG7 Text:CP190530D1-1 DB225 CPSM_Exp:TCDF_DB225 331.9368 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F) 11:21 13:34 14:20 15:44 14:20 15:44 18:00 19:07 13:34 14:20 20:38

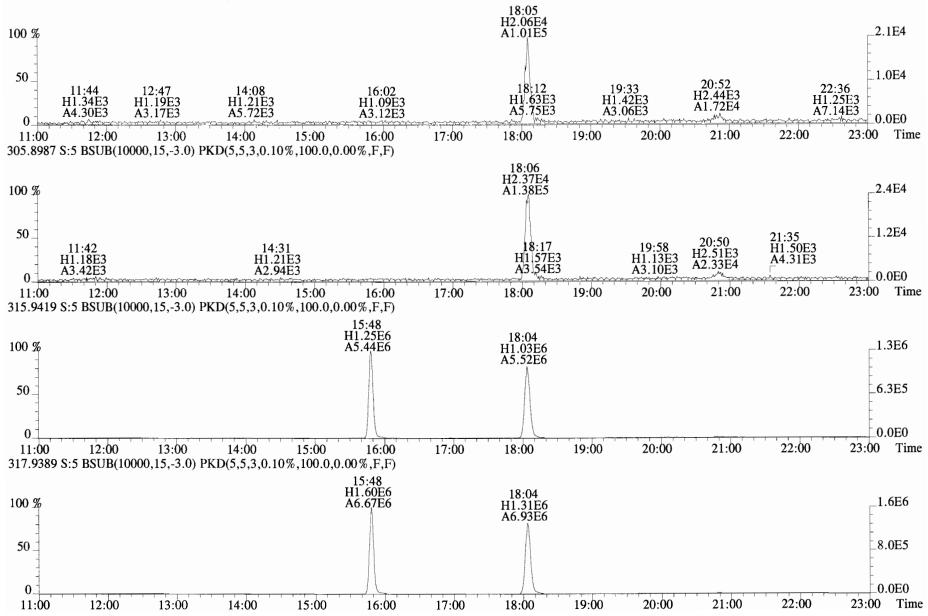


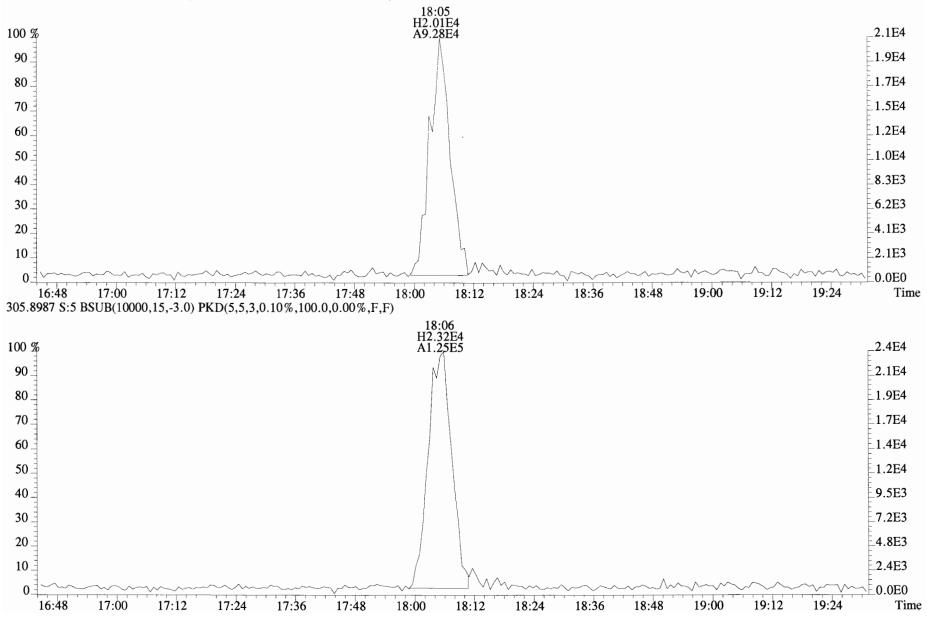

File:190530D1 #1-1682 Acq:30-MAY-2019 12:05:38 GC EI + Voltage SIR Autospec-UltimaE Sample#3 File Text:Vista Analytical Laboratory VG7 Text:ST190530D1-1 1613 CS0 19C2201 Exp:TCDF_DB225 303.9016 S:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

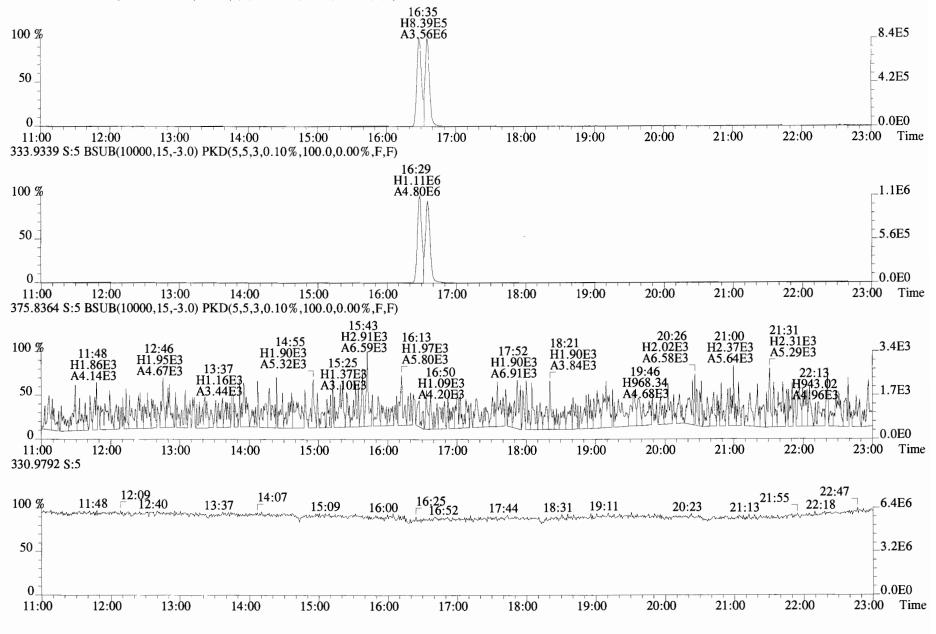


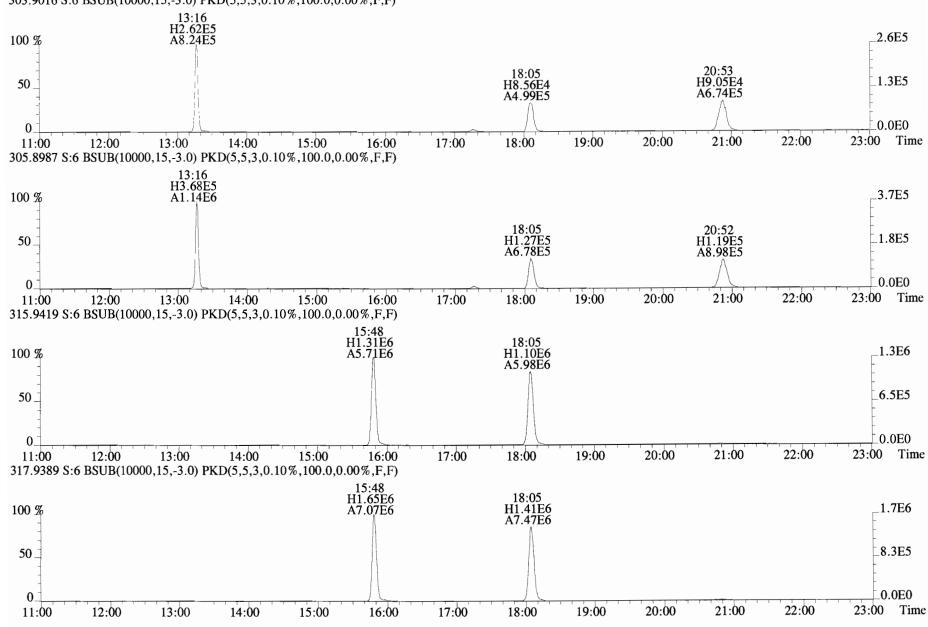
File:190530D1 #1-1682 Acq:30-MAY-2019 12:05:38 GC EI+ Voltage SIR Autospec-UltimaE


File:190530D1 #1-1683 Acq:30-MAY-2019 12:37:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista Analytical Laboratory VG7 Text:ST190530D1-2 1613 CS1 19C2202 Exp:TCDF_DB225 303.9016 S:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

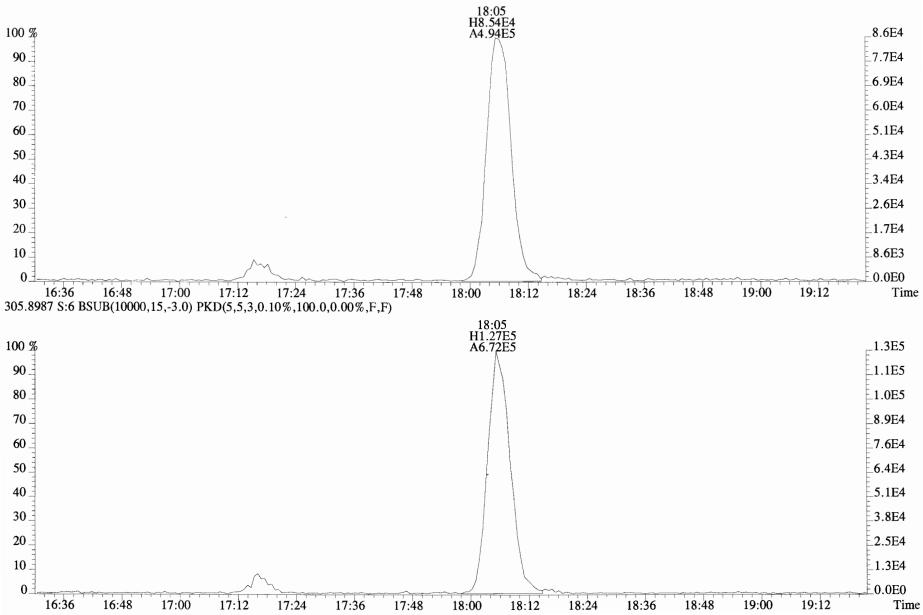

File:190530D1 #1-1683 Acq:30-MAY-2019 12:37:29 GC EI + Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista Analytical Laboratory VG7 Text:ST190530D1-2 1613 CS1 19C2202 Exp:TCDF_DB225 303.9016 S:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

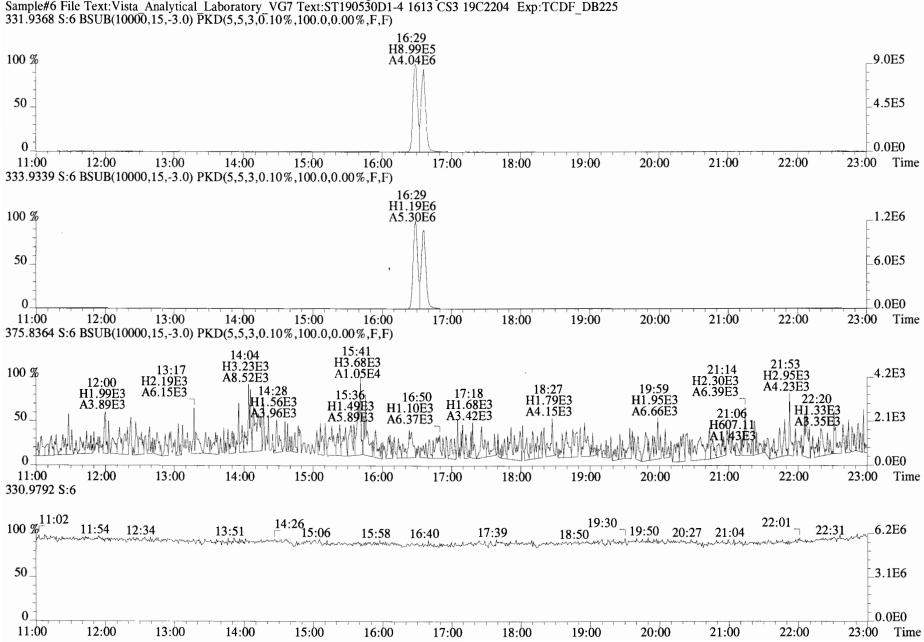

File:190530D1 #1-1683 Acq:30-MAY-2019 12:37:29 GC EI+ Voltage SIR Autospec-UltimaE Sample#4 File Text:Vista Analytical Laboratory VG7 Text:ST190530D1-2 1613 CS1 19C2202 Exp:TCDF_DB225 331.9368 S:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

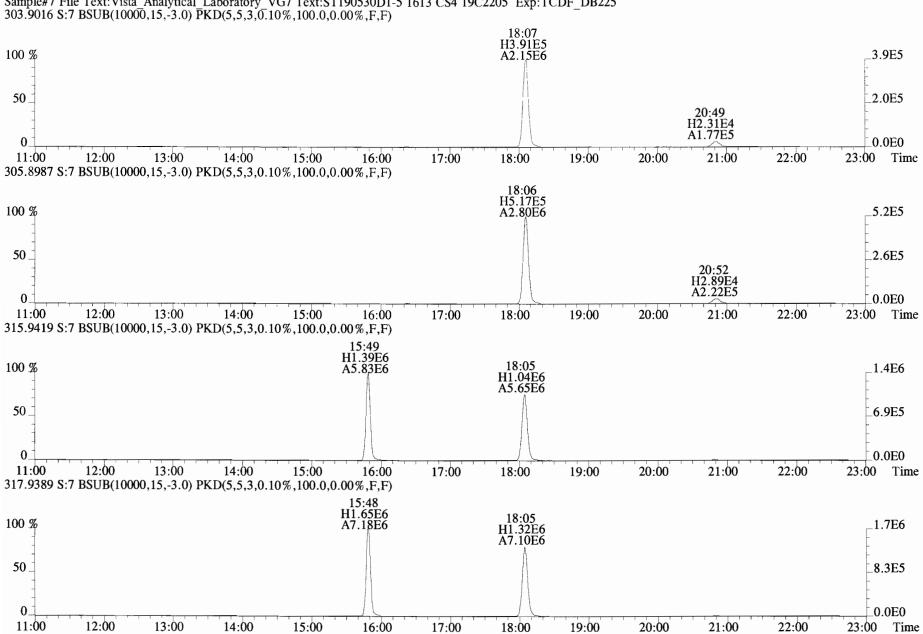

File:190530D1 #1-1683 Acq:30-MAY-2019 13:09:20 GC EI+ Voltage SIR Autospec-UltimaE Sample#5 File Text:Vista Analytical Laboratory VG7 Text:ST190530D1-3 1613 CS2 19C2203 Exp:TCDF_DB225 303.9016 S:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



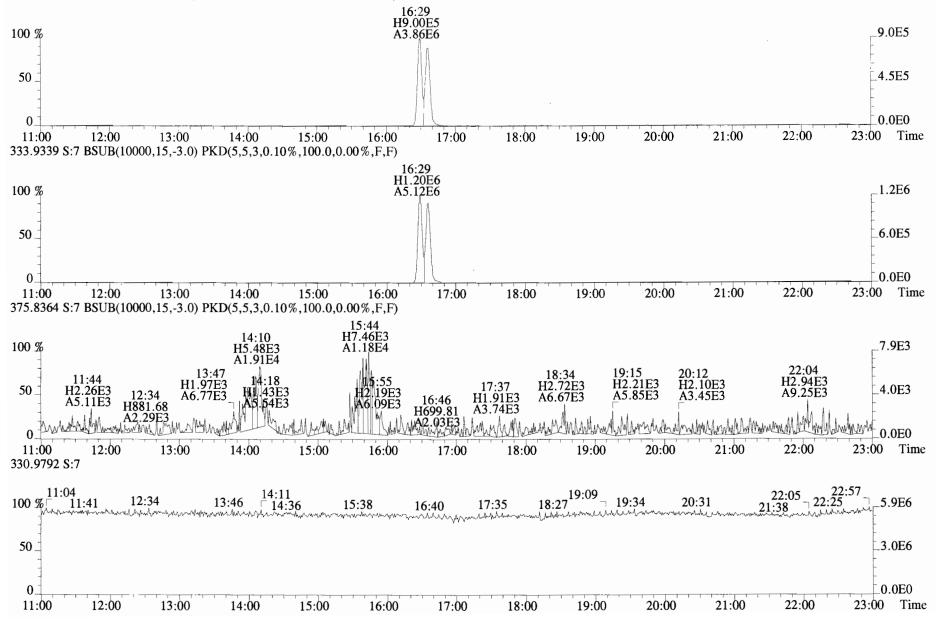
File:190530D1 #1-1683 Acq:30-MAY-2019 13:09:20 GC EI + Voltage SIR Autospec-UltimaE Sample#5 File Text:Vista_Analytical_Laboratory_VG7 Text:ST190530D1-3 1613 CS2 19C2203 Exp:TCDF_DB225 303.9016 S:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

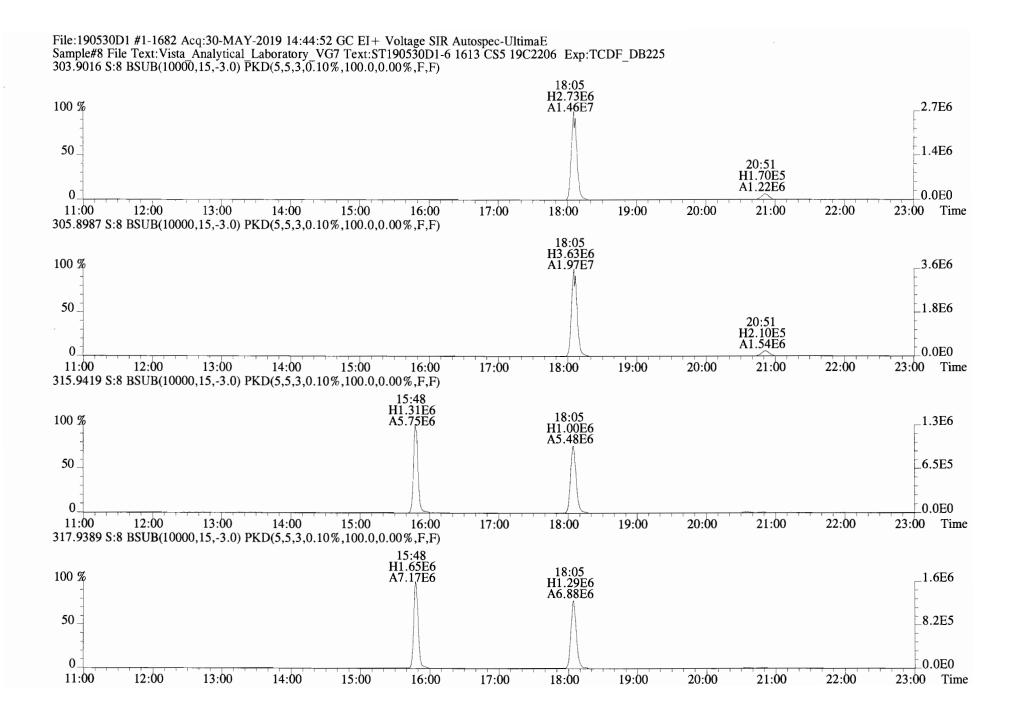

File:190530D1 #1-1683 Acq:30-MAY-2019 13:09:20 GC EI+ Voltage SIR Autospec-UltimaE Sample#5 File Text:Vista Analytical Laboratory VG7 Text:ST190530D1-3 1613 CS2 19C2203 Exp:TCDF_DB225 331.9368 S:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

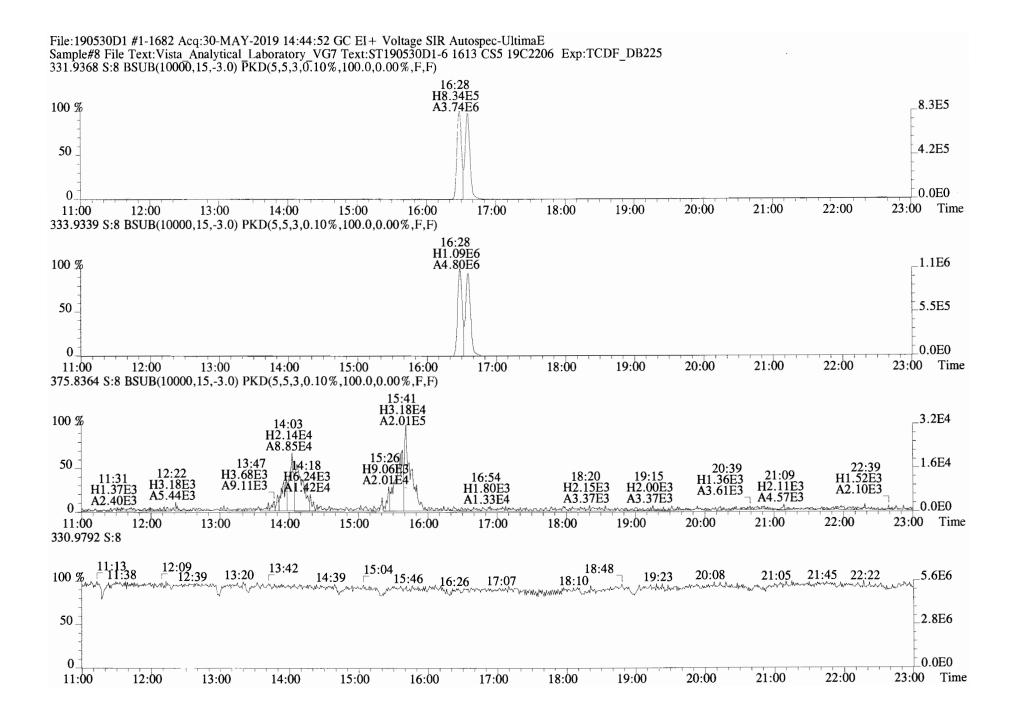



File:190530D1 #1-1682 Acq:30-MAY-2019 13:41:11 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:ST190530D1-4 1613 CS3 19C2204 Exp:TCDF_DB225 303.9016 S:6 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

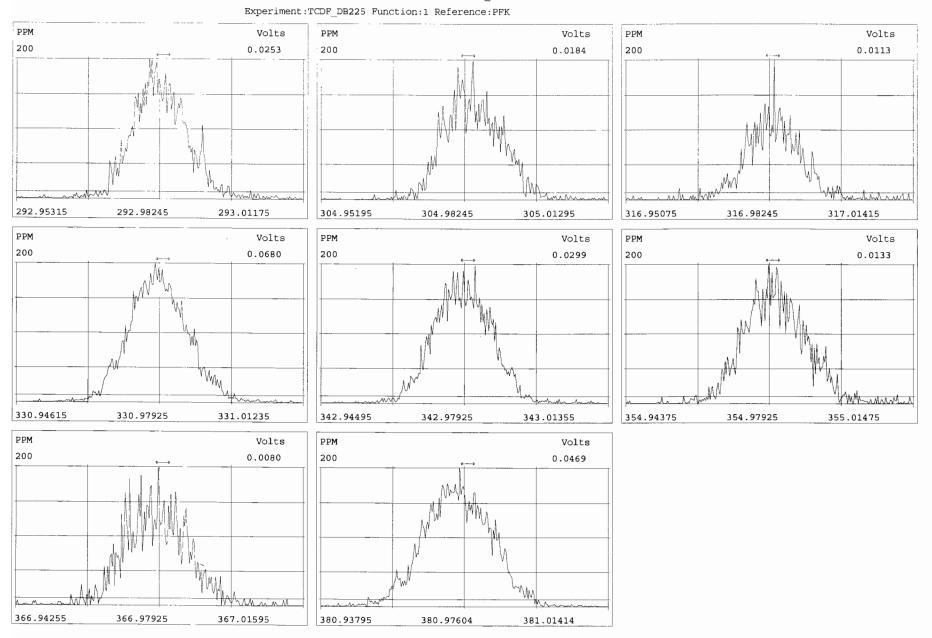
File:190530D1 #1-1682 Acq:30-MAY-2019 13:41:11 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:ST190530D1-4 1613 CS3 19C2204 Exp:TCDF_DB225 303.9016 S:6 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)



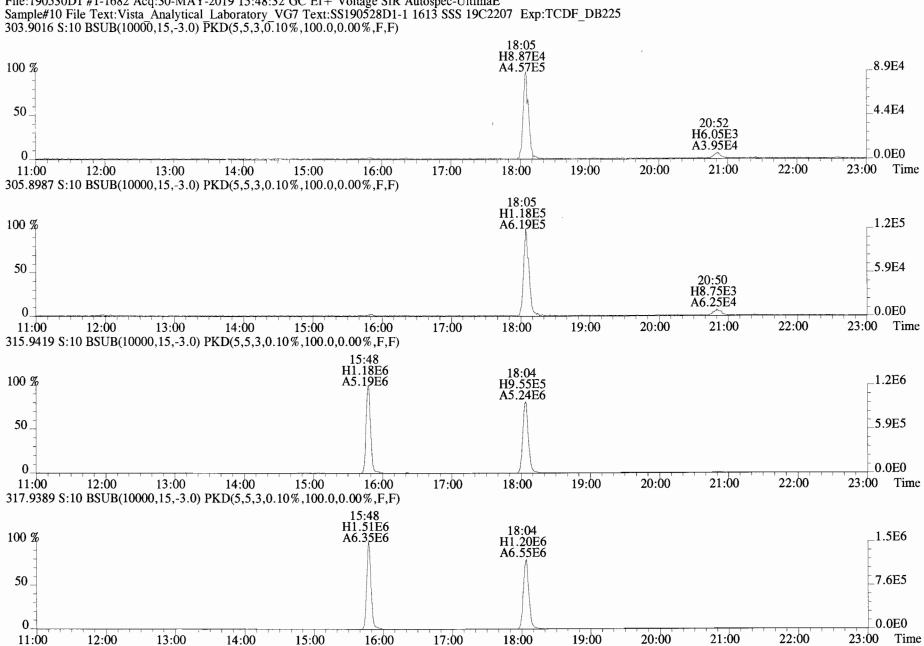

File:190530D1 #1-1682 Acq:30-MAY-2019 13:41:11 GC EI+ Voltage SIR Autospec-UltimaE Sample#6 File Text:Vista Analytical Laboratory VG7 Text:ST190530D1-4 1613 CS3 19C2204 Exp:TCDF DB225



File:190530D1 #1-1682 Acq:30-MAY-2019 14:13:01 GC EI+ Voltage SIR Autospec-UltimaE Sample#7 File Text: Vista Analytical Laboratory VG7 Text: ST190530D1-5 1613 CS4 19C2205 Exp: TCDF DB225

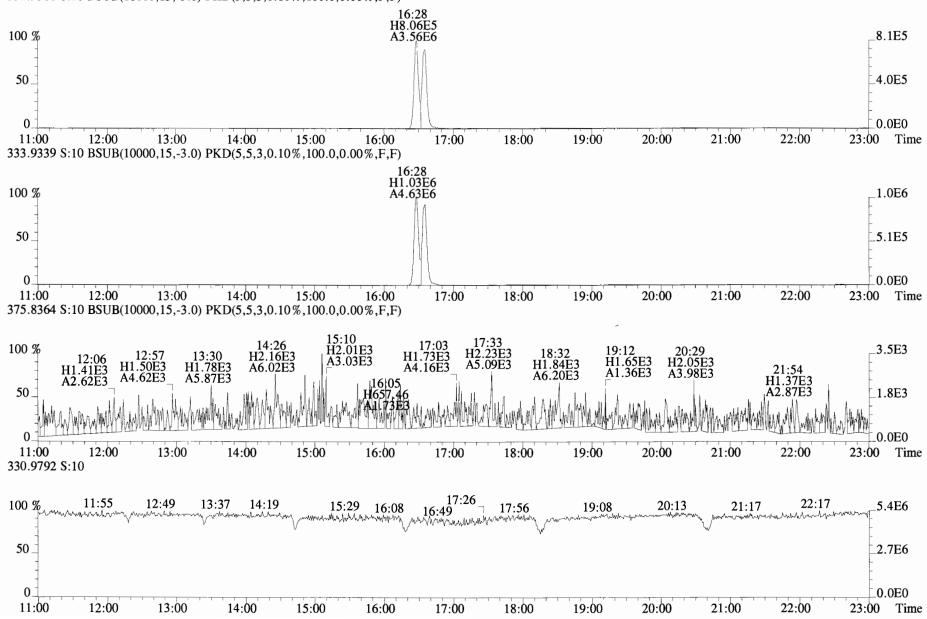

File:190530D1 #1-1682 Acq:30-MAY-2019 14:13:01 GC EI + Voltage SIR Autospec-UltimaE Sample#7 File Text:Vista Analytical Laboratory VG7 Text:ST190530D1-5 1613 CS4 19C2205 Exp:TCDF_DB225 331.9368 S:7 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

Work Order 1901248


Peak Locate Examination:30-MAY-2019:19:09 File:RES_CHECK

Client ID: 1613 SSS 19C2207	Filename: 190530D1 S:10	Acg:30~MAY-19 15:48:32	ConCal: ST190530D1-4	Page 1 of 1
Lab ID: SS190528D1-1	GC Column ID: DB-225 ICal	: 1613TCDFVG7-5-30-19 wt/vol: 1.000	EndCAL: NA	
Name Resp	RA RT RRF	Conc Rec		

	00110				noop	10000	
-	100.0	1.00	15:48	0.82 y	1.15e+07	13C-1,2,3,4-TCDF	
100.0	100.0	1.02	18:04	0.80 Y	1.18e+07	13C-2,3,7,8-TCDF	
	9.628	0.95	18:05	0.74 y	1.08e+06	2,3,7,8-TCDF	


Integrations	Reviewed		
by	by		
Analyst:	Analyst:		
Date: 5/31/19	Date: US/31/16		

Reviewed

File:190530D1 #1-1682 Acq:30-MAY-2019 15:48:32 GC EI+ Voltage SIR Autospec-UltimaE

File:190530D1 #1-1682 Acq:30-MAY-2019 15:48:32 GC EI+ Voltage SIR Autospec-UltimaE Sample#10 File Text:Vista Analytical Laboratory VG7 Text:SS190528D1-1 1613 SSS 19C2207 Exp:TCDF_DB225 331.9368 S:10 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,100.0,0.00%,F,F)

